
Task placement of parallel multi-dimensional FFTs
on a mesh communication network

Heike Jagode
The University of Tennessee - Knoxville
Oak Ridge National Laboratory (ORNL)

jagode@eecs.utk.edu

Joachim Hein, Arthur Trew
Edinburgh Parallel Computing Centre (EPCC)

The University of Edinburgh
{joachim| arthur}@epcc.ed.ac.uk

Abstract

For many scientific applications, the Fast Fourier Transfor-
mation (FFT) of multi-dimensional data is the kernel which
limits scalability to large numbers of processors. This pa-
per investigates an extension of a traditional parallel three-
dimensional FFT (3D-FFT) implementation. The extension
within a parallel 3D-FFT consists of customized MPI task
mappings between the virtual processor grid of the algo-
rithm and the physical hardware of a system with a mesh
interconnect. Consequentially, we derived a simple model
for the scope of performance of a large class of mappings
on the basis of bandwidth considerations. This model en-
ables us to identify scaling bottlenecks and hotspots of par-
allel, communication intensive 3D-FFT applications when
MPI tasks are mapped in the default way onto the network.
The predictions of the model are tested on an IBM eServer
Blue Gene/L system. The results demonstrate that a care-
fully chosen mapping pattern with regards to the network
characteristics yields significant improvement.

1. Introduction

The recent growth in performance of the fastest supercom-
puters in the world have been largely facilitated by an in-
creasing number of processors utilized by the system. We
expect this development together with the current trend of
multiple processing cores on a single chip to continue over
the next few years. This has important consequences for ap-
plication developers: Efficiently utilizing a system with sev-
eral hundred or thousand processors places high demands
on the scalability of the application.

For many scientific applications, parallel multi-dimensional
Fast Fourier Transformation (FFT) routines form the key
performance bottleneck which prevents the application
from scaling to large numbers of processors. FFTs are often
employed in applications requiring the numerical solution
of a differential equation. In this case the differential equa-
tion is solved in Fourier space, but its coefficients are deter-

mined in position space. FFTs can also be efficient for the
determination of the long-range forces, e.g. Particle-Mesh
Ewald methods in molecular dynamics simulations. Most
of these applications require the transformation between a
three-dimensional position and a three-dimensional Fourier
space.

Acknowledged parallel 3D-FFT implementations have used
a one-dimensional virtual processor grid - only one dimen-
sion is distributed among the processors and the remaining
dimensions are kept locally. This has the advantage that
only one All-to-All communication is sufficient. However,
for problem sizes of about one hundred points per dimen-
sion, this approach cannot offer scalability to several hun-
dred or thousand processors as required for the modern HPC
architectures. For this reason the developers of the IBM’s
Blue Matter application have been promoting the use of a
two-dimensional virtual processor grid for FFTs in three di-
mensions [1, 2, 3]. This requires two All-to-All type com-
munications. For lower processor counts, these two com-
munication operations lead to an inferior performance when
compared to an implementation using a one-dimensional
virtual grid. However this algorithm offers superior scal-
ability, even to processor counts where a one-dimensional
grid can no longer be employed [1, 13].

Another current trend in supercomputer design is the return
of the mesh type communication network. The systems
on the Top500 list [4] utilizing more than 20000 proces-
sors, arrange their processing chips on a three-dimensional
mesh communication network instead of a switched net-
work. When using a mesh-type network it is often possible
to achieve substantial performance gains by taking the net-
work characteristics into account. One example is to facil-
itate nearest neighbor communication by choosing a good
MPI task mapping between the virtual processor grid of the
application space and the physical processor mesh of the
actual compute hardware.

In this article we investigate the scope for such perfor-
mance improvements when mapping the MPI tasks of a par-
allel 3D-FFT implementation with a two-dimensional vir-
tual processor grid onto a machine with a three-dimensional
mesh as its communication network. Out of it, a simple



model for the performance of a large class of mappings has
been derived. This performance modeling is based on band-
width considerations and enables us to identify scaling bot-
tlenecks and hotspots of the parallel 3D-FFT application.

This paper is organized as follows. The next Section sum-
marizes the relevant work on parallel FFTs. Section 3 re-
views the implementation of the parallel 3D-FFT algorithm
with a two-dimensional data decomposition. In Section 4
the expected performance of this algorithm on a large class
of possible MPI task mappings is discussed from a band-
width point of view. This identifies a number of promis-
ing mapping patterns with respect to performance improve-
ments, which will be examined further in an experimental
study. A short overview of the Blue Gene/L system used for
this study is provided in Section 5, and Section 6 summa-
rizes the details of the benchmark application. The results
of the experimental study are presented and discussed in
Section 7. The paper ends with the conclusions.

2 Related research

There is a broad literature on different aspects of paral-
lel FFT implementations because of the tremendous impor-
tance of this kernel in many scientific applications. The par-
allelization of the one-dimensional FFT kernel has drawn
the high attention of many library developers and program-
mers. This is a significant investigation since the recent
generations of microprocessors have basically stopped due
to physical limits. One consequence is that chip makers
integrate multiple processor cores onto a single chip. On
this account, Fast Fourier Transform algorithms suitable for
shared memory processing (SMP) and multi-core architec-
tures have been derived in [5]. The results presented in [5]
show that the parallelization of one-dimensional FFTs for
SMPs and multi-core systems is useful.

On this basis, a further investigation is presented in [6]
where heuristics are developed for the parallelization of
FFT schedules on SMP and multi-core systems. The FFT
schedule computation is an empirical optimization tech-
nique that is successfully used by FFTW to generate a
highly optimized library. The approach generates a large
number of code variants with different parameter values.
All those candidates run on the target machine and the one
that gives the best performance is chosen.

Some other techniques have been investigated by several
groups, for instance (1) to improve data locality of a one-
dimensional FFT [7]; (2) development of high performance
one-dimensional FFT kernels optimized for certain proces-
sor designs such as Blue Gene PowerPC 440 with its two
floating point units that execute fused multipy-add instruc-
tions [8]; (3) a no-communication algorithm that is a par-
allel algorithm for a one-dimensional FFT without inter-
processors communication which performs good for small

problem sizes rather than mid-size or large problems [9].

Those above mentioned investigations out of a vast liter-
ature on FFTs are all valuable with respect to the one-
dimensional FFT algorithm. Another matter of fact for the
efficient utilization of supercomputers is a neat mapping of
MPI tasks onto the physical network to achieve optimal load
balance of the data and to minimize communication time
[10]. Different MPI task mappings for the Qbox applica-
tion have briefly been explored in [11]. The Qbox appli-
cation implements First-Principle Molecular Dynamics, an
accurate atomic simulation approach. The results presented
in [11] show that the task layout choice can significantly
impact the performance.

Another important area of application for multi-
dimensional FFTs is three-dimensional turbulence.
Turbulent flows can be found amongst others in stellar
physics or atmospheric and oceanographic science [12].
The crossover from three- to two-dimensional turbulence
is based on cascade models which are derived from the
Fourier space formulation of the Navier-Stokes equations
of motion. In [12] different FFT packages have been
compared together with replacing MPI tasks by using the
environment variableBGLMPI_MAPPING. The results
show that for more than 256 cores, using a customized MPI
task layout brought the shortest execution time.

All these examples reveal that an MPI task layout choice
depends heavily on the application and also on the size of
the application as clearly shown in [10]. The purpose of
this paper is to investigate different MPI task mappings be-
tween the virtual processor grip of the implemented three-
dimensional FFT algorithm and the physical hardware of
the system; and from this outcome to derive a theoretical
model for the performance of a large class of mappings.
Since many different scientific applications rely on a large
number of FFTs, the optimization for this computationally
expensive kernel can be invoked from those applications.

3 Review of parallel FFT algorithms

3.1 Definition of the Fourier Transforma-
tion

We start the discussion with the definition and the conven-
tions used for the Fourier Transformation (FT) in this paper.
ConsiderAx,y,z as a three-dimensional array ofL×M ×N
complex numbers with:

Ax,y,z ∈ C x ∈ Z ∀x, 0 ≤ x < L

y ∈ Z ∀y, 0 ≤ y < M

z ∈ Z ∀z, 0 ≤ z < N



The Fourier transformed arraỹAu,v,w is computed using the
following formula:
Ãu,v,w :=

L−1X

x=0

M−1X

y=0

N−1X

z=0

Ax,y,z exp(−2πi
wz

N
)

| {z }

1st 1D FT along z

exp(−2πi
vy

M
)

| {z }

2nd 1D FT along y

exp(−2πi
ux

L
)

| {z }

3rd 1D FT along x

(1)
As shown by the underbraces, this computation can be per-
formed in three single stages. This is crucial for under-
standing the parallelization in the next subsection. The first
stage is the one-dimensional FT along thez dimension for
all (x, y) pairs. The second stage is a FT along they dimen-
sion for all (x, w) pairs, and the final stage is along thex
dimension for all(v, w) pairs.

3.2 Parallelization

For the three-dimensional case, two different imple-
mentations - one-dimensional decomposition and two-
dimensional decomposition of the data over the physical
processor grid - have been recently investigated [1, 2, 13].
The parallel 3D-FFT algorithm using a two-dimensional de-
composition is often referred to in the literature as the volu-
metric fast Fourier transform. In this paper we concentrate
on the performance characteristics of the MPI task place-
ments of the two-dimensional decomposition method onto
a mesh communication network. Reference [13] provides
an initial investigation. Figure 1 illustrates the paralleliza-
tion of the 3D-FFT using a two-dimensional decomposition
of the data arrayA of sizeL× M × N . The compute tasks
have been organized in a two-dimensional virtual processor
grid with Pc columns andPr rows using the MPI Cartesian
grid topology construct [14]. Each individual physical pro-
cessor holds anL/Pr × M/Pc × N sized section ofA in
its local memory. The entire 3D-FFT is now performed in 5
steps

1. Each processor performsL/Pr × M/Pc one-
dimensional FFTs of sizeN

2. An All-to-All communication is performed within
each of the rows - marked in the four main colors -
of the virtual processor grid to redistribute the data. At
the end of the step, each processor holds anL/Pr ×
M × N/Pc sized section ofA. These arePr indepen-
dent All-to-All communications.

3. Each processor performsL/Pr × N/Pc one-
dimensional FFTs of sizeM

4. A second set ofPc independent All-to-All communi-
cation is performed, this time within the columns of
the virtual processor grid. At the end of this step, each

processor holds aL × M/Pc × N/Pr size section of
A.

5. Each processor performsM/Pc × N/Pr one-
dimensional FFTs of sizeL

For more information on the parallelization, the reader is
referred to [1, 13].

4 All-to-All transformations on meshed net-
work

4.1 Virtual processor grid and physical
processor mesh

The key point of this paper is to investigate how the per-
formance of the 3D-FFT can be influenced by the choice
of MPI task mapping between the virtual processor grid
and the physical processor mesh or torus of the machine.
We assume a (partition of the) system of cuboidal shape
in 3 dimensions with a physical mesh of processors sized
nx × ny × nz. It is absolutely crucial not to confuse this
physical mesh with the virtual processor grid of dimension
Pr × Pc. We denote the total number of processors withP
and if we use all processors available for the 3D-FFT, we
get

P = nx ny nz = Pr Pc . (2)

If we denote the total amount of data involved in the 3D-
FFT byDT and assume this data can be evenly divided onto
the processors, the amount of dataDr held by each row of
the virtual processor grid becomes

Dr =
DT

Pr

= Pc

DT

P
. (3)

Each of thePr All-to-All transformations in the second step
of the algorithm needs to redistribute this amount of data. A
similar equation holds for the second All-to-All transforma-
tion in the fourth step.

In the remainder of this section, we discuss how the map-
ping of the rows of the virtual processor grid onto the phys-
ical processor mesh impacts the interconnect bandwidth
available to each individual row. Since the map between
the virtual grid and the physical mesh has to place all the
grid rows simultaneously and the performance of the worst
performing row will determine the overall performance, we
restrict ourselves to maps which obey certain symmetries.
The symmetries protect against unequal performance across
different rows and make it easier to fill the entire physical
mesh of the machine by applying a displaced version of the
same basic map for each of the rows.



perform 1D-FFT

along z-dimension

(a)

perform 1D-FFT

along y-dimension

(b)

Proc 0

Proc 1

Proc 2

Proc 3

Proc 4

Proc 5

Proc 6

Proc 7

Proc 8

Proc 9

Proc 10

Proc 11

Proc 12

Proc 13

Proc 14

Proc 15

All-to-All communication

within the ROWs of the

virtual processor grid

to get data over

y-dimension

locally

perform 1D-FFT

along x-dimension

(c)

All-to-All communication

within the COLUMNs of the

virtual processor grid

to get data over

x-dimension

locally

x
z

y

x

z

y

x

z
y

data array

A = 8 x 8 x 8

x

z

y

Pr
Pc

2D virtual Processor grid

Pr x Pc = 4 x 4

0

1

2

3

1
2

3

.

.

.

.

.

.

Figure 1: Computational steps of the 3D-FFT implementationusing 2D-decomposition

i

ni

ni

2

ni

ni

2

Figure 2: Example mappings of virtual grid rows with ani

2
translation symmetry

4.2 Images with an internal translation
symmetry

The following discussion applies to all three directionsx, y
andz of the physical mesh in a similar fashion. Hence, we
can restrict ourselves to a single direction which we call the
i-direction. The extent of this direction isni. Let us con-
sider maps whose images of the virtual grid rows have an
internal translation symmetry ofni

2 or are a union of such
images. The translation symmetry (also called sliding sym-
metry) associates the same shapes facing in the same direc-
tion. This translation symmetry assumes periodic boundary
conditions with a period ofni, irrespective of properties of
the physical network. More precisely, the shapes are repli-
cated with a period ofni to infinity by rigid translation in
the i-direction. The obvious example for such an image is
a row of the virtual grid being mapped onto a number of
full rows of the physical mesh, which are parallel to thei-
direction. Another example would be two processors, one
placed at position one of the row, the other at positionni

2 +1
of the row. These examples are illustrated in Figure 2. A
full map for all the rows of the virtual processor grid can be
constructed by using displaced versions of this basic image.

The first All-to-All communications of the 3D-FFT has to
take place internally to each individual image of the virtual
rows, with no communication between images of different
virtual rows.

Let us now consider the bi-section. In case of an open mesh,
we insert a plane orthogonal to thei-direction in the middle
of thei-direction. In case of a toroidal communication net-
work we need to insert two such planes, separated byni

2 . In
either case, we will have half of the processors of the vir-
tual row in each part. This will hold for all virtual rows, if
their images are displaced versions of the same basic image.
Since we assume an even distribution of the dataDr onto
all the processors of the virtual row, each part of the mesh
will hold Dr/2. In the All-to-All communication each part
has to keep half of its data and send half of its data to the
other part. HenceDr/4 data have to move from the first part
of the mesh to the second andDr/4 data have to move the
other way. Considering the bi-sectional bandwidth avail-
able for each individual image will give us a lower bound
on the communication time.

The total bi-sectional bandwidth through the above plane(s)
is the bandwidthBl of an individual link multiplied with
number of links which is the areaAi, which is the number
of processors in the plane(s). In case of a toroidal network
this has to be multiplied by a factor of two. We introduce a
torus-factorgt with

gt =

{

1 mesh network
2 toroidal network

(4)

We get a total bi-sectional bandwidthBT,i associated with
the directioni of

BT,i = Ai gt Bl . (5)

Since the bi-section intersects all the images of the virtual
grid-rows,BT,i gets divided evenly between the rows of the



i

ni

f

ni

Figure 3: Example mapping of a virtual grid row, with an
extent ofni/fi and a translation symmetry ofni/(2fi)

virtual processor grid. For the bandwidthBr,i available for
each individual virtual grid row we get

Br,i =
BT,i

Pr

=
AigtBl

P
Pc (6)

From this we get a timet(f)
r,i , which is the minimum time

required for the data transfer in thei-direction through the
bi-section of

t
(f)
r,i =

1
4Dr

Br,i

=
DT

4AigtBl

=
niDT

4PgtBl

. (7)

The last step usesAini = P .

4.3 Images spanning fractions of direc-
tions

We now consider the situation thatfi planes orthogonal
to the i-direction are placed inside the physical processor
mesh, withfi being an integer larger than one. These planes
are spaced at regular intervalsni/fi. We assume the basic
image of an individual row of the virtual processor grid can
be placed inside the space between two neighboring planes
and has an internal translation symmetry ofni/(2fi) with
respect to a period ofni/fi. This is illustrated in Figure 3.
Also here the translation symmetry (or sliding symmetry)
involves the same shapes facing in the same direction. The
full map for all rows is now constructed by using displace-
ments of the above basic image across the entire physical
mesh of the hardware.

Assuming efficient message routing along the shortest path,
no message will cross any of thefi planes, since this would
result in a longer than necessary route. We can therefore
regard the first set of All-to-All transformations within the
rows of the virtual grid as being executed independently on
fi independent machines. Each of thesefi machines has an

extent of its physical mesh of

n′

i =
ni

fi

. (8)

The crucial observation is that each of these machines now
holds

D′

T =
DT

fi

(9)

data. Since no message crosses any of thefi planes, we
always have an open mesh and

g′t = 1 . (10)

So far we have not split any of the directions orthogonal
to the i-direction, which keeps the area of the bi-section
unchanged

A′

i = Ai . (11)

Inserting everything into a formula similar to equation (7),
we obtain

t
(p)
r,i =

D′

T

4A′

ig
′

tBl

=
DT

4fiAiBl

=
niDT

4fiPBl

. (12)

Again, for the last step, we have usedniAi = P . When
compared to equation (7), this is an improvement offi/gt.

Obviously this formula will not hold forni = fi, since
this case does not have an internal translation symmetry of
ni/(2fi) = 1/2. For ni = fi all processors belonging
to the image of a single row of the virtual grid are within a
single layer of the physical mesh. This layer is orthogonal to
the i-direction. There are no communication requirements
in thei-direction in this case and the associated time is zero

t
(1)
r,i = 0 . (13)

4.4 Communication time for a given map

After discussing the time constraint associated with the data
transfer in a particular direction for three different symme-
try classes, we continue with a discussion of the total com-
munication time of the entire parallel 3D-FFT algorithm.
The total communication timet is the sum of the times
tr and tc for the data exchange within the rows and the
columns of the virtual processor grid

t = tr + tc . (14)

The timestr andtc can not be shorter than the largest of the
times required for the data transfer through the bi-sections

tr ≥ max
i

(tr,i) , tc ≥ max
i

(tc,i) . (15)

We restrict the following discussion to maps for which for
each of thetr,i andtc,i either of the equations (7), (12) and
(13) can be applied. We now investigate which maps from
this group are marked out as particularly efficient by our



model. To do so, we rewrite the right hand side of equa-
tion (15) as

tr ≥ max
i

(mi)
DT

4PBl

(16)

mi =











ni

gt

if equation (7) applies
ni

fi

if equation (12) applies

0 if equation (13) applies

A similar equation holds fortc. Themi can be regarded as
the effective length of the image in thei-direction. To op-
timize the performance we have to aim to get the largest of
themi as small as possible. This can typically be achieved
by removing holes from the basic row images or by increas-
ing themi in either of the other directions. Hence, optimum
performance is obtained if all themi are equally small.

The maps for the rows and the columns are not indepen-
dent. The entire 3D-FFT algorithm requires information to
be exchanged through the entire (partition of the) machine.
Therefore eithertr or tc can not perform better than the
time t

(f)
r,i associated with the longest of theni. By selecting

a good mapping between the virtual processor grid and the
physical mesh we can only improve eithertr or tc but not
both.

We note some important observations on equation (16):

• For a given machine geometrynx, ny, andnz there is
no explicit dependency onPc or Pr.

• In the limit of P → ∞ our model agrees with the
model presented in [2] for a single All-to-All trans-
formation on a row, plane, or a volume of the physical
mesh of the machine. For finiteP our model gives
longer times.

Our model assumes that all maps are capable of utilizing the
full bandwidthBl of the links at the bi-section at their best.
Obviously for very small problems, latency considerations
(which do not form part of our model) will dominate.

In Section 7 we will investigate how well our model
describes the performance of an 3D-FFT with a two-
dimensional processor grid when using an IBM eServer
Blue Gene/L. Prior to this, we want to give a short review of
the Blue Gene/L system and an overview on the application
used for this investigation.

5 Overview of the Blue Gene/L system

5.1 Processors and operational modes

The model described in Section 4 has been tested on
the University of Edinburgh’s IBM eServer Blue Gene/L,

named BlueSky. This section gives a short overview on
the features most relevant for this investigation. Further
information can be found in [15, 16]. The machine uses
IBM PowerPC 440 dual core chips (nodes) with a clock fre-
quency of 700 MHz. The system in Edinburgh offers a total
of 1024 chips or 2048 processors (cores). Per chip, 512 MB
of main memory are installed.

The Blue Gene/L architecture offers two main operational
modes. In co-processor mode (CO), a single MPI task is
placed on the chip. In CO mode the second core of the chip
is used as a communication co-processor.

In the other operational mode, called virtual node mode
(VN), two MPI tasks are placed on the chip. If the appli-
cation fits into 256 MB of main memory per MPI task, this
mode typically offers the better performance when compar-
ing on a per-chip basis, and when the application has not
run out of scalability [17].

5.2 Partitions and communication

The Blue Gene/L architecture offers five different networks
which are dedicated and optimized for different tasks. For
All-to-All communication, only the torus network is rele-
vant. The torus network arranges the chips on a 3D torus,
with communications taking place between nearest neigh-
bors. The connecting links of this network offer a band-
width of 2 bits per cycle per direction, which translates to
167 MB/s when using a clock frequency of700·106 Hz. The
maximum length of the torus packets is 256 bytes, with the
first 16 bytes being used for routing, software and header in-
formation [18]. Additionally, 14 bytes of error control data
are sent for each packet that is sent into the torus network
[19]. This results in a maximum utilization of the torus net-
work of 89 % and a limit of about 148 MB/s for the band-
width. For a simple ping-pong benchmark using MPI, a
sustained bandwidth of 147 MB/s has been measured and
presented in [17] which is remarkably close to that limit.

Each user application has to request a dedicated cuboidal
partition of the machine. For small partitions the meshed
network can only be configured as an open mesh, while for
partitions of 512 chips or multiples thereof, there is a choice
of an open mesh or a full torus, with the latter being the
default.

5.3 Parallel runtime environment

The Blue Gene/L offers several ways to affect the runtime
environment of parallel jobs. The most important one, in
our investigation of the MPI task placement, is the mapfile.
For each MPI task, the file contains the coordinates with
respect to the physical 3D torus network of the machine on
which this task is to be placed.



6 Details of the benchmark application

6.1 Calculating the 1D FFT

The parallel 3D-FFT algorithm is reviewed in Section 3.
Here we describe the key features of our benchmark ap-
plication used for this project. We also give a brief sum-
mary on initial investigations during the design stage of the
benchmark.

The benchmark application is written in C. While the com-
munication part of the algorithm is most important to this
project, it is desirable to implement the full algorithm. This
allows the significance of potential improvements to the
communication part of the algorithm to be evaluated against
the total time of the algorithm. The benchmark application
was run several times and the one measured on a hot L3
cache and yielding the best performance regarding the to-
tal amount of time, taken for the entire three-dimensional
forward FFT computation, has been presented in this paper.

The application uses version 2.1.5 of the open-source
“Fastest Fourier Transform in the West” (FFTW) library
[20] to perform the required one-dimensional FFTs. The
Vienna University of Technology offers a FFTW 2.1.5 ver-
sion specifically optimized for the double floating point unit
of the Blue Gene processors and is known as FFTW-GEL
[21, 22]. A detailed comparison by one of the present au-
thors confirms the FFTW-GEL library yields a substantial
performance improvement over a version of the library di-
rectly compiled from the source [13]. Hence FFTW-GEL is
used for this project.

Our application calls the routinefftw() from the FFTW-
GEL library which can perform several one-dimensional
transformations within a single call. This routine takes a
single array for the input of all the transformations and re-
turns a single output array. For both arrays there is a choice
of having the data for each individual transformation con-
tiguous, followed by the data for the next transformation,
or having regular strides between the individual data points
of a single transformation. When using FFTW-GEL, best
performance is achieved by using contiguous data in the
fftw() -calls and copying the data into this format within
the application if required by the algorithm [13].

6.2 Communication inside the application

The MPI library provided by IBM as part of the system
software is used for the required communication. In the
application, a Cartesian communicator is used to create the
virtual processor grid described in Section 3.2. This is di-
vided into sub-communicators for the rows and the columns
of the grid. For the communication kernel of our parallel
three-dimensional FFT computation theMPI_Alltoall

routine is used.

Bypassing the MPI layer and using the low-level system
programming interface (SPI) of the Blue Gene for the com-
munications would give additional benefits when the data
per processor is small [2]. Since the reported improvements
from accessing the SPI are small or negligible for the prob-
lem sizes and processor counts we are interested in, it was
decided that accessing the SPI is beyond the scope of this
project. Furthermore, for a general application, access to
the SPI would make portability more difficult.

The-mapfile option of the job launchermpirun on the
Blue Gene/L architecture is used to implement the map be-
tween the virtual processor grid of the application and the
physical processor mesh of the hardware.

7 Results of the experimental investigations

7.1 Process mapping patterns

The following investigations have been carried out on a 512-
chip partition with an8 × 8 × 8 topology using the toroidal
network. Incidentally, this is the smallest partition thatof-
fers a torus network. A similar investigation using the mesh
network has recently been published [13]. The investigation
shows that for a partition offering a full torus network, the
use of an open mesh network yields inferior performance
for all mapping patterns and problem sizes included in this
investigation. For this reason this investigation focuseson
the case of a full torus network.

Our model, which we presented in Section 4, predicts best
performance when using cubes as the basic mappings for
either the rows or the columns of the virtual processor grid.
For this reason, this study concentrates on two cube-shaped
customized mappings. Additional mappings were investi-
gated in [13]. Figure 4 illustrates the two cube-shaped cus-
tomized mappings versus the default mappings in CO mode.
We call the mapping used for the customized mapping of the
rows for the case (a) an “8-cube” and the one for case (b)
a “64-cube”. For the purpose of clarity, all the figures de-
pict only one basic image. The full map for all rows of the
virtual processor grid is constructed by using displacements
of the basic image across the entire physical 3D torus net-
work. More precisely, in Figure 4 (a) the 8-cube is displaced
64 times and in (b) the 64-cube is displaced 8 times to fill
the entire partition. The same applies to all other mapping
patterns.

In Table 1 we summarize themi values for these mappings,
required to obtain predictions on the communication times
from equation (12). We would like to recall that we have to
aim to get the largest of themi values as small as possible
to optimize the performance. For a 512-chip partition these
suggest a performance improvement for the 8-cube only, the



x y

z

default
mapping

customised
mapping

communication
between rows

communication
between columns

communication
between rows

communication
between columns

(a) (b)

Figure 4: Customized vs default mapping on a 512-chip partition in CO mode and a division of processors in a Cartesian grid
Pr × Pc of (a)8 × 64 and (b)64 × 8

Rows Columns
mx my mz mx my mz

8 × 64 customized 2 2 2 4 4 4
8 × 64 default 0 0 4 4 4 0
64 × 8 customized 4 4 4 4 4 4
64 × 8 default 0 4 4 4 0 0

Table 1:mi numbers for the mappings shown in Figure 4

64-cube is in all probability rather interesting for a163 par-
tition which would be available on larger Blue Gene/L sys-
tems. One would also expect the customized mapping in
case (a) to offer better latency properties, since the 8-cube
is smaller than the matching default. Hence the 8-cube re-
quires fewer “hops” for the messages to reach their destina-
tion.

In addition to these mappings in CO mode, we investigated
mappings in VN mode, which show the same shape for the
customized and default cases. This means that for the map-
ping using the 8-cube we considered two VN mode map-
pings. One VN mode mapping uses a virtual processor grid
with 16 × 64 nodes while the other mapping uses8 × 128
nodes. In the first case we map a single row of 16 com-
pute tasks onto an 8-cube, while in the second case we map
two rows with 8 compute tasks each onto an 8-cube. Since
the default mapping with the division of processors8× 128
shows a different shape compared to the default mapping
with 8 × 64 in CO mode, we do not further consider this
case. The same applies to the default case using the proces-
sor division64 × 16, since it shows a different shape com-
pared to the default mapping of a processor division64 × 8
in CO mode. For the sake of clarity, Figure 5 illustrates the

two VN mode mappings. Also here only one basic image
is depicted, however, with one exception. If the two cores
per node are divided between two different communicators,
a second displacement of the basic image is presented in
white. Again, the full map for all rows of the virtual proces-
sor grid is constructed by using displacements of the basic
image across the entire physical 3D torus network.

Two different virtual processor grids,128 × 8 and64 × 16
and a single default are also used for performance investi-
gation of the 64-cube in VN mode. These are constructed
similarly to the maps of the 8-cube in VN mode and illus-
trated in Figure 6.

7.2 Analysis of overall performance

Figures 7 (a) and (b) present the influence of the 8-cube
and 64-cube mapping described in Section 7.1 on the to-
tal performance of the entire 3D-FFT algorithm. To obtain
more readable figures, the results of both figures have been
normalized with the performance of an arbitrarily chosen
default mapping. More precisely, the performance result of
the default mapping for the64 × 8 virtual processor grid -
as our default choice - has been divided by the results of all
other mappings. The measured times for the overall perfor-
mance together with the times for the two All-to-All type
communications can be found in Appendix A.

8-cube and 64-cube: For small problems and hence small
messages, the VN mode does not show any benefits. CO
mode is more efficient for small problems such as643, since
the shorter time spent in communications cancels out the
advantage of using more processors for the computations.



x y

z

default
mapping

communication
between rows

communication
between columns

communication
between rows

communication
between columns

(a) (b)

customised
mapping

Figure 5: Customized vs default mapping on a 512-chip partition in VN mode and a division of processors in a Cartesian
grid Pr × Pc of (a)16 × 64 and (b)8 × 128

This performance degradation in VN mode is most likely
caused by the two cores per chip locking each other out
from the network, as access to the network is shared be-
tween the two cores. Aside from that, in some cases, for VN
mode the problem size is too small to divide the problem
up between the number of processors. For larger problem
sizes VN mode becomes attractive, independent of whether
the customized or the default mapping is used.

8-cube: The expected performance improvement for small
and dense cubes which is discussed in Section 4.3 can only
be observed in VN mode. In CO mode the 8-cube mapping
yields only a minor improvement. In VN mode the per-
formance improvement due to the 8-cube mapping is quite
substantial. For problems of1283 and2563 and a processor
grid of 16 × 64 we observe a performance improvement of
16% over the default. This decreases for larger problems,
but even for10243 we see a performance increase of10%.

The figures for VN mode show an explicit drop between
2563 and5123 problems when compared to the CO mode.
This is a result of additional time spent in the FFTW library
functions, rather than in communication routines.

64-cube: For the 64-cube we do not observe any perfor-
mance improvement when compared to the default map-
ping. This was expected from Table 1. For CO mode we
see a performance degradation of less than 8%, while in
VN mode the performance is virtually unchanged by the
customized mapping. This is promising news for a Blue
Gene/L system with 4096 chips and will be discussed be-
low in Section 7.4 in greater detail.

Figure 7 (a) shows an unexpected performance difference
of 6% between the two default cases for a problem size of

1283. Both mappings use rows and planes of the physical
processor mesh for the basic images. However these basic
images have a different orientation and a different ordering,
see Figure 4.

7.3 Analysis of average bandwidth for the
8-cube

After discussing the impact of the customized mappings
on the overall performance, we now addresses the ques-
tion how well this performance is described by the model in
Section 4. For this we calculate the average bandwidth uti-
lization per wire from the measured communication times
by solving equation (16) forBl and inserting themi from
Table 1. A comparison to the hardware limit of 148 MB/s
for Bl shows how well the measured times agree with our
model, which is derived from considering the bi-sectional
bandwidth. Here we focus on the mappings using the 8-
cube and the corresponding default, Section 7.4 gives this
comparison for the 64-cube.

Figure 8 (a) presents the bandwidth utilization for the com-
munication within the rows of the virtual processor grid.
The grid rows are mapped onto small and dense 8-cube
patterns. The results for the communications within the
columns of the virtual processor grid are presented in Fig-
ure 8 (b). These are mapped with the non-contiguous pat-
tern, complementary to the 8-cube, with small gaps equally
distributed over the entire 512-chip partition. Both figures
contain the results for CO and VN modes and the prediction
of our model corresponds to the horizontal lines marked as
“HARDWARE LIMIT”.



x y

z

default
mapping

communication
between rows

communication
between columns

(a) (b)

customised
mapping

communication
between rows

communication
between columns

Figure 6: Customized vs default mapping on a 512-chip partition in VN mode and a division of processors in a Cartesian
grid Pr × Pc of (a)128 × 8 and (b)64 × 16

Figure 7: Comparison of the relative performance of the entire 3D-FFT algorithm on a 512-chip partition when deploying (a)
8-CUBE maps and (b) 64-CUBE maps between the virtual processor grid and the physical processor mesh

The figures demonstrate clearly the efficiency of the sys-
tem with respect to the utilization of the bandwidth through
the links of bi-section. Given a large enough problem, for
most of the investigated maps, the average bandwidth uti-
lization is amazingly close to the hardware limit and our
model’s prediction for the communication time is reason-
ably accurate. The most important exception to this is the
performance of the 8-cube in CO mode. This saturates at
an average bandwidth per wire of around 90 MB/s, which is
substantially below the hardware limit. This shortfall is the
key reason for the 8-cube not delivering the expected per-
formance improvement for the entire 3D-FFT as discussed
in Section 7.2. By contrast, in VN mode the performance is
close to the hardware limit and the 8-cube delivers a sizable
boost to the performance. This is independent of whether
one or two communicators are placed on the 8-cube.

We can only speculate about the reasons for this behavior.
For the 8-cube the ratio of links at the bi-section to proces-

sors is very large. The compute power of a single core in
CO mode might be insufficient to simultaneously manage
the overheads of the MPI call and the insertion of the data
into the network. Outsourcing some of this work to the sec-
ond core, which is supposed to act as a communication co-
processor, is known to be difficult due to the lack of cache
coherency between the L1-caches on the chip. In VN mode,
when each core manipulates its own private data per chip,
the problems associated with the lack of cache coherency
go away. The same hardware as in the case of the CO mode
is now capable of saturating the links of the bi-section.

Figure 8 (a) shows that the best bandwidth utilization is
achieved when all processors of a virtual grid row are
mapped onto a line along a single row of the physical mesh
in CO mode. This is most significant for small problem
sizes such as643 and1283. The superior latency offered by
this simple map leads to the very good overall performance
of the default map in CO mode as shown in Figure 7 (a).



Figure 8: Average bandwidth utilization per link of the bi-section for the communication between (a) ROWS and (b)
COLUMNS of the 2D-virtual processor with the division8 × 64

The reason might be the simpler message routing on a line
of processors. For each message there is only one shortest
path to reach its destination. If this knowledge is used in the
communication libraries, the overheads can be reduced.

It is interesting to note that the effect of VN mode over CO
mode on the latency is substantially more pronounced for
the row communications than the column communications.
This is really surprising. For the communications within the
columns and the smallest problem size, the individual mes-
sages are smaller than a single package. This holds for both
modes and is obviously independent of the map. Switching
from CO mode to VN mode increases the number of mes-
sages by a factor of four, since the number of tasks is dou-
bled. Assuming single package mode for each message, this
would lead to a fourfold increase in the number of packages
on the network. The results in Figure 8 (b) are not consis-
tent with such a scenario. The algorithm employed for the
All-to-All must be able to combine more than one message
into single packages.

7.4 Analysis of average bandwidth of the
64-cube

Figure 9 (a) shows the average bandwidth utilization for
the communication within the rows of the virtual proces-
sor grid, which refers to the dense 64-cube pattern in CO
and VN mode. Figure 9 (b) shows it for the communica-
tion within the columns of the virtual processor grid, which
refers to the complementary non-contiguous pattern with
large gaps equally distributed over the entire 512-chip par-
tition. Again, on both figures, the prediction of our model
corresponds to the horizontal lines marked as “HARD-
WARE LIMIT”.

For problem sizes larger than1283, the available bandwidth
at the bi-section is better utilized for 64-cube in CO mode
than it was for the 8-cube pattern. When switching to VN
mode we do not observe a significant performance improve-
ment when compared to the CO mode. Again this is differ-

ent from the 8-cube, where a dramatic improvement was
seen when switching to VN mode. Obviously, for the 64-
cube, the ratio of links at the bi-section to processors is
halved when compared to the 8-cube. This is in support
of our above hypothesis, that in the case of an 8-cube in CO
mode, a single core is not capable of simultaneously dealing
with the handling of the MPI call and the data insertion into
the network.

The average bandwidth at the bi-section of the 64-cube sat-
urates at around 120 MB/s, which is significantly less than
the hardware limit. It seems likely that the bandwidth uti-
lization for the communication within the 64-cube is af-
fected by hot spots in the middle of the bi-section. Assum-
ing message routing along the shortest path, there are more
sender-receiver pairs for which message routing through the
centre of the bi-section is among the shortest paths than
there are pairs for the links at the corners of the bi-section.
In this context it is interesting to note that the communica-
tion times for the 64-cube are unchanged whether we con-
figure the communication network as a torus or as an open
mesh. This confirms that the 64-cube cannot benefit from
torus connectivity of the partition.

The matching default mapping in CO mode, where the tasks
are spanned over an entire plane along two axes, shows the
best bandwidth utilization. The pattern here utilizes torus
links in two dimensions, which results in more symmetric
communication. This symmetry makes avoiding hot spots
easier.

When using a large number of small communicators, that
is for the columns communications in this case, we observe
an increased latency for the smallest problem size when we
switch from CO to VN mode. When using a small number
of large communicators, this sensitivity is very small. This
is the same as discussed for the 8-cube.

For the 512-chip partition with an8 × 8 × 8 topology our
model does not predict a performance benefit from using
the 64-cube. The key result of this subsection is that nei-
ther the 64-cube nor its complementary pattern with large



Figure 9: Average bandwidth utilization per link of the bi-section for the communication between (a) ROWS and (b)
COLUMNS of the 2D-virtual processor with the division64 × 8

gaps between its processors show severe under-performance
when compared to the predictions from our model and the
matching defaults. This holds for both CO mode and VN
mode. The observed decrease in average bandwidth uti-
lization is small enough to make the 64-cube an interesting
mapping pattern for a larger Blue Gene/L with 4096 chips
in a 16 × 16 × 16 partition. On such a machine one could
hope for improvements similar to the ones we have reported
for the 8-cube on the 512-chip partition available to us. Ob-
viously this needs experimental verification on such a ma-
chine.

8 Conclusions

This paper investigates the potential performance benefit
from MPI task placement for the volumetric Fast Fourier
Transformation on a modern massively parallel machine
with a meshed or toroidal communication network. From
a detailed discussion of the communication bandwidth
through the bi-section of the communication network, we
build a simple model for the communication times of the
algorithm. The model can be applied to a large number of
MPI mappings between the virtual processor grid of the al-
gorithm and the physical mesh of the machine. From the
considered maps, our model predicts best performance if ei-
ther the rows or the columns are mapped onto small cubes.

Our experimental results show also that performance bene-
fits of up to 16% for the entire 3D-FFT algorithm are pos-
sible when using cubes for the images on a 512-chip par-
tition of the machine. The observed performance increase
of the communication part due to task placement is as large
as 33%. This indicates the remaining scope of performance
improvement due to task placements if the serial part of the
algorithm, such as the deployed FFT routine, would be fur-
ther optimized. For small problem sizes, our investigations
do not show a benefit from using cubes for the images. The
reason for this quite likely lies within the communication
library and its implementation.

Furthermore, our results show that for larger installations
than were available for this study, the 64-cube pattern looks
promising with respect to performance improvements. In
our investigation this map and its complementary map do
not show any critical performance degradation. Obviously
this needs experimental confirmation on such a larger ma-
chine.

Our measurements also show that for small problems, uti-
lizing the VN mode which places two computational tasks
on a dual core chip, is detrimental to the performance of the
3D-FFT. This has been traced to a large number of small
communicators performing exceptionally well when only
one of the cores is active. If two cores were active they
might be locking each other out from shared access to the
network.

Acknowledgements

We would like to thank Mark Bull (EPCC) for valuable
comments on an earlier version of the manuscript.

A Numerical results of the 3D-FFT computa-
tion

The following table gives the total times used by our bench-
mark for a forward transformation.

Problem size: 643 1283 2563 5123 10243

CO8×64 cust.: 0.359 ms 2.20 ms 18.9 ms 188 ms 1.78 s
CO8×64 def.: 0.356 ms 2.31 ms 19.8 ms 193 ms 1.82 s
VN 16×64 cust.: 0.382 ms 1.66 ms 11.4 ms 128 ms 1.21 s
VN 16×64 def.: 0.400 ms 1.93 ms 13.3 ms 142 ms 1.34 s
VN 8×128 cust.: — 1.68 ms 11.7 ms 128 ms 1.20 s
CO64×8 cust.: 0.383 ms 2.54 ms 21.9 ms 203 ms 1.94 s
CO64×8 def.: 0.355 ms 2.44 ms 20.3 ms 191 ms 1.84 s
VN 128×8 cust.: — 1.89 ms 14.4 ms 147 ms 1.37 s
VN 128×8 def.: — 1.91 ms 14.1 ms 143 ms 1.36 s
VN 64×16 cust.: 0.410 ms 1.86 ms 13.9 ms 145 ms 1.35 s

Table 2 summarizes the times for the communication within
the rows of the two-dimensional virtual processor grid used
by our 3D-FFT application.



Problem size: 643 1283 2563 5123 10243

CO8×64 cust.: 0.089 ms 0.339 ms 2.622 ms 23.25 ms 185 ms
CO8×64 def.: 0.112 ms 0.508 ms 3.544 ms 28.21 ms 227 ms
VN 16×64 cust.: 0.134 ms 0.327 ms 1.894 ms 14.71 ms 120 ms
VN 16×64 def.: 0.165 ms 0.597 ms 3.743 ms 29.31 ms 232 ms
VN 8×128 cust.: — 0.280 ms 1.827 ms 14.39 ms 117 ms
CO64×8 cust.: 0.158 ms 0.632 ms 4.314 ms 35.07 ms 277 ms
CO64×8 def.: 0.160 ms 0.609 ms 3.687 ms 28.34 ms 230 ms
VN 128×8 cust.: — 0.686 ms 4.423 ms 34.54 ms 276 ms
VN 128×8 def.: — 0.705 ms 4.159 ms 28.98 ms 228 ms
VN 64×16 cust.: 0.174 ms 0.613 ms 4.231 ms 33.12 ms 265 ms

Table 3 summarizes the times for the communication within
the columns of the two-dimensional virtual processor grid
used by our 3D-FFT application.

Problem size: 643 1283 2563 5123 10243

CO8×64 cust.: 0.178 ms 0.667 ms 3.891 ms 28.32 ms 226 ms
CO8×64 def.: 0.154 ms 0.627 ms 3.675 ms 28.85 ms 226 ms
VN 16×64 cust.: 0.184 ms 0.683 ms 3.761 ms 29.13 ms 227 ms
VN 16×64 def.: 0.171 ms 0.670 ms 3.865 ms 29.95 ms 227 ms
VN 8×128 cust.: — 0.732 ms 4.023 ms 30.66 ms 223 ms
CO64×8 cust.: 0.130 ms 0.686 ms 4.516 ms 34.60 ms 274 ms
CO64×8 def.: 0.105 ms 0.612 ms 3.863 ms 29.41 ms 237 ms
VN 128×8 cust.: — 0.517 ms 3.943 ms 30.40 ms 232 ms
VN 128×8 def.: — 0.476 ms 4.057 ms 30.44 ms 225 ms
VN 64×16 cust.: 0.173 ms 0.573 ms 3.830 ms 28.88 ms 221 ms

References

[1] M. Eleftheriou, et al., “A Volumetric FFT for Blue-
Gene/L”, in G. Goos, J. Hartmanis, J. van Leeuwen,
editors, volume 2913 of Lecture Notes in Computer
Science, page 194, Springer-Verlag, 2003.

[2] M. Eleftheriou, et al., “Performance Measurements
of the 3D FFT on the Blue Gene/L Supercomputer”,
J.C. Cunha and P.D. Medeiros (Eds.): Euro-Par 2005,
LNCS 3648, page 795, 2005.

[3] S. Alam, et al., “Performance Characterization of
Molecular Dynamics Techniques for Biomolecular
Simulations”, PPOPP’06, New York City, New York,
USA, 2006.

[4] http://www.top500.org

[5] F. Franchetti, et al., “FFT Program Generation for
Shared Memory: SMP and Multicore”, SC2006,
Tampa, Florida, USA, 2006.

[6] A. Ali, et al., “Scheduling FFT Computation on SMP
and Multicore Systems”, ICS’07, Seattle, WA, USA,
2007.

[7] D. Bailey, “FFTs in External or Hierarchical Mem-
ory*”, The Journal of Supercomputing, 4, page 23,
1990.

[8] A. Nukada, et al., “High Performance 3D Convolution
for Protein Docking on IBM Blue Gene”, ISPA 2007,
LNCS 4742, page 958, 2007.

[9] A. Na’mneh, et al., “Parallel implementation of 1-D
fast Fourier transform without inter-processor com-
munications”, System Theory, 2005. SSST ’05. Pro-
ceedings of the Thirty-Seventh Southeastern Sympo-
sium on, page 307, 2005.

[10] G. Bhanot, et al., “Optimizing task layout on the Blue
Gene/L supercomputer”, IBM Journal of Research
and Development, Vol. 49, page 489, 2005.

[11] B. R. de Supinski, et al., “Blue Gene/L applica-
tions: parallelism on a massive scale”, The Interna-
tional Journal of High Performance Computing Ap-
plications, Vol. 22, page 33, 2008.

[12] J. Schumacher, et al., “Turbulence in Laterally Ex-
tended Systems”, Parallel Computing: Architectures,
Algorithms and Applications, Vol. 38, pp. 585-592,
2007.

[13] H. Jagode, “Fourier Transforms for the BlueGene/L
Communication Network”, MSc thesis, The Univer-
sity of Edinburgh, 2006,
http://www.epcc.ed.ac.uk/msc/dissertations/2005-
2006/

[14] MPI Standard,
http://www.mpi-forum.org/docs/mpi-20-html/mpi2-
report.html.

[15] “User Guide to EPCC’s BlueGene/L Service”, avail-
able:
http://www2.epcc.ed.ac.uk/˜ bluegene/UserGuide/
BGuser/BGuser.html

[16] O. Lascu, et al., “Unfolding the IBM eServer
Blue Gene Solution”, IBM Redbook, 2006, ISBN
0738493872,
http://www.redbooks.ibm.com/abstracts/sg246686.html

[17] M. Bull, et al., “Application performance on the Blue
Gene architecture”, Preprint, EPCC, The University of
Edinburgh, 2007

[18] X. Martorell at al., “Blue Gene/L performance tools”,
IBM Journal of Research and Development, Volume
49, page 407, 2005.

[19] N. R. Adiga, et al., “Blue Gene/L torus interconnec-
tion network”, IBM Journal of Research and Develop-
ment, Volume 49, page 265, 2005.

[20] FFTW Homepage,
http://www.fftw.org/

[21] J. Lorenz, S. Kral, F. Franchetti, C.W. Ueberhuber.,
“Vectorization techniques for the Blue Gene/L dou-
ble FPU”, IBM Journal of Research and Development,
Vol. 49, page 437, 2005

[22] S. Kral, FFTW-GEL Homepage,
http://www.complang.tuwien.ac.at/skral/fftwgel.html


