

Multithreading for synchronization tolerance in matrix
factorization

Alfredo Buttari1, Jack Dongarra1,2, Parry Husbands3, Jakub Kurzak1 and
Katherine Yelick3,4
1Computer Science Department, University of Tennessee, 1122 Volunteer Blvd,
Knoxville, TN, 37996, USA
2Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak
Ridge, TN, 37831, USA
3Computational Research Division, Lawrence Berkeley National Laboratory, 1
Cyclotron Rd., Berkeley, CA, 94720, USA
4Computer Science Division, University of California at Berkeley, Soda Hall,
Berkeley, CA, 94720, USA

Abstract. Physical constraints such as power, leakage and pin bandwidth are currently driving
the HPC industry to produce systems with unprecedented levels of concurrency. In these
parallel systems, synchronization and memory operations are becoming considerably more
expensive than before. In this work we study parallel matrix factorization codes and conclude
that they need to be re-engineered to avoid unnecessary (and expensive) synchronization. We
propose the use of multithreading combined with intelligent schedulers and implement
representative algorithms in this style. Our results indicate that this strategy can significantly
outperform traditional codes.

1. Introduction
For at least two decades, HPC programmers have taken advantage of the fact that each successive
generation of microprocessors would make their old software run substantially faster, either
immediately or after minor adjustments. But a few main factors are converging to bring this “free
ride” to an end [2]. First, system builders have encountered intractable physical barriers – too much
heat, too much power consumption, and too much voltage leakage – to further increases in clock
speeds. Second, physical limits on the number and bandwidth of pins on a single chip and the latency
of crossing chip boundaries means that the gap between processor performance and memory
performance, which was already bad, will get increasingly worse. This daunting combination of
obstacles has led to unprecedented levels of parallelism as an alternative approach for continuing the
increase in performance, and relatively higher cost for synchronization and communication, which we
argue will require new software models and different types of parallel algorithms.

One good way to appreciate the impact and significance of this architectural change is to examine
its effect on software packages that are widely familiar. The LAPACK [1]/ScaLAPACK [3] libraries
fit that description. These libraries, which embody much of our work in the adaptation of block
partitioned algorithms to parallel linear algebra software design, have served the HPC and
Computational Science community remarkably well for twenty years. Both LAPACK and
ScaLAPACK apply the idea of blocking in a consistent way to a wide range of algorithms in linear

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012028 doi:10.1088/1742-6596/78/1/012028

c© 2007 IOP Publishing Ltd 1

algebra (LA), including linear systems, least square problems, singular value decomposition,
eigenvalue decomposition, etc., for problems with dense and banded coefficient matrices.
ScaLAPACK also addresses the much harder problem of implementing these routines on distributed
memory architectures, yet it manages to keep close correspondence to LAPACK in the way the code is
structured or organized. The design of these packages has had a major impact on how mathematical
software has been written and used during that time. However, when one looks at how these
foundational libraries can be expected to fare on large-scale multi-core systems, it becomes clear that
we are on the verge of a transformation in software design at least as potent as the change engendered a
decade ago by message passing architectures, when the community had to rethink and rewrite many of
its algorithms, libraries, and applications.

The standard approach to parallelization of numerical linear algebra algorithms for both shared and
distributed memory systems, utilized by the LAPACK/ScaLAPACK libraries, is to rely on a parallel
implementation of the BLAS (Basic Linear Algebra Subroutines) - threaded BLAS for shared memory
systems and PBLAS (Parallel BLAS) for distributed memory systems. Historically, this approach made
tractable the job of writing hundreds of routines in a consistent and accessible manner. While this
approach solves numerous complexity problems, it also enforces a very rigid and inflexible software
structure, where, at the level of LA, the algorithms are expressed in a serial way. This obviously
inhibits the opportunity to exploit inherently parallel algorithms at a finer granularity. This is shown by
the fact that the traditional method is successful mainly in extracting parallelism from Level 3 BLAS
(mostly matrix-matrix multiplication). In the case of most of the Level 1 and 2 BLAS, however, it
usually fails to achieve speedups and often results in slowdowns. It relies on the fact that, for large
enough problems, the O(n3) cost of Level 3 BLAS dominates the computation and renders the
remaining operations negligible. The problem with encapsulating parallelization in the BLAS/PBLAS
in this way is that it requires a heavy synchronization model on a shared memory system and a heavily
synchronous and blocking form of collective communication on distributed memory systems with
message passing using MPI [8]. This paradigm will break down on next generation architectures,
because it over-synchronizes the code and requires large problems to amortize the synchronization
overhead.

In this paper we describe our work that aims to address this situation by replacing the bulk-
synchronous parallelism model with a large grain data flow model. We describe two different
implementations of dense factorization routines, one for multi-core and one for distributed memory,
that exploit dynamic and adaptive out-of-order execution patterns. They use higher level parallelism
with a data flow execution model that avoids global synchronization, and in the cluster case use non-
blocking one-sided communication from UPC [9] to fetch remote data.. Our preliminary experiments
show that our implementations can yield great improvements in performance, especially on smaller
problem sizes.

2. Dynamically exploiting parallelism on multi-core processors
We used the foregoing analysis of the problems of LAPACK/ScaLAPACK on multi-core systems as
the basis of some preliminary tests of techniques for performing fast and efficient LA on multi-core
processors. LA operations are usually performed as a sequence of smaller tasks; it is possible to
represent the execution flow of an algorithm as a Directed Acyclic Graph (DAG) where the nodes
represent the sub-tasks and the edges represent the dependencies among them. Whatever the execution
order of the sub-tasks is, the result will be correct as long as these dependencies are not violated. This
concept has been used in the past to define “look-ahead” techniques that have been extensively applied
to the LU factorization. Such methods can be used to remedy the problem of synchronizations
introduced by non-parallelizable tasks by overlapping their execution with the execution of more
efficient ones. Although the traditional technique of look-ahead usually provides only a static
definition of the execution flow that is hardwired in the source code, the idea of out-of-order execution
it embodies can be extended to broader range of cases, where the execution flow is determined at run
time in a fully dynamic fashion. With this dynamic approach, the subtasks that contribute to the result

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012028 doi:10.1088/1742-6596/78/1/012028

2

of the operation can be scheduled dynamically depending on the availability of resources and on the
constraints defined by the dependencies among them (i.e., edges in the DAG).

Our recent work [7] shows how the one-sided factorizations, LU, QR and Cholesky can benefit
from the application of this technique. Block formulations of these three factorizations, as well as
many other one-sided transformations, follow a common scheme. In a single step of each algorithm,
first operations are applied to a single block of rows or columns, referred to as the panel, then the result
is applied to the remaining portion of the matrix, usually called the trailing sub-matrix. The panel
operations are usually implemented with Level 1 and 2 BLAS and, in most cases, achieve the best
performance when executed on a single processor or a small subset of all the processors used for the
factorization.

It is well known that matrix factorizations have left-looking and right-looking formulations
depending on whether updates are pushed to
or pulled by panels of the trailing sub-matrix.
The transition between the two can be done
by automatic code transformations, although
this requires more powerful methods than
simple dependency analysis. In particular, the
technique of look-ahead can be used to
significantly improve the performance of
matrix factorizations by performing panel
factorizations in parallel with the update to
the trailing sub-matrix from a previous step
of the algorithm. The look-ahead can be of
arbitrary depth, as was shown, for example,
in the high performance LINPACK
benchmark (HPL) [4]. The look-ahead simply
alters the order of operations in the
factorization. A great number of permutations
are legal, as long as algorithmic dependencies
are not violated. From this point of view,
right-looking and left-looking formulations of
a matrix factorization are on two opposite
ends of a wide spectrum of possible
execution paths, with the look-ahead
providing a transition between them. If the
straight right-looking formulation is regarded
as one with the look-ahead of zero, then the
left-looking formulation is equivalent to the
right looking formulation with the maximum
possible look-ahead for a given problem.

 Applying the idea of dynamic execution
flow to LU factorization leads to the
implementation of the left-looking variant of
the algorithm, where the panel factorizations
are performed as soon as possible, with the
modification that if the panel factorization
introduces a stall, then an update to a block
of columns (or rows) of the right submatrix
is performed instead. The updating continues
only until next panel factorization is possible.
Figure 1 (above) shows the simplified code that defines the execution flow. Here the steps of checking

 while(1) {

 fetch_task();

 switch(task.type) {

 case PANEL:

 dgetf2(); dsyrk(); dgeqr2();
 dpotf2(); dlarft();

 update_progress();
 break;

 case COLUMN :

 dlaswp(); dgemm(); dlarfb();

 dtrsm(); dtrsm();
 dgemm();

 update_progress();

 break;

 case END:

 for ()

 dlaswp();

 return;

 }

 }

Figure 1. Pseudo-code for the execution flow of the 3
one-sided transformations LU, Cholesky and QR.

Figure 2. Comparison of parallelization techniques
for Cholesky (Dual 4 core Intel Clovertown)

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012028 doi:10.1088/1742-6596/78/1/012028

3

dependencies and making a transition are merged into the step of fetching the next task (the
fetch_task() subroutine), where the choice of transition is made dynamically at run-time depending on
the progress of the execution.

Experimental results show how the dynamic workflow technique is capable of improving the
overall performance while providing an extremely high level of portability. Figure 2 shows that by
applying dynamic task scheduling to the Cholesky factorization, it is possible to out perform both a
standard LAPACK implementation with threaded BLAS and ScaLAPACK on a multi-core processor.

3. The Distributed Memory Case
The same general philosophy also applies to the distributed memory case: tasks are executed by the
processors while algorithm dependencies are respected. Some additional complications arise, however.
Control is distributed in the sense that we have no central task queue and so remote task creation is
required. In addition, we must deal with the entangled issues of locality, load balance, and
communication latency tolerance.

In order to explore these ideas we wrote an HPL implementation from the ground up [6] using the
UPC partitioned global address space language. Central to the code is a co-operative multithreading
facility that allows us to take advantage of both algorithmic and communication overlap. As with the
multi-core code, threads run all the major operations and dependencies are enforced by a scheduler.
Our scheduler also implements task prioritization as in the multi-core case. In the distributed memory
version, multiple threads share a core and they yield control of the CPU on long latency
communication operations. In order to get good locality and load balance, the standard 2-D block-
cyclic decomposition is used.

Dynamic look-ahead presents an interesting problem not seen in the single node case. The pieces of
the matrix that participate in updates may be remote to the processor performing the computation.
They must, therefore, be buffered and this uses up memory. At startup time we pre-allocate a pool of
memory that will be used for these buffers. When we receive notification that a sub-task is ready to
proceed, we allocate memory from the pool, transfer the remote operands (potentially yielding the CPU
to mask the latency), then perform the operation. There is, however, the potential for deadlock. If the
notification for a higher panel is received before that for a lower panel (perhaps due to network effects)
and the higher panel grabs the last bit of memory, progress is stalled. This is avoided by always
allocating memory in the order of the panel number that spawned the update with no “holes” in the
sequence. In the previous example, no memory would be allocated for the higher panel (its execution is
suspended) until the lower panel is handled. This strategy ensures that all updates arising from a
particular panel can be buffered and so complete before dealing with any higher panels. While
application specific, this suggests a possible general solution that looks at dependency information
before making memory management and scheduling decisions.

Figure 3 summarizes the performance of our distributed memory code on various machines. The
HPL/MPI numbers are taken from the HPC Challenge web page [5] and the UPC numbers are
collected on machines that are as similar as possible (without giving any advantage to the UPC code).
In all, our code is competitive with HPL (which performs static look-ahead) and outperforms
ScaLAPACK (no look-ahead and synchronous) by a wide margin. In addition, the code also runs well
on a single core (with all the thread creation and scheduling). It achieves 91.8% of peak on a single
1.5 GHz Itanium 2 processor and 81.9% of peak on a 2.2 GHz Opteron chip. This validates our
threading strategy by demonstrating that the overhead of managing the threads is not significant.

4. Conclusion
In this report we used a case study of matrix factorizations to analyze a new software model for future
HPC systems. The model relies on dynamic, dataflow-driven execution models and avoids both global
synchronization and the implicit point-to-point synchronization of send/receive style message passing.
In our view, highly asynchronous codes are a good fit for the massive amount of concurrency present
in these machines. Our prototype codes successfully managed to hide algorithmic and communication

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012028 doi:10.1088/1742-6596/78/1/012028

4

latencies and so deliver high performance. They are especially advantageous on smaller problem sizes
and larger degree parallelism, because they avoid some of the overheads of the traditional bulk-
synchronous models. We intend to further explore this programming paradigm for two-sided linear
algebra algorithms (e.g., eigenvalue problems) and sparse matrix algorithms, where scalability is even
more challenging and the avoidance of synchronization costs should have an even higher payoff.

Figure 3. LU Performance Summary. The 512p HPL Cray XT3 number was estimated. The
comparison with ScaLAPACK was performed on an SGI Altix with matrix sizes of 25,600 (left) and
32,000 (right).

5. References
[1] Anderson E, Bai Z, Bischof C, Blackford S, Demmel J, Dongarra J J, Du Croz J, Greenbaum A,

Hammarling S, McKenney A and Sorenson D 1999 LAPACK Users’ Guide – Third Edition
(Philadelphia: SIAM Press)

[2] Asanovic K, Bodik R, Catazaro B, Gebis J, Husbands P, Keutzer K, Patterson D, Plishker W, Shalf
J, Williams S and Yelick K 2006 The landscape of parallel computing research: a view from
Berkeley UC Berkeley EECS Technical Report UCB/EECS-2006-183

[3] Choi J, Dongarra J J, Ostrouchov S, Petitet A, Walker D and Whaley R C 1996 The design and
implementation of the ScaLAPACK LU, QR, and Cholesky factorization routines Scientific
Programming 5 pp 173-84

[4] Dongarra J J, Luszczek P and Petitet A 2003 The LINPACK benchmark: past, present, and future
Concurrency and Computation: Practice and Experience 15 9 pp 803-20

[5] HPC Challenge Benchmark Page 2007 http://icl.cs.utk.edu/hpcc/
[6] Husbands P and Yelick K 2007 Multi-threading and one-sided communication in parallel LU

factorization To Appear in Proc. SC’07(Reno, NV, USA, November 2007)
[7] Kurzak J and Dongarra J J 2006 Pipelined shared memory implementation of linear algebra

routines with lookahead - LU, Cholesky, QR Proc. Workshop on State-of-the-Art in Scientific
and Parallel Computing (Umeå, Sweden, August 2006)

[8] Snir M, Otto S, Huss-Lederman S, Walker D, and Dongarra J J 1998 MPI: The Complete
Reference - 2nd Edition: Volume 1. (Cambridge: MIT Press)

[9] UPC Consortium. UPC Language Specifications 2007
http://upc.lbl.gov/docs/user/upc_spec_1.2.pdf

LU Performance Comparison

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Opteron

InfiniBand

64

SGI Altix

32

Cray X1

128/124

Cray X1

64

Cray XT3

512

S
y

s
te

m
 /

 P
ro

c
e

s
s

o
r

c
o

u
n

t

% Peak Performance

UPC /LU

MPI /HPL

UPC vs.

ScaLAPACK

0

20

40

60

80

2x4 proc grid 4x4 proc grid

G
F

lo
p

s

ScaLAPACK

UPC

SciDAC 2007 IOP Publishing
Journal of Physics: Conference Series 78 (2007) 012028 doi:10.1088/1742-6596/78/1/012028

5

