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ABSTRACT 
In this paper we address the problem of accurately estimating the runtime and communication 

time of a client request in a Network Enabled Server (NES) middleware such as GridSolve. We use 
a template based model for the runtime estimation and a client-server communication test for the 
trannsfer time estimation. We implement these two mechanisms in GridSolve and test them on a real 
testbed. Experiments show that they allow for significant improvement in terms of client execution 
time on various scenarios. 
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1. Int roduct ion 

The adoption of Grid infrastructures as a platform for supercomputing holds great promise 
for accelerating scientific discovery using aggregations of distributed resources. However, 
the use of Grid infrastructures has, for the most part, been restricted to the largest and most 
resource intensive projects. For Grid computing to become a true success story, it must 
become an infrastructure that can be easily used by the general community of scientist and 
engineers. Within this community of practitioners, the use of scientific computing environ­
ments (SCEs) such as Matlab or Mathematica is pervasive. These domain specialists are 
accustomed to the flexible computing environment provided by an SCE, which gives them 
with the tools and libraries that they need to be productive and enables them to go from 
conceptualization to computation to visualization in an natural fashion. 

The goal of grid middleware is to provide an environment that tries to virtualize access 
to resources by defining a programming model that tries to be as close as possible to ex­
isting ones (C, Matlab, etc.). In order to access the available distributed resources a grid 
middleware defines a software architecture and relies on a set of services. These services 
may be in charge of transaction security, service billing, data transfer, request scheduling, 
service location, fault tolerance, etc. 

In this paper we focus on a particular type of middleware called a Network Enabled 
Server (NES). In a NES environment an application is composed of a set of requests that 
can be executed remotely on distant servers. Several middleware systems implement this 
model, including GridSolve [1], Ninf [2], and DIET [3,4]. Moreover, GridRPC [5] is an 
emerging standard of the APIs provided by such environments and is promoted by the Open 
Grid Forum (OGF)? 

In the context of scientific applications the scheduling service provided by NES middle­
ware plays a key role in terms of performance. Indeed, choosing the right set of resources to 
execute an application or a request is critical to obtain an execution time as close as possible 
to the optimal. However, for efficiently performing this choice, the scheduler has to rely on 
accurate information such as the execution time of the service and the communication time 
of the data that have to be transferred through the network. 

Here we target the improvement of determining precisely the runtime and the communi­
cation time of a request. We propose two new features that allow for an accurate estimation 
of this information. We use a template based model for the runtime estimation and a client-
server communication test for the transfer time estimation. We have implemented them in 
the GridSolve middleware and tested them on a real testbed. Experiments show that they 
allow for significant improvement of client execution time on various scenarios. 

The remainder of this paper is organized as follows. In Section , we present the Grid-
Solve middleware. The proposed improvements are described in Section and are evaluated 
in Section . A conclusion is given in Section 

2. GridSolve 

The purpose of GridSolve is to create the middleware necessary to provide a seamless 
bridge between the simple, standard programming interfaces and desktop systems that 
dominate the work of computational scientists and the rich supply of services supported 

"http://www.ogf.org 
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Improved Runtime and Transfer Time Prediction 49 

by the emerging Grid architecture. The goal is that the users of desktop systems can eas­
ily access and reap the benefits (shared processing, storage, software, data resources, etc.) 
of using grids. This vision of the broad community of scientists, engineers, research pro­
fessionals and students, working with the powerful and flexible tool set provided by their 
familiar desktop computing environment, and yet able to easily draw on the vast, shared 
resources of the Grid for unique or exceptional resource needs, or to collaborate inten­
sively with colleagues in other organizations and locations, is the vision that GridSolve is 
designed to realize. 

GridSolve is a client-agent-server system which provides remote access to hardware 
and software resources through a variety of client interfaces. 

AGENT 

Monitor 

ZTZ 
Database 

Scheduler 

SERVERS 

D O • C 
][_i 

Call 

Results 

Request Resources 

Brokered Decision 

CLIENT 

call('function', parameters) 

Fig. 1. Overview of GridSolve 

A GridSolve system consists of three entities, as illustrated in Figure 1. 

• The Client, which needs to execute some remote procedure call. In addition to C 
and Fortran programs, the GridSolve client may be an interactive problem solving 
environment such as Matlab. 

• The Server executes functions on behalf of the clients. The server hardware can range 
in complexity from a uniprocessor to a MPP system and the functions executed by 
the server can be arbitrarily complex. Server administrators can straightforwardly 
add their own function services without affecting the rest of the GridSolve system. 

• The Agent is the focal point of the GridSolve system. It maintains a list of all avail­
able servers and performs resource selection for client requests as well as ensuring 
load balancing of the servers. 
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50 E. Jeannot et al. 

In practice, from the user's perspective the mechanisms employed by GridSolve make 
the remote procedure call fairly transparent. However, behind the scenes, a typical call to 
GridSolve involves several steps, as follows: 

(i) The client queries the agent for an appropriate server that can execute the desired 
function. 

(ii) The agent returns a list of available servers, ranked in order of suitability, 
(iii) The client attempts to contact a server from the list, starting with the first and moving 

down through the list. The client then sends the input data to the server. 
(iv) Finally the server executes the function on behalf of the client and returns the results. 

We have implemented a simple technique for adding arbitrary services to a running 
server. First, the new service should be built as a library or object file. Then the user 
writes a specification of the service parameters in a gsIDL (GridSolve Interface Definition 
Language) file. The GridSolve problem compiler processes the gsIDL and generates a 
wrapper which is automatically compiled and linked with the service library or object files. 
The services are compiled as external executables with interfaces to the server described 
in a standard format. The server re-examines its own configuration and installed services 
periodically to detect new services. In this way it becomes aware of the additional services 
without re-compilation or restarting of the server itself. 

GridSolve is based on the GridRPC API, which represents ongoing work to standardize 
and implement a portable and simple remote procedure call (RPC) mechanism for Grid 
computing. This standardization effort is being pursued through the Open Grid Forum 
Research Group on Programming Models [6]. The initial work on GridRPC reported in [5] 
shows that client access to existing Grid computing systems such as GridSolve and Ninf [2] 
can be unified via a common API, a task that has proven to be problematic in the past. In 
its current form, the C API provided by GridRPC allows the source code of client programs 
to be compatible with different Grid services, provided that service implements a GridRPC 
API. 

3. Improving the GridSolve Runt ime and Transfer Time Predict ion 
Mechanisms 

To allocate a request to a server, the scheduling mechanism needs an accurate prediction 
of both the runtime of the service and the communication time of the data. Concerning the 
runtime estimation the standard GridSolve uses a simple prediction based on the complex­
ity of the service. This estimation is very crude and has a lot of drawbacks as detailed later. 
Concerning the communication time estimation, in many middlewares (standard Gridsolve 
or DIET for instance), nothing is done. We detail our proposed solution here. 
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3.1. Modeling and Performance Prediction 

3.1.1. The problem 

To efficiently schedule an application requires being able to efficiently predict the du­
ration of the requests that compose the application. However, predicting the duration of a 
request is a difficult task. Indeed, the duration might depend on the data (size and value) of 
the machine where the application is run and on the implementation of the service. Even 
when the duration of a service does not depend on the data values (as is the case with many 
linear algebra kernels), predicting this duration is hard. In GridSolve, the duration of the 
task is described in the gsIDL (GridSolve Interface Description Language) file, and is given 
by the constant of the higher degree of the complexity polynomial and is supposed to give 
an approximation of the number of operations the service has to perform when the inputs 
are known. The number of operations per second of the server is computed by running 
a sequential benchmark when the server is launched. The server periodically updates its 
current workload, which is used by the agent to scale down the server's speed. Then the 
estimated duration of the task is computed at run-time by dividing the estimated number 
of operations to be performed by the current speed of the server. However, computing the 
duration of a service based on the complexity polynomial has several drawbacks: 

• First, it does not depend on the implementation. Indeed, different implementations 
of the same algorithm have the same complexity, but not necessarily the same speed. 
Assume for instance that the service is the matrix multiply routine of the BLAS (Ba­
sic Linear Algebra Subroutines). Nowadays there are a lot of different implementa­
tions of the same BLAS API, ranging from reference BLAS (a non-optimized Fortran 
version), to automatically tuned libraries such as ATLAS [7] and up to specific im­
plementations optimized for a precise version of a certain CPU (e.g. the goto BLAS) 
[8]. The complexity of these implementations is always the same (0(«3) for multi­
plying matrices of order n), but the execution time might be completely different (for 
instance the the reference BLAS are about 6 times slower than the vendor optimized 
version on some CPUs). This effect is not taken into account by the standard version 
of GridSolve as the estimated service runtime is implementation independent. 

• Moreover, obtaining the speed of the machine with a benchmark assumes that the 
flop-rate of each service is the same as the benchmark. In practice this is not true as 
compute-intensive services achieve higher flop rates than data-intensive services. In 
GridSolve, the flop rate is estimated by running a Linpack benchmark which is close 
to the peak flop rate of the processor. This is good when the service is a compute-
intensive one such as for a linear algebra kernel. However, if the service is I/O bound 
(such as database access) or memory constrained (such as an out-of-core compu­
tation), the estimated runtime is likely to be a huge underestimation of the actual 
runtime. 

• Finally, for a given service a slight change of a parameter may lead to a different 
algorithm and a different time to execute the service. For instance the dgemm routine 
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of the BLAS performs C <— axA-B + $xc, where A, B and C are matrices. It is 
easy to see that the case a = 1, (3 = 0 is completly different from the case a = 0 
and p = 1. However, since in GridSolve the values of a and (3 are not related to the 
volume of data, they do not appear in the complexity formula describing the dgemm 
service. 

3.1.2. Proposed solution: automatic template modeling 

To solve the problem described above, we propose using a template model for each 
service that is instantiated on each server for each different use case of the service. This 
template model is composed of two parts: 

• A polynomial of the parameters of the problem. It can be any polynomial that ac­
cording to the service designer fits all the behaviors of the service. For instance if we 
want to model the general dgemm BLAS routine, we have three parameters m, n and 
k that play a role in the model. Indeed, we are multiplying a matrix of size rn by k 
with a matrix of size k by n to obtain a matrix of size m by n. A general polynomial 
in this case is : a\m + a2n + a?,k + at,mn + a^mk + a&nk + ajmnk, where the a,- are the 
coefficients of model and will be computed by GridSolve as explained later. 

• A set of categories. For each service, different use cases can lead to different ex­
ecution times. We need to differentiate these cases using the values of some pa­
rameters transmitted to the service. For the dgemm case we have 5 such parameters: 
transa, which tells if matrix A is transposed or not, transb which tells if matrix B 
is transposed or not, and a and (J as explained above. Different values of transa and 
transb lead to different performance and different values of a and (J lead to different 
cases and algorithms. More precisely we have to distinguish 2 cases for transa and 
transb {e.g. "T" and "N" and 3 cases for a and P (0, 1 and all the "other" values). 
The cartesian product of all these cases leads to a set of 39 different categories which 
have to be modeled differently. 

The designer of a service has to define the two above parts. In order to do that, for each 
parameter of the service they must define the possible values that play a role in defining 
some categories. The value can be a string, a number, or the special string "other" for all the 
other possible cases. The service designer must also write down the polynomial that defines 
the template model. When compiling the service, GridSolve interprets this information and 
builds as many models as the number of categories. It also generates a code that switches 
to the right sub-model when given the values of the parameters. 

Now let us see how the coefficients (the a,) are computed. We have designed a para­
metric regression system that computes or updates the coefficients at runtime. For each 
category, it works as follows: 

(i) At the beginning all the a,- are initialized to -1 
(ii) Each time, the agent asks for a runtime estimation by sending all the parameters, the 

system switches to the model corresponding to the category and evaluates the model. 
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(iii) Each time the server runs the service it updates the coefficients of the model using 
this run and the previous ones. The update of the coefficients is done using a least 
squares regression on the coefficients. 

(iv) Each time the model is updated, information about a given number of previous runs 
(100 by default) is stored on the local disk. Hence if the server is stopped and re­
launched, the system can use this information to compute the coefficients of each 
category. 

A few remarks need to be made at this point. 

• For the very first run, when all the a, equal -1, the model is not able to give an 
estimate of the duration. In this case, we use the old method (based on the complexity 
polynomial) to compute the runtime estimate. 

• As the number of runs increases, the available information increases, and the runtime 
estimates become more precise. An evaluation of the accuracy of this method will 
be given in the experimental section. 

• Since all the information is interpreted and translated into C before compiling the 
service, the runtime estimation is very fast (within the same order of magnitude of 
the old method). 

Finally, it is easy to see that this improvement is a solution to our problems: 

• The model is implementation-dependent. The coefficients (the a,) are computed on­
line based on the actual service runtime. Different implementations will lead to 
different runtime and hence to different instance of the model. 

• For the same reason as above, it does not assume that the flop-rate is the same for 
each service. 

• Furthermore, thanks to the categorization, it is able to deal with a service achieving 
different flop-rates and/or different use cases. For instance the dgemm service is able 
to scale a matrix (case ( 3 / 0 and a = 0) or to multiply two matrices (case a ^ 0). 
These two cases are modeled differently and the runtime estimation is therefore made 
independently. 

Moreover, in the case of over-subscribed set of resources the timing prediction is still 
correct because we use the CPU-time to measure the runtime of a service and we divide 
the predicted execution time by the load of the server. The only remaining problem is to 
accurately compute the finish time of a service when the load is not constant. In this case 
scheduling technics based on historical trace manager as in [9] can be used. 

3.2. Measuring Communication Cost 

3.2.1. The problem 

The performance prediction model described above gives us an accurate estimate of the 
execution time of an instance of a GridSolve service, but execution time is only part of the 
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overall time required to perform the remote procedure call. The other major component of 
the total RPC time is the communication cost of sending and receiving the data. In many 
cases, the communication cost actually dominates the computation cost. Let us take matrix 
multiplication as a simple example. On a 3.4 GHz Pentium 4, the ATLAS implementation 
of dgemm can multiply 1000x1000 matrices in 0.52 seconds. The GridSolve dgemm service 
requires sending three 1000x1000 matrices (A, B, and C) and receiving one 1000x1000 
matrix (C), which in double-precision results in a total data transfer of 32MB (24MB from 
the client to the server and 8MB from the server back to the client). On an unloaded 
100Mbit Ethernet LAN, we observed transfer rates of UMB/sec, which means that the 
total data transfer time for our DGEMM example would be roughly 2.9 seconds, or more 
than 5 times the computation cost. Using a WAN results in an even more extreme ratio. 

This exposes a weakness in a scheduling strategy based purely on computation cost. 
Choosing the fastest server may minimize the execution time, but if that server is on a 
distant network, the communication cost can easily overshadow the savings in execution 
time. 

3.2.2. Proposed solution: client-to-server communication cost estimation 

To eliminate this weakness, we need an estimate of the network performance between 
the client and the servers that could possibly execute the service. This can be difficult to 
know ahead of time given the dynamic nature of the system, so we gather the information 
empirically at the time the call is made. When the client gets a list of servers from the agent, 
it is sorted based only on the estimate of the computational cost. Normally the client would 
simply submit the service request to the first server on the list, but instead we first mea­
sure the bandwidth from the client to the top few servers using a simple 32KB ping-pong 
benchmark. Then we determine the total size of the data to be sent and received. Given the 
data size and the network speed, we compute an estimate of the total communication and 
computation RPC time for the servers and re-sort the list. 

There is some cost associated with performing these measurements, but the idea is that 
the reduction in total RPC time will compensate for the overhead. Despite that expectation, 
we try to keep the measurement overhead to a minimum. The time required to do the 
measurement will depend on the number of servers which have the requested problem and 
the bandwidth and latency from the client to those servers. When the data size is relatively 
small, the measurements are not performed because it would take less time to just send 
the data than it would take to do the measurements. Also, since a given service may be 
available on many servers, the cost of measuring the network speed to all of them could be 
prohibitive. Therefore, the number of servers to be measured is limited to those with the 
highest computational performance. The exact number of measurements is configurable by 
the client. Once the measurements have been made, they can be cached for a certain amount 
of time so that subsequent calls on that client do not have to repeat the same measurement. 
The lifetime of the cached measurements is configurable by the user. 

There are many other projects that monitor grid performance, see [10] or [11] for a re­
view. For example, the Network Weather Service (NWS) [12], is a popular general system 

Pa
ra

lle
l P

ro
ce

ss
. L

et
t. 

20
07

.1
7:

47
-5

9.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
T

E
N

N
E

SS
E

E
 K

N
O

X
V

IL
L

E
 L

IB
R

A
R

Y
 -

 S
E

R
IA

L
S 

D
E

PA
R

T
M

E
N

T
 o

n 
05

/2
1/

13
. F

or
 p

er
so

na
l u

se
 o

nl
y.



Improved Runtime and Transfer Time Prediction 55 

service that can monitor the performance of network bandwidth and latency (as well as 
other measures) and provide a statistical forecast for future performance. However, for the 
GridSolve system, most of the existing systems are inappropriate because clients enter and 
leave GridSolve dynamically, making it difficult to measure and retain the communication 
costs between the clients and the full set of servers. Moreover, NWS is required to be con­
figured on each end, which necessitate some expertise that we do not assume (at least on 
the client side). Hence, GridSolve has chosen to implement probes as a way of building up 
the communication cost matrix between a client and the servers relevant to that client. 

4. Experimental Results 

We have experimented with the proposed features on a real testbed. For testing what is 
happening on a WAN, we have used some machines of the GRID5000Ainfrastructure in 
France [13] and some machines at the University of Tennessee. For scheduling the requests, 
we used the standard Minimum Completion Time algorithm (MCT [14]). Finally, in all the 
following, we assume that there is no external load (servers are dedicated) and that request 
runtimes are deterministic. 

4.1. Template Modeling Results 

Accuracy of different performance prediction methodology in GridSolve 

Fig. 2. Accuracy of the Automatic Modeling (1 server) 

First, we have evaluated the precision of the modeling and the speed of convergence 
of the model. In order to do that, we have launched the dgeiran service on one server and 
call sequentially this service 10 times. Results are shown Figure 2. On the x-axis we plot 
the run number and on the y-axis we plot the log of the ratio of estimated runtime divided 

' 'http://www.grid5000.fr 
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by the measured runtime. Log shows the errors in order of magnitude. When it is zero 
it means the prediction is perfect. When it is positive (resp. negative) it means that the 
model overestimated (resp. underestimated) the actual runtime. We plot two curves: one 
without the template modeling feature (curve complexity as the prediction is made with the 
basic complexity system) and one with the template modeling feature (curve model). We 
see that for the first run (when the model is not instantiated) the predictions are the same. 
This is due to the fact that for the first run the system switches back to the basic complexity 
evaluation leading to the same estimation. From the second run we see that the template 
modeling feature is very accurate (within 5%) while the basic system is still sometimes 2 
orders of magnitude wrong. 

Comparison between model based pert. pred. and complexity based pelf prod. 

1 2 3 4 5 6 / 8 9 10 

Number ot simuHaneous requests 

Fig. 3. Improved Client Request Execution Time. One server with a slow implementation of BLAS and one with 
a fast implementation 

Second, we have evaluated how the template modeling feature can help to improve the 
client execution time. In order to do that we have built a client that submits a given number 
of simultaneous (non-blocking) dgemm requests. The size of the matrix is chosen randomly. 
We have set up an environment with two servers. One server is executing an optimized 
implementation of the BLAS. The other server is executing the reference BLAS, which is 
a slow implementation of the same library. In figure 3, we plot the runtime of the client 
when we increase the number of simultaneous requests. As before, we have two cases: 
one with the template modeling feature enabled and one with only the basic complexity 
modeling. We see that with the template modeling mechanism, the client runtime is up to 
three times faster than with only the basic modeling. This is explained as follows. On these 
servers, the reference BLAS are 6 times slower than the optimized BLAS. Moreover the 
basic modeling does not distinguish between the two implementations while the template 
modeling makes a clear distinction in terms of performance of the two implementations. 
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Therefore, in the case of the basic modeling, the scheduler allocates requests in a round 
robin fashion, while when the template modeling is active the scheduler favors the faster 
implementation. In the worst case, half of the requests last 6 times longer in the first case 
than for the second case, leading to a factor of 3 runtime increase. 

4.2. Communication Measurement Results 

Sorting a Double-precision Veclor Using GridflPC 

• 

-

**f**x K*-********K***mtt**X**"x 

No communication Measurement — • — 
WHh Communication Measurement —x— . 

Communication Measurement Overhead —*— 

W ^ v ^ * ^ . 

" « « « « « " . » , • » * • « « . • « " ' ' * « * « « " % " % 

10000 20000 30000 40OO0 50000 60000 70000 

Number ot Vedor Elements 

Fig. 4. Effect of Communication Measurement on RPC Time 

To measure the effectiveness of rescheduling using the network measurement informa­
tion, we use a client at the University of Tennessee and a grid of 11 servers. One of the 
servers is a relatively slow Pentium 3 machine located on the UT campus, while the other 
ten servers are much faster AMD machines located in France as part of GRID5000. Using 
array sizes from Ik to 64k elements, we make ten calls to a quicksort service and measure 
the average time for the calls to complete. 

One experiment performs network measurements to re-sort the server list and the other 
experiment uses the original server list as provided by the agent. The original GridSolve 
scheduler chooses the servers located in France since their computational power is much 
greater, but in this case the actual RPC time is shorter when the local server is chosen 
because of the faster network connection. Figure 4 shows that using the network measure­
ment information leads to a reduction in the average RPC time compared to the original 
scheduling. 

The measurement overhead is also shown in Figure 4. For array sizes under 4k ele­
ments, there was no overhead because the measurement threshold had not been reached, 
therefore no measurements were performed. Above 4k elements, the measurement over­
head is roughly 2 seconds, but since the server selection is better, the overall time does 
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not exhibit a corresponding increase. Moreover, on a LAN, the measured overhead is very 

small and almost unnoticeable. 

5. C o n c l u s i o n 

In this paper we have presented GridSolve a grid middleware that allows for remote execu­

tion of services. In order to efficiently execute client requests the GridSolve scheduler has 

to rely on important information: the computation execution time and the communication 

time. Here, we have proposed two features that improve the estimation of this information. 

The contribution of this paper is twofold. First we have introduced a template based 

modeling mechanism that is able to accurately predict the runtime of the service based 

on previous execution. It improves the standard runtime estimation of GridSolve as it is 

more accurate and takes into account the specificity of the service and the machine it runs 

on. Second, we have developed an estimator of the communication cost between the client 

and the server. Since communication cost is often very large such an estimator enables to 

discard fast remote server if the gain in terms of computation time is overshadowed by the 

communication time. 

These two features have been implemented in GridSolve and tested on a real testbed. 

Experiments show that they allow for significant improvement in terms of client execution 

time on various scenarii. Hence, they are now implemented in the distributed version of 

GridSolve available at h t t p : / / i c l . c s . u t k . e d u / g r i d s o l v e . However, these ideas are 

general and not tied to GridSolve. They could easily be implemented in any grid middle­

ware that needs that kind of information, such as other GridRPC implementations (DIET, 

Ninf, etc.). 

Future work is directed towards the design of enhanced scheduling strategies that would 

efficiently take into account this accurate information and try to optimize criteria other than 

the response time, such as the fairness, the servers throughput, or the quality of service. 
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