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In this paper we investigate the merits of combining tracing and profiling with the goal of
limiting data volume and enabling a manual interpretation, while retaining some temporal in-
formation about the program execution characteristics. We discuss the general dimensions of
performance data and which new kind of performance displays can be derived by adding a tem-
poral dimension to profiling-type data. Among the most useful new displays are overheads over
time which allows the location of when overheads such as synchronization arise in the target
application and performance counter heatmaps that show performance counters for each thread
over time.

1 Introduction

Profiling and tracing are the two common techniques for performance analysis of parallel
applications. Profiling is often preferred over tracing because it generates smaller amounts
of data, making a manual interpretation easier. Tracing, on the other hand, allows the full
temporal behavior of the application to be reconstructed at the expense of larger amounts
of performance data and an often more intrusive collection process.

In this paper we investigate an approach to combine the advantages of tracing and pro-
filing with the goal of limiting the data volume and enabling manual interpretation, while
retaining information about the temporal behavior of the program. Our starting point is
a profiling tool for OpenMP applications called ompP1. Instead of capturing the profiles
only at the end of program execution (“one-shot” profiling), in the new approach profiles
are captured at several points of time while the application executes. We call our tech-
nique incremental or continuous profiling and demonstrate its usefulness with a number of
examples.

The rest of this paper is organized as follows: Sect. 2 briefly introduces our profiling
tool and describes its existing capabilities. Sect. 3 then describes the general dimensions
of performance data and the new types of data (often best displayed as graphical views)
that become available with continuous profiling. Sect. 4 serves as an evaluation of our idea
where we show examples form the SPEC OpenMP benchmark suite. We describe related
work in Sect. 5 and conclude and discuss further directions for our work in Sect. 6.

2 Application Profiling with ompP

ompP is a profiling tool for OpenMP applications designed for Unix-like systems. ompP
differs from other profiling tools like gprof or OProfile2 in primarily two ways. First,
ompP is a measurement based profiler and does not use program counter sampling. The
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R00002 main.c (20-23) (unnamed) CRITICAL
TID execT execC bodyT enterT exitT
0 1.00 1 1.00 0.00 0.00
1 3.01 1 1.00 2.00 0.00
2 2.00 1 1.00 1.00 0.00
3 4.01 1 1.00 3.01 0.00

SUM 10.02 4 4.01 6.01 0.00

Figure 1: Profiling data delivered by ompP for a critical section.

instrumented application invokes ompP monitoring routines that enable a direct observa-
tion of program execution events (like entering or exiting a critical section). An advantage
of the direct approach is that its results are not subject to sampling inaccuracy and hence
they can also be used for correctness testing in certain contexts.

The second difference is in the way of data collection and representation. While other
profilers work on the level of functions, ompP collects and displays performance data in
the OpenMP user model of the execution3. For example, the data reported for critical
section contains not only the execution time but also lists the time to enter and exit the
critical construct (enterT and exitT, respectively) as well as the accumulated time each
threads spends inside the critical construct (bodyT) and the number of times each thread
enters the construct (execC). An example profile of a critical section is given in Fig. 1.

Profiling data in a similar style is delivered for each OpenMP construct, the columns
(execution times and counts) depend on the particular construct. Furthermore, ompP sup-
ports querying hardware performance counters through PAPI4 and the measured counter
values appear as additional columns in the profiles. In addition to OpenMP constructs that
are instrumented automatically using Opari5, a user can mark arbitrary source code regions
such as functions or program phases using a manual instrumentation mechanism.

Profiling data is reported by ompP both as flat profiles as well as callgraph profiles,
giving inclusive and exclusive times in the latter case. ompP performs an overhead anal-
ysis where four well-defined overhead classes (synchronization, load imbalance, thread
management, limited parallelism) are quantitatively evaluated. ompP also tries to detect
common inefficiency situations, such as load imbalance in parallel loops, contention for
locks and critical sections, etc. The profiling report contains a list of the discovered in-
stances of these – so called – performance properties6 sorted by their severity (negative
impact on performance).

3 From Profiling to Continuous Profiling

For both profiling and tracing, the following dimensions of performance data can be dis-
tinguished in general:

• Kind of data: describes which type of data is measured or reported to the user. Exam-
ples include time stamps or durations, execution counts, performance counter values,
and so on.

• Source code location: data can be collected globally (for the entire program) or for
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specific source code entities such as subroutines, OpenMP constructs, basic blocks,
individual statements, etc.

• Thread / process dimension: measured data can either be reported for individual
threads or processes or accumulated over groups (by summing or averaging, for ex-
ample).

• Time dimension: Describes when a particular measurement was made (time-stamp)
or for which time duration values have been measured.

A distinguishing and appealing property of profiling data is its low dimensionality, i.e.,
it can often be comprehended textually (like gprof output) or it can be visualized as 1D
or 2D graphs in a straightforward way. Adding a new dimension (time) jeopardizes this
advantage and requires more sophisticated performance data management and displays.
The following description lists performance data displays from continuous profiles that are
based on the (classic) performance data delivered by the ompP, extended with a temporal
dimension.

• Performance properties over time:

Performance properties6 are a very compact way to represent performance analysis
results and their change over time can thus be visualized easily. There is an extended
formalism for specifying properties6, an informal example for illustration is “Imbal-
ance in parallel region foo.f (23-42) with severity of 4.5%”. The definition
carries all relevant context information with it and the severity value denotes the per-
centage of total execution time improvement that can be expected if the cause for the
inefficiency could be removed. The threads dimension is collapsed in the specifica-
tion of the property and the source code dimension is encoded as the context of the
property (foo.f (23-42) in the above example).

Properties over time data can be visualized as a 1D lineplot, where the x-axis is the
time and the y-axis denotes severity values and a line segment is drawn for each
property from the first time it was detected until program termination. Depending on
the particular application, valuable information can be deduced from the shapes of the
graphs. An example is shown in Fig. 2

• Region invocations over time:

Depending on the size of the application and the analyst’s familiarity with the source
code, it can be valuable to know when and how often a particular OpenMP construct,
such as a parallel loop, was executed. The region invocation over time displays offers
this functionality. This view is most useful when aggregating (e.g., summing) over all
threads, the x-axis displays the time and the y-axis counts the region invocations in
this case. In certain situations it can also be valuable to see which thread executed a
construct at which time. In this case either multiple lineplots (one line per thread) or a
surface plot (y-axis representing threads and z-axis counting invocations) can be used
for visualization. Another option is color coding the number of invocations similar to
the performance counter heatmap view (discussed below).

• Region execution time over time:

3



This display is similar to the region invocation over time display but shows the ex-
ecution time instead of execution count. Again this display allows the developer to
see when particular portions of the code actually get executed. In addition, by di-
viding the execution time by the execution count, a normalized execution time can
be determined. This allows a developer to see if the execution time of the region in-
stances changed over time and to derive conclusions from that, e.g., effects like cache
pollution can show up in this type of display.

• Overheads over time:

ompP evaluates four overhead classes based on the profiling data for individual par-
allel regions and for the program as a whole. For example, the time required to enter
a critical section is attributed as the containing parallel region’s synchronization over-
head. A detailed discussion and motivation of this classification scheme can be found
in7.

The overheads over time can be visualized easily as 1D lineplots similar to the prop-
erties over time view. The x-axis represents time and the y-axis shows the incurred
overhead. It is usually convenient to display the overheads in percentages of execution
time lost, i.e., the y-axis ranges from 0 to 100% and for each of the four supported
overhead classes (synchronization, imbalance, limited parallelism, thread manage-
ment), a line indicates the percentage of execution time lost due to that overhead
class. An example for this is the graph in Fig. 3.

• Performance counter heatmaps:

The performance counter heatmap display is a tile map where the x-axis corresponds
to the time while the y-axis corresponds to the thread ID. The tiles are filled and a color
gradient coding is used to differentiate between higher and lower counter values. A
tile is not filled if no data samples are available for that time period. This type of
display is supported for both the whole program as well as for individual OpenMP
regions.

4 Implementation and Evaluation of Continuous Runtime Profiling

A straightforward way to add a temporal component to profiling-type performance data
is to capture profiles at several points during the execution of the target application (and
not just at the end) and to analyze how the profiles change between those capture points.
Alternatively (and equivalently), the changes between capture points can be recorded in-
crementally and the overall state at capture time can later be recovered.

Several trigger events for the collection of profiling reports are possible. The trigger
can either be based on a fixed-length or adaptive timer, or it can be based on the overflow
of a hardware counter. Another possibility is to expose a mechanism to dump profiles to
the user. In this paper we investigate the simplest form of incremental profiling: capturing
profiles in regular, fixed-length intervals during the entire lifetime of the application. We
have implemented this technique in our profiler ompP by registering a timer signal (using
SIGALRM) that is delivered to the profiler in regular intervals and causes the current state
of the profiling data to be stored to a memory buffer. On program termination the buffer
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Figure 2: An example for the “performance properties over time” display for the 310.wup-
wise application. The five most severe performance properties are shown.

is flushed to disk as a set of profiling reports. A collection of Perl scripts that come with
ompP can then be used to analyze the profiling reports and create the performance displays
described below in the form of SVG (scalable vector graphics) and PNG (portable network
graphics) images.

We have tested this technique with a dumping interval of 1 second on the applications
from the medium size variant of the SPEC OpenMP benchmarks on a 32 CPU SGI Altix
machine based on Itanium-2 processors with 1.6 GHz and 6 MB L3 cache used in batch
mode. Due to space limitations we can only show results from a very small number of
runs.

Fig. 2 shows the properties over time display for the 310.wupwise application. It is
evident that the severity of the properties which are all imbalance related appears to be
continuously increasing as time proceeds, indicating that the imbalance situations in this
code will become increasingly significant with longer runtime (e.g., larger data sets or
more iterations). Other applications from the SPEC OpenMP benchmark suite showed
other interesting features such as initialization routines that generated high initial overheads
which amortized over time (i.e., the severity decreased).

Fig. 3 shows the overheads over time display for the 328.fma3d application. The most
noticeable overhead is synchronization overhead starting at about 30 seconds of execution
and lasting for several seconds. A closer examination of the profiling reports reveals that
this overhead is caused by critical section contention. One thread after the other enters the
critical section and performs a time-consuming initialization operation. This effectively
serializes the execution for more than 10 seconds and shows up as an overhead of 31/32 =
97% in the overheads graph.

The graphs in Fig. 4 show examples of performance counter heatmaps. Depending on
the selected hardware counters, this view offers very interesting insight into the behavior of
the applications. Phenomena that we were able to identify with this kind of display include
iterative behavior (e.g.,Fig. 4a), thread grouping and differences in homogeneity or hetero-
geneity of thread behavior. E.g., often threads 16, 8, and 24 would show markedly different
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Figure 3: This graph shows overheads over time for the 328.fma3d application.

behavior compared to other threads in a 32 thread run. Possible reasons for this difference
in behavior might be in the application itself (related to the algorithm) but they could also
come from the machine organization or system software layer (mapping of threads to pro-
cessors and their arrangement in the machine and its interconnect). As another example,
Fig. 4b gives the number of retired floating point operations for the 324.apsi application
and this graph shows a marked difference for threads 0 to 14 vs. 15 to 31. We were not
able to identify the exact cause for this behavior yet.

5 Related Work

There are several performance analysis tools for OpenMP. Vendor specific tools such as
the Intel Thread Profiler and Sun Studio are limited to a single platform but can take greater
advantage of internal details of the compiler’s OpenMP implementation and the runtime
system than more general tools. Both the Intel and the Sun tool are based on sampling and
can provide the user with some timeline profile displays. Neither of those tools however
has a concept similar to ompP’s high-level abstraction of performance properties or the
properties over time display.

TAU8, 9 is also able to profile and trace OpenMP applications by utilizing the Opari in-
strumenter. Its performance data visualizer Paraprof supports a number of different profile
displays and also supports interactive 3D exploration of performance data, but does not
currently have a view similar to the performance counter heatmaps. The TAU toolset also
contains a utility to convert TAU trace files to profiles which can generate profile series and
interval profiles.

OProfile and its predecessor, the Digital Continuous Profiling Infrastructure (DCPI),
are system-wide statistical profilers based on hardware counter overflows. Both approaches
rely on a profiling daemon running in the background and both support the dumping of
profiling reports at any time. Data acquisition in a style similar to our incremental profiling
approach would thus be easy to implement. We are, however, not aware of any study
using OProfile or DPCI that investigated continuous profiling for parallel applications. In
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(a) Retired load instructions for the 316.applu application.

(b) Retired floating point operations for the 324.apsi application.

Figure 4: Example performance counter heatmaps. Time is displayed on the horizontal
axis (in seconds), the vertical axis lists the threads (32 in this case).

practice, the necessity of root privileges and the difficulty of relating profiling data back to
the user’s OpenMP execution model can be a major problem employing these approaches,
both are no issues with ompP since it is based on source code instrumentation.

6 Outlook and Future Work

We have investigated continuous profiling of parallel applications in the context of an exist-
ing profiling tool for OpenMP applications. We have discussed several general approaches
to add temporal dimension to performance data and have tested our ideas on applications
from the SPEC OpenMP benchmarks suite.

Our results indicate that valuable information about the temporal behavior of appli-
cations can be discovered by incremental profiling and that this technique strikes a good
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balance between the level of detail offered by tracing and the simplicity and efficiency of
profiling. Using continuous profiling we were able to get new insights into the behavior of
applications which can, due to the lack of temporal data, not be gathered from traditional
“one-shot” profiling. The most interesting features are the detection of iterative behavior,
the identification of short-term contention for resources, and the temporal localization of
overheads and execution patterns.

We plan continued work in several areas. In a future release of OpenMP we plan to
support other triggers for capturing profiles, most importantly user-added and overflow
based. Furthermore we intend to test our approach in the context of MPI as well, a planned
integrated MPI/OpenMP profiling tool based on mpiP10 and ompP is the first step in this
direction.
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