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Abstract.  Physical constraints such as power, leakage and pin bandwidth are currently driving 
the HPC industry to produce systems with unprecedented levels of concurrency.  In these 
parallel systems, synchronization and memory operations are becoming considerably more 
expensive than before.  In this work we study parallel matrix factorization codes and conclude 
that they need to be re-engineered to avoid unnecessary (and expensive) synchronization.  We 
propose the use of multithreading combined with intelligent schedulers and implement 
representative algorithms in this style.  Our results indicate that this strategy can significantly 
outperform traditional codes. 

1. Introduction 
For at least two decades, HPC programmers have taken advantage of the fact that each successive 
generation of microprocessors would make their old software run substantially faster, either 
immediately or after minor adjustments.  But a few main factors are converging to bring this “free 
ride” to an end [2]. First, system builders have encountered intractable physical barriers – too much 
heat, too much power consumption, and too much voltage leakage – to further increases in clock 
speeds.  Second, physical limits on the number and bandwidth of pins on a single chip and the latency 
of crossing chip boundaries means that the gap between processor performance and memory 
performance, which was already bad, will get increasingly worse.  This daunting combination of 
obstacles has led to unprecedented levels of parallelism as an alternative approach for continuing the 
increase in performance, and relatively higher cost for synchronization and communication, which we 
argue will require new software models and different types of parallel algorithms. 

One good way to appreciate the impact and significance of this architectural change is to examine 
its effect on software packages that are widely familiar.  The LAPACK [1]/ScaLAPACK [3] libraries 
fit that description. These libraries, which embody much of our work in the adaptation of block 
partitioned algorithms to parallel linear algebra software design, have served the HPC and 
Computational Science community remarkably well for twenty years. Both LAPACK and 
ScaLAPACK apply the idea of blocking in a consistent way to a wide range of algorithms in linear 
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algebra (LA), including linear systems, least square problems, singular value decomposition, 
eigenvalue decomposition, etc., for problems with dense and banded coefficient matrices. 
ScaLAPACK also addresses the much harder problem of implementing these routines on distributed 
memory architectures, yet it manages to keep close correspondence to LAPACK in the way the code is 
structured or organized. The design of these packages has had a major impact on how mathematical 
software has been written and used during that time.  However, when one looks at how these 
foundational libraries can be expected to fare on large-scale multi-core systems, it becomes clear that 
we are on the verge of a transformation in software design at least as potent as the change engendered a 
decade ago by message passing architectures, when the community had to rethink and rewrite many of 
its algorithms, libraries, and applications.  

The standard approach to parallelization of numerical linear algebra algorithms for both shared and 
distributed memory systems, utilized by the LAPACK/ScaLAPACK libraries, is to rely on a parallel 
implementation of the BLAS (Basic Linear Algebra Subroutines) - threaded BLAS for shared memory 
systems and PBLAS (Parallel BLAS) for distributed memory systems. Historically, this approach made 
tractable the job of writing hundreds of routines in a consistent and accessible manner. While this 
approach solves numerous complexity problems, it also enforces a very rigid and inflexible software 
structure, where, at the level of LA, the algorithms are expressed in a serial way. This obviously 
inhibits the opportunity to exploit inherently parallel algorithms at a finer granularity. This is shown by 
the fact that the traditional method is successful mainly in extracting parallelism from Level 3 BLAS 
(mostly matrix-matrix multiplication).  In the case of most of the Level 1 and 2 BLAS, however, it 
usually fails to achieve speedups and often results in slowdowns. It relies on the fact that, for large 
enough problems, the O(n3) cost of Level 3 BLAS dominates the computation and renders the 
remaining operations negligible. The problem with encapsulating parallelization in the BLAS/PBLAS 
in this way is that it requires a heavy synchronization model on a shared memory system and a heavily 
synchronous and blocking form of collective communication on distributed memory systems with 
message passing using MPI [8]. This paradigm will break down on next generation architectures, 
because it over-synchronizes the code and requires large problems to amortize the synchronization 
overhead. 

In this paper we describe our work that aims to address this situation by replacing the bulk-
synchronous parallelism model with a large grain data flow model.  We describe two different 
implementations of dense factorization routines, one for multi-core and one for distributed memory, 
that exploit dynamic and adaptive out-of-order execution patterns.  They use higher level parallelism 
with a data flow execution model that avoids global synchronization, and in the cluster case use non-
blocking one-sided communication from UPC [9] to fetch remote data.. Our preliminary experiments 
show that our implementations can yield great improvements in performance, especially on smaller 
problem sizes. 

2. Dynamically exploiting parallelism on multi-core processors 
We used the foregoing analysis of the problems of LAPACK/ScaLAPACK on multi-core systems as 
the basis of some preliminary tests of techniques for performing fast and efficient LA on multi-core 
processors. LA operations are usually performed as a sequence of smaller tasks; it is possible to 
represent the execution flow of an algorithm as a Directed Acyclic Graph (DAG) where the nodes 
represent the sub-tasks and the edges represent the dependencies among them. Whatever the execution 
order of the sub-tasks is, the result will be correct as long as these dependencies are not violated. This 
concept has been used in the past to define “look-ahead” techniques that have been extensively applied 
to the LU factorization. Such methods can be used to remedy the problem of synchronizations 
introduced by non-parallelizable tasks by overlapping their execution with the execution of more 
efficient ones. Although the traditional technique of look-ahead usually provides only a static 
definition of the execution flow that is hardwired in the source code, the idea of out-of-order execution 
it embodies can be extended to broader range of cases, where the execution flow is determined at run 
time in a fully dynamic fashion. With this dynamic approach, the subtasks that contribute to the result 
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of the operation can be scheduled dynamically depending on the availability of resources and on the 
constraints defined by the dependencies among them (i.e., edges in the DAG). 

Our recent work [7] shows how the one-sided factorizations, LU, QR and Cholesky can benefit 
from the application of this technique. Block formulations of these three factorizations, as well as 
many other one-sided transformations, follow a common scheme. In a single step of each algorithm, 
first operations are applied to a single block of rows or columns, referred to as the panel, then the result 
is applied to the remaining portion of the matrix, usually called the trailing sub-matrix. The panel 
operations are usually implemented with Level 1 and 2 BLAS and, in most cases, achieve the best 
performance when executed on a single processor or a small subset of all the processors used for the 
factorization.  

It is well known that matrix factorizations have left-looking and right-looking formulations 
depending on whether updates are pushed to 
or pulled by panels of the trailing sub-matrix. 
The transition between the two can be done 
by automatic code transformations, although 
this requires more powerful methods than 
simple dependency analysis. In particular, the 
technique of look-ahead can be used to 
significantly improve the performance of 
matrix factorizations by performing panel 
factorizations in parallel with the update to 
the trailing sub-matrix from a previous step 
of the algorithm. The look-ahead can be of 
arbitrary depth, as was shown, for example, 
in the high performance LINPACK 
benchmark (HPL) [4]. The look-ahead simply 
alters the order of operations in the 
factorization. A great number of permutations 
are legal, as long as algorithmic dependencies 
are not violated. From this point of view, 
right-looking and left-looking formulations of 
a matrix factorization are on two opposite 
ends of a wide spectrum of possible 
execution paths, with the look-ahead 
providing a transition between them. If the 
straight right-looking formulation is regarded 
as one with the look-ahead of zero, then the 
left-looking formulation is equivalent to the 
right looking formulation with the maximum 
possible look-ahead for a given problem. 

 Applying the idea of dynamic execution 
flow to LU factorization leads to the 
implementation of the left-looking variant of 
the algorithm, where the panel factorizations 
are performed as soon as possible, with the 
modification that if the panel factorization 
introduces a stall, then an update to a block 
of columns (or rows) of the right submatrix 
is performed instead. The updating continues 
only until next panel factorization is possible. 
Figure 1 (above) shows the simplified code that defines the execution flow. Here the steps of checking 

    while(1) {

        fetch_task();

        switch(task.type) {

        

            case PANEL:

                dgetf2();      dsyrk();       dgeqr2();
                               dpotf2();      dlarft();

                update_progress();
                break;

            case COLUMN :

                dlaswp();      dgemm();      dlarfb();

                dtrsm();       dtrsm();
                dgemm();

                update_progress();

                break;

            case END:

                for ()

                    dlaswp();

                return;

            }

        }

 
Figure 1. Pseudo-code for the execution flow of the 3 
one-sided transformations LU, Cholesky and QR. 

 
Figure 2. Comparison of parallelization techniques 
for Cholesky (Dual 4 core Intel Clovertown) 

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012028 doi:10.1088/1742-6596/78/1/012028

3



 

dependencies and making a transition are merged into the step of fetching the next task (the 
fetch_task() subroutine), where the choice of transition is made dynamically at run-time depending on 
the progress of the execution. 

Experimental results show how the dynamic workflow technique is capable of improving the 
overall performance while providing an extremely high level of portability. Figure 2 shows that by 
applying dynamic task scheduling to the Cholesky factorization, it is possible to out perform both a 
standard LAPACK implementation with threaded BLAS and ScaLAPACK on a multi-core processor. 

3. The Distributed Memory Case 
The same general philosophy also applies to the distributed memory case: tasks are executed by the 
processors while algorithm dependencies are respected.  Some additional complications arise, however.  
Control is distributed in the sense that we have no central task queue and so remote task creation is 
required.  In addition, we must deal with the entangled issues of locality, load balance, and 
communication latency tolerance.  

In order to explore these ideas we wrote an HPL implementation from the ground up [6] using the 
UPC partitioned global address space language.  Central to the code is a co-operative multithreading 
facility that allows us to take advantage of both algorithmic and communication overlap.  As with the 
multi-core code, threads run all the major operations and dependencies are enforced by a scheduler.   
Our scheduler also implements task prioritization as in the multi-core case.  In the distributed memory 
version, multiple threads share a core and they yield control of the CPU on long latency 
communication operations.  In order to get good locality and load balance, the standard 2-D block-
cyclic decomposition is used. 

Dynamic look-ahead presents an interesting problem not seen in the single node case.  The pieces of 
the matrix that participate in updates may be remote to the processor performing the computation.  
They must, therefore, be buffered and this uses up memory.  At startup time we pre-allocate a pool of 
memory that will be used for these buffers.   When we receive notification that a sub-task is ready to 
proceed, we allocate memory from the pool, transfer the remote operands (potentially yielding the CPU 
to mask the latency), then perform the operation.  There is, however, the potential for deadlock.  If the 
notification for a higher panel is received before that for a lower panel (perhaps due to network effects) 
and the higher panel grabs the last bit of memory, progress is stalled.  This is avoided by always 
allocating memory in the order of the panel number that spawned the update with no “holes” in the 
sequence. In the previous example, no memory would be allocated for the higher panel (its execution is 
suspended) until the lower panel is handled. This strategy ensures that all updates arising from a 
particular panel can be buffered and so complete before dealing with any higher panels. While 
application specific, this suggests a possible general solution that looks at dependency information 
before making memory management and scheduling decisions. 

Figure 3 summarizes the performance of our distributed memory code on various machines.  The 
HPL/MPI numbers are taken from the HPC Challenge web page [5] and the UPC numbers are 
collected on machines that are as similar as possible (without giving any advantage to the UPC code).  
In all, our code is competitive with HPL (which performs static look-ahead) and outperforms 
ScaLAPACK (no look-ahead and synchronous) by a wide margin.  In addition, the code also runs well 
on a single core (with all the thread creation and scheduling).   It achieves 91.8% of peak on a single 
1.5 GHz Itanium 2 processor and 81.9% of peak on a 2.2 GHz Opteron chip.  This validates our 
threading strategy by demonstrating that the overhead of managing the threads is not significant. 

4. Conclusion 
In this report we used a case study of matrix factorizations to analyze a new software model for future 
HPC systems.  The model relies on dynamic, dataflow-driven execution models and avoids both global 
synchronization and the implicit point-to-point synchronization of send/receive style message passing.  
In our view, highly asynchronous codes are a good fit for the massive amount of concurrency present 
in these machines.  Our prototype codes successfully managed to hide algorithmic and communication 
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latencies and so deliver high performance. They are especially advantageous on smaller problem sizes 
and larger degree parallelism, because they avoid some of the overheads of the traditional bulk-
synchronous models.  We intend to further explore this programming paradigm for two-sided linear 
algebra algorithms (e.g., eigenvalue problems) and sparse matrix algorithms, where scalability is even 
more challenging and the avoidance of synchronization costs should have an even higher payoff.  
 

 
 

  
 
 
 
 
 
 
 
 
 

 

Figure 3. LU Performance Summary. The 512p HPL Cray XT3 number was estimated.  The 
comparison with ScaLAPACK was performed on an SGI Altix with matrix sizes of 25,600 (left) and 
32,000 (right). 
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