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Abstract. Selecting the close-to-optimal collective algorithm based on
the parameters of the collective call at run time is an important step
for achieving good performance of MPI applications. In this paper, we
explore the applicability of C4.5 decision trees to the MPI collective
algorithm selection problem. We construct C4.5 decision trees from the
measured algorithm performance data and analyze both the decision tree
properties and the expected run time performance penalty.
In cases we considered, results show that the C4.5 decision trees can be
used to generate a reasonably small and very accurate decision function.
For example, the broadcast decision tree with only 21 leaves was able
to achieve a mean performance penalty of 2.08%. Similarly, combining
experimental data for reduce and broadcast and generating a decision
function from the combined decision trees resulted in less than 2.5% rel-
ative performance penalty. The results indicate that C4.5 decision trees
are applicable to this problem and should be more widely used in this
domain.

1 Introduction

The performance of MPI collective operations is crucial for good performance of
MPI applications that use them [1]. For this reason, significant efforts have gone
into the design and implementation of efficient collective algorithms for both ho-
mogeneous and heterogeneous cluster environments [2–7]. Performance of these
algorithms varies with the total number of nodes involved in communication,
system and network characteristics, size of data being transferred, current load
and, if applicable, the operation that is being performed, as well as the segment
size that is used for operation pipelining. Thus, selecting the best possible al-
gorithm and segment size combination (method) for every instance of collective
operation is important.

To ensure good performance of MPI applications, collective operations can
be tuned for the particular system. The tuning process often involves detailed
profiling of the system, possibly combined with communication modeling, ana-
lyzing the collected data, and generating a decision function. During run-time,



the decision function selects the close-to-optimal method for a particular col-
lective instance. As the amount of the system performance information can be
significant, the decision function building mechanism must be efficient both in
terms of storage and the time-to-decision performance. We are interested in
different approaches to storing and accessing the large amount of performance
data.

This paper studies the applicability of C4.5 decision trees [8] to the MPI
collective algorithm/method selection problem. We assume that the system of
interest has been benchmarked and that detailed performance information exists
for each of the available collective communication methods.1 With this informa-
tion, we focus our efforts on investigating whether the C4.5 algorithm is a feasible
way to generate static decision functions.

The paper proceeds as follows: Section 2 discusses existing approaches to the
decision making/algorithm selection problem; Section 3 provides background in-
formation on the C4.5 algorithm; Section 4 discusses the mapping of performance
measurement data to C4.5 input, Section 5 presents experimental results; and
Section 6 concludes the paper with discussion of the results and future work.

2 Related work

The MPI collective algorithm selection problem has been addressed in many MPI
implementations. In FT-MPI [10], the decision function is generated manually
using a visual inspection method augmented with Matlab scripts used for anal-
ysis of the experimentally collected performance data. This approach results in
a precise, albeit complex, decision function. In the MPICH-2 MPI implementa-
tion, the algorithm selection is based on bandwidth and latency requirements of
an algorithm, and the switching points are predetermined by the implementers
[6]. In the tuned collective module of Open MPI [11], the algorithm selection can
be done in either of the following three ways: via a compiled decision function;
via user-specified command line flags; or using a rule-based run-length encoding
scheme that can be tuned for a particular system.

Our previous work [12] used quadtree encoding to store the information about
the optimal collective algorithm performance on a particular system. This struc-
ture was used either to generate a decision function or as an in-memory decision
system for selecting a close-to-optimal method at run-time.

Alternatively, data mining techniques can be applied to the algorithm selec-
tion problem with replacing the original problem by an equivalent classification
problem. The new problem is to classify collective parameters (collective opera-
tion, communicator size, message size) into a correct category, a method in our
case, to be used at run-time.

Vuduc et al. construct statistical learning models to build different decision
functions for the matrix-matrix multiplication algorithm selection [13]. In their
1 Detailed benchmarking of all possible methods takes a significant amount of time.

If this is not an option, performance profiles can be generated using a limited set of
performance measurements coupled with performance modeling [9].



work, they consider three methods for decision function construction: parametric
modeling; parametric geometry modeling; and non-parametric geometry model-
ing. The non-parametric geometry modeling uses statistical learning methods to
construct implicit models of the boundaries/switching points between the algo-
rithms based on the actual experimental data. To achieve this, Vuduc et al. use
the support vector machines method[14].

Conceptually, the work presented in this paper is close to the non-parametric
geometry modeling work done by Vuduc et al. However, our problem domain is
different: MPI collective operations are used instead of matrix-matrix multiplica-
tion, and we use the C4.5 algorithm instead of support vector machines methods.
To the best of our knowledge, we are the only group that has approached the
MPI collective tuning process in this way.

3 C4.5 algorithm

C4.5 is a supervised learning classification algorithm used to construct decision
trees from the data [8]. C4.5 can be applied to the data that fulfills the following
requirements:

– Attribute-value description: information about a single entry in the data
must be described in terms of attributes. The attribute values can be discrete
or continuous and, in some cases, the attribute value may be missing or can
be ignored.

– Predefined classes: the training data has to be divided into predefined classes
or categories. This is a standard requirement for supervised learning algo-
rithms.

– Discrete classes: the classes must be clearly separated and a single training
case either belongs to a class or it does not. C4.5 cannot be used to predict
continuous class values such as the cost of a transaction.

– Sufficient data: the C4.5 algorithm utilizes an inductive generalization pro-
cess by searching for patterns in data. For this approach to work, the pat-
terns must be distinguishable from random occurrences. What constitutes
the “sufficient” amount of data depends on a particular data set and its at-
tribute and class values, but in general, statistical methods used in C4.5 to
generate tests require reasonably large amount of data.

– “Logical” classification models: generated classification models must be rep-
resented as either decision trees or a set of production rules [8].

The C4.5 algorithm constructs the initial decision tree using a variation of
the Hunt’s method for decision tree construction (Figure 1). The main differ-
ence between C4.5 and other similar decision tree building algorithms is in the
test selection and evaluation process (last case in Figure 1). The C4.5 utilizes
information gain ratio criterion, which maximizes normalized information gain
by partitioning T in accordance with a particular test [8].

Once the initial decision tree is constructed, a pruning procedure is initiated
to decrease the overall tree size and decrease the estimated error rate of the
tree[8].



Given a set of training cases, T , and set of classes C = {C1, C2, ..., Ck},
the tree is constructed recursively by testing for the following cases:

1) T contains one or more cases which all belong to the same class Cj :
A leaf node is created for T and is denoted to belong to Cj class;

2) T contains no cases:

A leaf node is created for T and is assigned the most most frequent class at the parent node;

3) T contains cases that belong to more than one class:
Find a test that splits T set to a single-class collections of cases.
This test is based on a single attribute value, and is selected such that it results in one or
more mutually exclusive outcomes {O1, O2, ...On}.
The set T is then split into subsets {T1, T2, ...Tn} such that the set Ti contains all cases in T
with outcome Oi.
The algorithm is then called recursively on all subsets of T .

Fig. 1. Hunt’s method for decision tree construction [8].

Additional parameters that affect the resulting decision tree are:

– weight, which specifies the minimum number of cases of at least two outcomes
of a test. This prevents near-trivial splits that would result in almost flat and
really wide trees.

– confidence level, which is used for prediction of tree error rates and affects
the pruning process. The lower the confidence level, the greater the amount
of pruning that takes place.

– attribute grouping, which can be used to create attribute value groups for
discrete attributes and possibly infer patterns occurring in sets of cases with
different values of an attribute, but do not occur for other values of that
attribute.

– windowing, which enables construction of multiple trees based on a portion
of the test data and then selects the best performing tree [8].

4 MPI collectives performance data and C4.5

We use the collective algorithm performance information on a particular system
to extract the information about the optimal methods. The optimal method on
the particular system is the method that achieves the lowest duration for a
particular set of input parameters.

The collected performance data can be described using the collective name,
communicator and message size attributes. The collective name attribute has
discrete values such as broadcast, reduce, etc. Communicator and message size
attributes have continuous values. Additionally, constructive induction can be
used to create composite attributes that can capture additional system infor-
mation. For example, a total data per node attribute can be used to distinguish
between a single-process-per-node and two-processes-per-node run. Moreover,
such attributes can potentially indirectly capture information about the system
bottlenecks. In this paper, however, we focus on performance data that is fully
described by the collective name, communicator and message size attributes.



The predefined set of classes in our case contains methods that were optimal
for some of the data points. The class names consist of the algorithm name and
segment size used, for example, Linear 0KB or SplitBinary 16KB. The classes
are well defined, and by construction, the data with the same input parameters
can belong to a single class only.

As far as the “sufficient” data requirement is concerned, the performance
measurement data contains a considerable number of data points in the com-
municator - message size range. We do not cover every single possible commu-
nicator or message size, but our training data set usually contains around 1000
data points, so we feel that for this type of problem, collected data is sufficient
to give reasonable results.

The goal of this work is construction of decision functions, so we provide
the functionality to generate the decision function source code in C from the
constructed decision trees: the internal nodes are replaced by a corresponding if
statement, and leaf nodes return the decision method index/name. We did not
utilize the c4.5rules program for this purpose.

5 Experimental results and analysis

In this work, we used release 8 of the C4.5 implementation by J.R. Quinlan [15]
to construct decision trees based on existing performance data for broadcast and
reduce collectives collected on the Grig cluster at the University of Tennessee,
Knoxville.

The Grig cluster has 64 dual Intel(R) Xeon(TM) processor nodes at 3.2 GHz
and Fast Ethernet and MX interconnects. The experimental data from the Grig
cluster in this paper was gathered using the Fast Ethernet interconnect.

The performance data in this paper was collected using the MPICH-2 [16]
version 1.0.3 and OCC library [17]. The OCC library implements a number
of collective algorithms on top of MPI point-to-point operations and can be
used with any MPI implementation. The OCC benchmark measures collective
operation performance by repeating the operation a number of times. To avoid
pipelining effects, a balanced barrier (such as Bruck) is inserted between every
collective call, and the time to execute the barrier is subtracted from the total
running time. More advanced benchmarks, such as SKaMPI [18], can be used
as well. The only requirement is to convert the benchmark results to C4.5 input
file format.

In our experiments, we tested decision trees constructed using different weight
and confidence level constraints. We did not use windowing because our data
was relatively sparse in comparison to the complete communicator - message
size domain size, so we did not expect that there would be a benefit by not
utilizing all available data points. Also, since communicator and message sizes
were described as continuous attributes, we were not able to use the grouping
functionality of C4.5.

We constructed decision trees both per-collective (e.g., just for broadcast or
alltoall) and for the set of collectives that have similar or the same set of available



implementations (e.g., both have Linear, Binary, and Pipeline algorithms) and
for which we expected to have similar decision functions (e.g., broadcast and
reduce).

5.1 Analysis of broadcast decision trees

Figure 2 shows three different decision maps2 for a broadcast collective on the
Grig cluster. We considered five different broadcast algorithms (Linear, Bino-
mial, Binary, Split Binary, and Pipeline)3 and four different segment sizes (no
segmentation, 1KB, 8KB, and 16KB). The measurements covered all communi-
cator sizes between two and 28 processes and message sizes in the 1B to 384KB
range with total of 1248 data points. The original performance data set contains
1248× 4× 5 data points.

(a) (b) (c)

Fig. 2. Broadcast decision maps from the Grig cluster: (a) Measured (b) ’-m 2 -c 25’
(c) ’-m 40 -c 5’. X-axis corresponds to message sizes, Y-axis represents the commu-
nicator sizes. Different colors correspond to different method indices. In this Figure,
“LIN” stands for Linear, BM for Binomial, “BIN” for Binary, “SBIN” for Split Bi-
nary, and “PIPE” for Pipeline algorithm. Also, “none”, “1KB”, and “8KB” refer to
the corresponding segment size.

Figure 2 (a) shows an exact decision map generated from experimental data.
The subsequent maps were generated by C4.5 decision trees constructed by spec-
ifying different values for weight (“-m”) and confidence level (“-c”) parameters
(See Section 3). The statistics about these and additional trees can be found in
Table 1.

The exact decision map in Figure 2 (a) exhibits trends, but there is a con-
siderable amount of information for intermediate size messages (between 1KB
and 10KB) and small communicator sizes. The decision maps generated from
different C4.5 trees capture general trends very well. The amount of captured
detail depends on weight, which determines how the initial tree will be built, and
2 Decision map is a 2D representation of the decision tree output for a particular

communicator and message size ranges.
3 For more details on these algorithms, refer to [9].



confidence level, which affects the tree pruning process. “Heavier” trees require
that branches contain more cases, thus limiting the number of fine-grained splits.
A lower confidence level allows for more aggressive pruning, which also results
in coarser decisions.

Command
line

Before pruning After pruning Performance penalty

Size Errors Size Errors
Predicted

Error
Min Max Mean

-m 2 -c 25 133 7.9% 127 7.9% 14.6% 0% 75.41% 0.66%
-m 4 -c 25 115 8.8% 95 9.4% 15.0% 0% 316.97% 1.16%
-m 6 -c 15 99 10.4% 65 11.5% 17.6% 0% 316.97% 3.24%
-m 8 -c 5 73 12.0% 47 12.8% 21.0% 0% 316.97% 1.66%
-m 40 -c 5 21 17.8% 21 17.8% 21.9% 0% 316.97% 2.08%

Table 1. Broadcast decision tree statistics corresponding to the data presented in
Figure 2. Size refers to the number of leaf nodes in the tree. Errors are in terms of mis-
classified training cases. The data set had 1248 training cases. The median performance
penalty was 0% in all cases.

Looking at the decision tree statistics in Table 1, we can see that the default
C4.5 tree (’-m 2 -c 25’) has 127 leaves and a predicted misclassification error of
14.6%. Using a slightly “heavier” tree ’-m 4 -c 25’ gives us a 25.20% decrease in
tree size (95 leaves) and maintains almost the same predicted misclassification
error. As we increase tree weight and decrease the confidence level, we produce
the tree with only 21 leaves (83.46% reduction in size) with a 50% increase in
predicted misclassifications (21.9%).

In this work, the goal is to construct reasonably small decision trees that will
provide good run-time performance of an MPI collective of interest. Given this
goal, the number of misclassified training examples is not the main figure of merit
we need to consider. To determine the “quality” of the resulting tree in terms
of collective operation performance, we consider the performance penalty of the
tree. The performance penalty is the relative difference between the performance
obtained using methods predicted by the decision tree and the experimentally
optimal ones.

The last three columns in Table 1 provide performance penalty statistics
for the broadcast decision trees we are considering. The minimum, mean, and
median performance penalty values are rather low - less than 4%, even as low as
0.66%, indicating that even the simplest tree we considered should provide good
run-time performance. Moreover, the simplest tree, “-m 40 -c 5”, had a lower
performance penalty than the “-m 6 -c 15,” which indicates that the percent of
misclassified training cases does not translate directly into a performance penalty
of the tree.

In all cases, the mean and median performance penalty values are excellent,
but the maximum performance penalty of 316.97% requires explanation. At com-
municator size 25 and message size 480, the experimentally optimal method is
Binary algorithm without segmentation (1.12 ms), but most decision trees select



Binomial algorithm without segmentation (4.69 ms). However, the Binomial al-
gorithm performance in the neighborhood of this data point is around and less
than 1 ms, which implies that the 4.69 ms result is probably affected by exter-
nal factors. Additionally, in the “-m 40 -c 5” tree, only six data points had a
performance penalty above 50%.

5.2 Combined decision trees

It is reasonable to expect that similar MPI collective operations have similar
decision functions on the same system. To test this hypothesis, we decided to
analyze the decision trees generated from the experimental data collected for
broadcast and reduce collectives on the Grig system. Our implementations of
these collectives are symmetric; each of them has Linear, Binomial, Binary, and
Pipeline based implementations. Broadcast supports the Split Binary algorithm
for which we do not have an equivalent in reduce implementation, but we expect
that C4.5 should be able to handle these cases correctly.

The training data for this experiment contains three attributes (collective
name, communicator size, and message size) and the same set of predetermined
classes as in the broadcast-only case.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Combined broadcast and reduce decision maps from the Grig cluster: (a) reduce,
Exact (b) reduce, ’-m 2 -c 25’ (c) reduce, ’-m 20 -c 5’ (d) broadcast, Exact (e) broadcast,
’-m 2 -c25’ (f) broadcast, ’-m 20 -c 5’. Color has the same meaning as in Figure 2.

Figure 3 shows the decision maps generated from the combined broadcast
and reduce decision tree. The leftmost maps in both rows are the exact decisions



for each of the collectives based on experimental data. The remaining maps are
generated by querying the combined decision tree. Figures 3 (b) and (e) were
generated using a “-m 2 -c 25” decision tree, while (c) and (f) were generated
by a “-m 20 -c 5” decision tree. Table 2 provides the detailed information about
the combined decision trees of interest including the mean performance penalty
of the trees.

Command
line

Before Pruning After Pruning
Mean performance

penalty

Size Errors Size Errors
Predicted

error
Broadcast Reduce

-m 2 -c 25 239 137 221 142 12.6% 0.66% 0.41%
-m 6 -c 25 149 205 115 220 14.0% 1.62% 0.71%
-m 8 -c 25 127 225 103 235 14.4% 1.64% 0.72%
-m 20 -c 5 63 310 55 316 20.6% 2.40% 0.93%
-m 40 -c 25 33 392 33 392 19.6% 2.37% 1.53%

Table 2. Statistics for combined broadcast and reduce decision trees corresponding
to the data presented in Figure 3. Size refers to the number of leaf nodes in the tree.
Errors are in terms of misclassified training cases. The data set had 2286 training cases.

The structure of combined broadcast and reduce decision trees reveals that
the test for the type collective occurs for the first time on the third level of
the tree. This implies that the combined decision tree is able to capture the
common structure of the optimal implementation for these collectives, as one
would expect based on decision maps in Figure 3.

5.3 C4.5 decision trees vs. quadtree encoding

Quadtree encoding is an alternative method for storing performance information
and generating decision functions based on the performance data. We explored
this approach in [12].

The quadtree results for broadcast collective on the Grig cluster showed that
the 6-level quadtree can represent experimental data fully. The 5-level quadtree
for this data set, incurred around 5.41% mean performance penalty, while the
3-level quadtree introduced 8.83% mean performance penalty. In comparison,
the C4.5 decision trees we considered incurred less than 3.5% mean performance
penalty.

The main benefit of the quadtree encoding is the fact that the size of the
generated quadtree can be easily manipulated. This allows us to limit the maxi-
mum number of expressions that need to be evaluated to reach the decision. The
depth of the C4.5 decision tree is hard to estimate, making it impossible to set
an a priori limit on the maximum number of expressions to be evaluated in the
final decision function.

The main benefit of C4.5 decision trees is the ability to handle multi-dimensional
data automatically. In this paper, we added collective name as a third dimen-
sion in Section 5.2. The composite attributes or ordinal attributes that describe



system information can be automatically handled by C4.5. The quadtree en-
coding is restricted to two-dimensional data (communicator and message sizes),
and cannot be easily extended to include additional attributes. Moreover, one-
dimensional decisions (such as “for this communicator size and all message sizes
use method A, but do not use this method for neighboring communicator sizes”)
cannot be captured with size-restricted quadtrees, while C4.5 does not have this
problem.

6 Discussion and future work

In this paper, we studied the applicability of C4.5 decision trees to the MPI
collective algorithm/method selection problem. We assumed that the system of
interest has been benchmarked and that detailed performance information exists
for each of the available collective communication methods. Using this informa-
tion, we focused on investigating whether C4.5 decision trees are a feasible way
to generate static decision functions.

Using a publicly available C4.5 implementation, we constructed decision trees
based on existing performance data for broadcast and reduce collectives. We
evaluated decision trees constructed using different weight and confidence level
parameters.

Our results show that C4.5 decision trees can be used to generate a reasonably
small and very accurate decision function: the mean performance penalty on
existing performance data was within the measurement error for all trees we
considered. For example, the broadcast decision tree with only 21 leaves was
able to achieve a mean performance penalty of 2.08%. Moreover, using this tree,
only six points in the communicator - message size ranges we tested would incur
more than 50% performance penalty. Similar results were obtained for reduce
and alltoall.

Additionally, we combined the experimental data for reduce and broadcast
to generate the combined decision trees. These trees were also able to produce
decision functions with less than a 2.5% relative performance penalty for both
collectives. This indicates that it is possible to use information about one MPI
collective operation to generate a reasonably good decision function for another
collective, under the assumption that the two are similar.

In the direct comparison to the decision functions generated by the quadtrees
from [12], C4.5 trees produced decision functions with lower mean performance
penalties. However, the size and structure of a C4.5 decision tree is less pre-
dictable than the one of the corresponding quadtree. More detailed comparison
of both methods is planned for future work.

Our findings demonstrate that the C4.5 algorithm and decision trees are
applicable to this problem and should be more widely used in this domain. In
the future, we plan to use C4.5 decision trees to reevaluate decision functions
in FT-MPI and the tuned collective module of Open MPI. We also plan to
integrate C4.5 decision trees with our MPI collective testing and performance
measurement framework, OCC.
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