
Feedback-Directed Thread Scheduling with Memory
Considerations

Fengguang Song, Shirley Moore, and Jack Dongarra
Dept. of Computer Science, University of Tennessee

Knoxville, Tennessee, USA
song@cs.utk.edu, shirley@cs.utk.edu, dongarra@cs.utk.edu

ABSTRACT
This paper describes a novel approach to generate an opti-
mized schedule to run threads on distributed shared memory
(DSM) systems. The approach relies upon a binary instru-
mentation tool to automatically acquire the memory sharing
relationship between user-level threads by analyzing their
memory trace. We introduce the concept of Affinity Graph
to model the relationship. Expensive I/O for large trace
files is completely eliminated by using an online graph cre-
ation scheme. We apply the technique of hierarchical graph
partitioning and thread reordering to the affinity graph to
determine an optimal thread schedule. We have performed
experiments on an SGI Altix system. The experimental re-
sults show that our approach is able to reduce the total
execution time by 10% to 38% for a variety of applications
through the maximization of the data reuse within a single
processor, minimization of the data sharing between proces-
sors, and a good load balance.

Categories and Subject Descriptors
D.3.4 [Software]: Processors—run-time environments, op-
timization

General Terms
Performance, experimentation

Keywords
Distributed shared memory, shared-memory programming,
affinity graph, scientific applications

1. INTRODUCTION
High performance computing platforms that support a

shared-memory paradigm attain the benefits of large-scale
parallel computing without surrendering much programma-
bility [7]. On distributed shared memory (DSM) systems,
a program can be written as if it were running on a sym-
metric multiprocessor (SMP) machine. A typical subclass of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HPDC’07, June 25–29, 2007, Monterey, California, USA.
Copyright 2007 ACM 978-1-59593-673-8/07/0006 ...$5.00.

the DSM systems builds on the cache-coherent non-uniform
memory architecture (ccNUMA). A contemporary ccNUMA
system such as the SGI Altix consists of a large number
of nodes, each of which has a couple of processors and a
fixed amount of memory. With the emergence of chip multi-
processors (CMP), a compute node could have a number of
multi-core chips each of which has many cores. Figure 1 de-
picts the hierarchy of such a system. Our previous research
has shown that it is non-trivial to schedule threads on a sin-
gle multi-core chip with a shared L2 cache due to resource
contention and the nature of memory sharing between the
threads [17].

In this paper, we focus on thread scheduling for highly
scalable shared memory machines that have a multi-level
memory hierarchy. The placement of threads onto the mem-
ory hierarchy often has impact on program performance if
they have overlapping memory footprints. Compute-intensive
scientific applications usually consist of a set of threads to
conduct identical computation on either overlapping or dis-
joint subsets of the global data. When two threads are ac-
cessing the same data, the location to launch them will affect
the program performance greatly. For instance, the worst
situation would be to place them on different nodes which
induces a great number of remote memory accesses, and the
best one would be to place them on the same multi-core
chip because the shared L2 cache can potentially eliminate
the redundant loading of the same data [9, 17]. The inter-
mediate situation is either placing them on the same node
but different chips, or placing them on the same module but
different chips (Power4 and Power5 machines have a module
level [16]).

core corecorecore

L2

chip

core corecorecore

L2

chip

Memory

...

Node

core corecorecorecorecore corecorecorecorecorecore

shared L2

chip

core corecorecorecorecore corecorecorecorecorecore

chip

Memory

...

Node

...

shared L2

Figure 1: Memory hierarchy on a ccNUMA dis-

tributed shared memory system.

Our goal of thread scheduling is to improve the effec-
tiveness of the memory hierarchy by identifying user-level
threads and reorganizing them to enhance the program tem-
poral and spatial locality, as well as placing tightly-coupled
threads as close as possible. The user-level thread may be
considered as a ”logical task” whose granularity varies from
as tiny as a single instruction to as big as an actual kernel-
level thread. With the help of data dependence analysis, we
can even reorder tiny instructions to maximize data reuse
across the entire data set. However for simplicity and quick
analysis, we identify fine-grained user-level threads as con-
ceptual units of computation from the viewpoint of a pro-
grammer. Most of the time it is straightforward to identify
the threads. For instance, an iteration of a loop nest or an
update of an object may be created as a thread.

In order to improve the data locality, we must decide
which user-level threads will be in the same group and in
what order to execute them, as well as how to map the
groups to different processors. Figure 2 illustrates the overall
structure of our approach to realizing it. The approach relies
upon a binary instrumentation tool to (i) obtain and ana-
lyze the memory trace of each thread and find out the nature
of memory sharing between threads in an ”affinity graph”.
An affinity graph is an undirected weighted graph where
each vertex represents a thread and the weight for edge eij

denotes the total number of distinct addresses accessed in
common by threads i and j. To make the memory tracing
method more practical, the instrumentation tool generates
affinity graphs dynamically without storing the huge mem-
ory trace to disk. After the instrumented executable fin-
ishes, an affinity graph is built and written to a file. Next,
(ii) we partition the graph into a number of subgraphs (in
our experiments, the number is equal to the number of pro-
cessors). Based on the partitions, (iii) we compute a ”good”
schedule to put threads on different processors correspond-
ingly. The schedule is written in a file which will be later
used as feedback to future executions. Finally, (iv) a user
reruns the program taking as input the feedback file.

We have experimented with the feedback-directed thread
scheduling method using several application programs, in-
cluding sparse matrix-vector multiplication (stored in com-
pressed row storage or compressed column storage format),
sparse matrix-matrix multiplication, parallel radix sorting,
and a kernel from computational fluid dynamics codes. Our
results show that the feedback-directed method can signif-
icantly reduce the execution time. In particular, it can
successfully improve the performance of programs with dy-
namic memory access patterns and little compile-time infor-
mation.

Our work makes the following contributions:

• We present a feedback-directed approach for thread
scheduling for general-purpose programs. Since it is
an offline method, compute-intensive optimizations are
allowed to determine an optimal schedule. Also the
overhead to execute (or follow) the predetermined sched-
ule is less than that of dynamic scheduling methods.

• By identifying independent user-level threads, we are
able to parallelize the original program while maximiz-
ing the program locality.

• We develop techniques for instrumenting the executable
and analyzing the memory trace without triggering

Memory Trace Analysis Tool

Application

Executable

Affinity Graph

of Processors,

 Nodes

Optimized

 Schedule

 Thread

Scheduling

Rerun

feedback

Figure 2: Overall structure of the thread scheduling

method with memory considerations.

any disk I/O. These techniques are more practical than
traditional trace-based methods.

• We propose the concept of affinity graph to represent
the nature of memory sharing between threads. We
have applied it successfully to various applications.

• Our graph partitioning technique has a hierarchical
structure that corresponds to the actual architecture
of a real machine. For instance we can first partition
threads to a set of nodes, then to a set of chips, and
finally to a set of processor cores (we assume one kernel
thread per processor core).

2. FEEDBACK-DIRECTED METHOD
A feedback-directed method strives to improve perfor-

mance by using profiling information to exploit opportu-
nities for optimizations. Our work is concerned with how to
maximize data locality on each processor and minimize the
data sharing between processors (each processor runs one
kernel thread). Since we determine a thread schedule based
on the referenced addresses, collecting a memory trace is
typically necessary. There are four types of approaches to
obtaining the memory trace: compiler-based, run-time sys-
tem, online feedback-directed optimization (FDO), and of-
fline feedback-directed optimization. We choose to use the
offline FDO method due to the following reasons:

• The feedback-directed method can attain dynamic in-
formation about memory references, particularly for
programs with irregular access patterns. The dynamic
information cannot be obtained at compile time.

• The offline method has much less overhead than on-
line methods since the optimal schedule is determined
during the very beginning profiling program run.

• Our method collects a more accurate and detailed mem-
ory trace for each thread to determine an optimal sched-
ule. Current run-time systems usually use a couple of
heuristics to schedule threads.

We now present the overall structure of our feedback-
directed method. We first need to collect the memory trace
of applications by using a memory trace analysis tool. The
analysis tool supports binary instrumentation and is built
upon Pin [8].

2.1 Memory Trace Analysis
Pin follows the model of ATOM and allows tool writers

to analyze applications at the instruction level [8]. It uses
a dynamic just-in-time (JIT) compiler to instrument binary
codes while they are running. The set of Pin APIs provide
support for observing a process’s architectural states (e.g.,
register contents and memory references).

We wrote a memory trace analysis tool in C++ and used
the Pin API to implement two types of routines: instrumen-
tation routine and analysis routine. The instrumentation
routine tells Pin to insert instrumentation to every instruc-
tion that reads or writes data. The virtual address of the
referenced datum is passed as an argument to the analy-
sis routine. In order to differentiate addresses from distinct
threads, the thread ID is passed as another argument to the
analysis routine. Instrumenting the binary executable also
enables us to keep the original memory access pattern while
reflecting various compiler optimizations.

Two analysis routines RecordMemRead and RecordMemWrite

are implemented for read and write operations, respectively.
The analysis routine works as an event handler. For each
memory reference, the routine identifies the thread ID for
that reference and stores it into a buffer. Each thread owns
a buffer for keeping distinct addresses (i.e., two references to
the same address will be stored once). We tried writing the
memory trace to a file, but the size of the trace file and the
I/O cost increased so fast that it soon became impractical
to use.

The space requirement of our memory trace analysis tool
is equal to the sum of the distinct addresses referenced by
each thread. It is possible for us to impose a limit on the
number of distinct addresses for each thread so that all the
tracing operations can be performed in memory (i.e., with-
out disk). This diskless tracing method is much less expen-
sive and more practical than writing the memory trace to
disk.

2.2 Techniques to Process Large Graphs
While a modern computer system has no problem keeping

the distinct addresses in memory for most applications, the
size of the generated affinity graph can explode very quickly.
For instance, 105 fine-grained threads (105 vertices) may
require 40GB memory if the graph is totally connected (1010

edges). The size of the graph is limited by the capacity of
the memory. Given a fixed amount of memory, it is not
trivial to build an appropriately sized affinity graph without
exceeding the available memory.

We adopt several techniques to improve the time com-
plexity and space complexity of the process of graph cre-
ation. It rarely happens in practice that every thread has a
memory sharing relationship to all other threads if we don’t
consider the very small number of global variables. Thus
affinity graphs are often sparse and symmetric. We repre-

sent affinity graphs by an adjacency list and only store edges
eij where i < j to reduce the memory requirement. This is
analogous to storing an upper-triangular adjacency matrix.

A simple algorithm for building a graph from the recorded
memory trace is shown in Figure 3. The memory trace anal-
ysis tool instrumented the executable and stored addresses
in thrd addrs for each thread. Next, the algorithm com-
pares the memory trace of every two threads i and j where
i < j. create edge() creates an edge between thread i and
thread j and assigns a proper weight to it.

1 map<tid, addr> thrd_addrs;
2 for i = 1, num_thrds-1
3 for j = i+1, num_thrds

//Compare traces of threads i, j.
4 create_edge(thrd_addrs, i, j);
5 end for
6 end for

Figure 3: A simple algorithm to build affinity

graphs.

Suppose there are T threads and each thread accesses N
addresses. Even though the function create edge() has a
linear time complexity O(N) (by merging two ordered lists),
the overall time complexity is equal to O(T 2N). In practice
N is often bounded but T could be very large (e.g., 106 to
108). Furthermore, no matter how sparse a graph is, this
algorithm always takes time O(T 2N) to build the graph,
which could lead to many hours of computation.

To be more efficient in processing large graphs, we change
to a different data structure and develop a new algorithm.
The new algorithm employs an adjustable parameter of
DenseRatio ∈ [0 . . . 1] to control the density of the graph.
If an address is accessed by all threads, the graph is fully
connected. However this address will not help graph parti-
tioning in the next step. Therefore we adjust DenseRatio to
eliminate those edges that can form a clique of size greater
than NumberThreads×DenseRatio. DenseRatio = 0.0 will
yield a graph with no edges and DenseRatio = 1.0 will yield
a graph with all possible edges.

Figure 4 lists the pseudo-code for the more efficient algo-
rithm. The new data structure addr thrds stores addr as
keys instead of prior t id as keys. The algorithm takes as
input the memory trace stored in addr thrds and builds an
affinity graph. For each address, we determine the number
of threads that have accessed it. If the number is greater
than DenseRatio times the total number of threads, we skip
the analysis for this address and the creation of the relevant
edges. Otherwise, we create edges among the set of threads.

Again, let N be the total number of addresses referenced
by the application and T be the total number of threads.
The time complexity of the algorithm varies between O(N)
and O(NT 2) depending on how sparse the graph is. The
worst-case time complexity occurs when the graph is fully
connected and DenseRatio = 1.0.

Certainly we can use DenseRatio to reduce the graph den-
sity. Note that the previous algorithm in Figure 3 always has
a time complexity of O(NT 2). The new algorithm not only
has a better average-case time complexity but also adopts
an adjustable parameter DenseRatio to eliminate particular
edges. In our experiments, we use DenseRatio = 0.9 to re-
duce edges and are able to create sparse graphs. In addition,
most of the eliminated edges are due to a couple of global

1 T = total number of threads;
2 map<addr, tid> addr_thrds;
3 for each addr in addr_thrds do
4 thrd_set = threads accessing addr;
5 m = size of thrd_set;
6 if (m > DenseRatio*T) continue;
7 create edges between any pair

of threads within thrd_set;
8 end for

Figure 4: A more efficient algorithm to build affinity

graphs.

variables. Note that a single global variable can lead to a
fully connected graph.

The generated affinity graphs can be written either in
Graphviz DOT format for the purpose of displaying, or in
Chaco/METIS format for the next stage of graph partition-
ing.

3. AFFINITY GRAPH MODEL
We use a weighted undirected graph G = 〈V, E〉 called

”affinity graph” to model the nature of memory sharing be-
tween threads. In the graph, each vertex v ∈ V denotes
a thread and each edge eij ∈ E indicates that there ex-
ists a sharing relationship between threads vi and vj . The
weight wij associated with edge eij denotes that thread i and
thread j have accesses to a number wij of virtual addresses
in common. Note that wij does not measure the frequency
of references to the addresses. We assume that the greater
the weight wij , the higher probability it indicates of im-
proved data locality if we place threads i and j on the same
processor. We also assume all threads are independent.

There are two types of threads: user-level threads and ker-
nel threads. The user-level thread may be either as small as
a single instruction or as large as a parallel task. When the
thread has a single instruction, users can derive an optimal
schedule satisfying the data dependence constraint to mini-
mize the cache miss rate. For medium to large applications,
we regard a certain number of loop iterations as a user-level
thread. On the other hand, if a vertex denotes a kernel
thread, we can use the corresponding graph to determine
how to map the kernel threads onto different processors.

Figure 5 shows an example of multiplying 200 × 200 ma-
trices. A and C are dense matrices. Matrix B has a special
structure where the top right and bottom left blocks are
all zeros. We use four threads T0-T4 to compute matrix
multiplication. Correspondingly, T0-T4 compute the result
for sub-matrices C11, C12, C21 and C22 in parallel. Af-
ter instrumentation and execution of the program, an affin-
ity graph is created as shown on the right side in Figure
5. This example demonstrates what an affinity graph is and
its ability to reveal the memory sharing relationship between
threads.

We conducted a few experiments on the SGI Altix 3700
machine which is composed of dual-processor nodes. From
the affinity graph generated for the four threads shown in
Figure 5, we conclude that threads 0 and 2 should run on
the same node while threads 1 and 3 should run on another
node. Otherwise the program will incur a lot of remote
memory accesses. We compare the performance of putting
threads 0 and 2 together to that of putting 0 and 1 together
(an intuitive way). Figure 6 shows the wallclock execution

T0 T1

T2 T3

C

A B

= x

0

0

0

1

3

2

10003

3

33

10003

3

Figure 5: Matrix multiplication using four threads

and the corresponding affinity graph. Each thread

of T0-T3 computes for one block of matrix C. Matrix

B is a sparse matrix.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 1000 2000 3000 4000 5000

tim
e

(s
ec

on
ds

)

matrix dimension

optimized
original

Figure 6: Comparison of two different thread sched-

ules. The revealed affinity relationship helps im-

prove the multi-threaded program performance.

time of these two placements. The optimized placement is
better than the original one by 20%.

3.1 Affinity Graph Partitioning
For most of the programs, it is not obvious to decide how

to map threads onto different processors. In this section
we give a formal definition of affinity graph and describe
our approach to using graph partitioning to derive thread
groups. Figure 5 shows an example of affinity graph.

Definition 1. An affinity graph is an undirected weighted
graph G = 〈T, E,wt, we〉, where

• T = {ti is a user-level thread | ti is independent of
tj , i 6= j},

• E = {(ti, tj) | i 6= j, ∃ address x such that both ti and
tj access x },

• wt : T −→ Z+,

• we : E −→ Z+, and we(ti, tj) = 0 if (ti, tj) /∈ E.

The purpose of graph partitioning is to identify tightly-
coupled threads and divide a graph into subgraphs as dis-
joint as possible. We also hope to group together threads
that have large overlapping footprints. The partitioning pro-
cess is hierarchical since it corresponds to the actual memory
hierarchy on a real computer. For instance, on a ccNUMA
DSM system, we first divide the threads into a number of
groups which is equal to the number of nodes. Next we di-
vide each group further into subgroups that correspond to
the processors in a node.

Definition 2. Given an affinity graph G and a partition
P = {T1, . . . , Tn},

Sharing(Ti, Tj) =

 P

u∈Ti

P

v∈Tj
we(u, v) : i 6= j

0 : i = j

The optimization criterion aims to minimize the sharing
between groups. Assume there are n compute nodes each of
which has p processors. (a) We divide the threads in graph
G into n parties N1, N2, . . . , Nn by minimizing

X

1≤i,j≤n

Sharing(Ni, Nj).

Now each node Ni has been assigned a set of threads. Since
each node also has p processors, (b) we further partition
Ni to p parties P1, P2, . . . , Pp. Similarly, this is achieved by
minimizing the sharing between any pair of the p processors
on node Ni:

X

1≤i,j≤p

Sharing(Pi, Pj).

We use the Chaco software package to partition affinity
graphs. Chaco provides several methods for finding small
edge separators: inertial, spectral, Kernighan-Lin and multi-
level methods [4]. In our experiments, we use the multi-
level Kernighan-Lin method [5] with recursive bipartitions
to determine optimal subgraphs.

4. APPLICATIONS
We performed experiments with a variety of applications

to evaluate our feedback-directed method of thread schedul-
ing. These applications cover a range of domains and have
been widely used by users.

4.1 Sparse Matrix-Vector Multiplication
Sparse matrix-vector multiplication (SpMV) is an impor-

tant subroutine in many iterative methods. We use two
formats of Compressed Column Storage (CCS) and Com-
pressed Row Storage (CRS) to implement iterative methods
and try to improve their performance. The program using
the CRS format is presented in Figure 7. The inner for

loop is distributed to a number of processors and executed
in parallel. Arrays val, col, row store the sparse matrix A

while x, y store the column vectors for computing y = Ax.
The code using the CCS format is similar to that in Figure
7 and not shown here.

For both formats of CRS and CCS, we try to use the tech-
nique of affinity graph partitioning to improve the program
performance. Suppose matrix A is stored in CCS format,
the vector y = Ax is computed as follows:

y =
n

X

j=1

ajxj ,

1 for iter = 1, NUM_ITER
2 #pragma omp parallel for
3 for i = 1, num_rows
4 y = 0;
5 for j = row[i], row[i+1]-1
6 y += val[j]*x[col[j]];
7 end for
8 y[i] = y;
9 end for
10end for

Figure 7: Parallel iterative method calling SpMV

y = Ax. Sparse matrix A is stored in CRS format by

arrays val, col, row.

where aj is the jth column of A. For the parallel version with
p threads, each thread computes a partial sum and updates
the vector y. But an update of element yi may invalidate
a set of neighboring y′

i elements in other processors due to
false sharing. By grouping the columns that access the same
elements in vector y, we are able to improve the temporal
locality and reduce the chances of false sharing on vector y.

As for sparse matrix A stored in CRS format, each thread
computes a subset of vector y, where

yi =
n

X

j=1

aijxj .

Note that the only chance of data reuse lies in vector x. If
two rows read the same set of elements xs1, xs2, . . . , xsd

in
vector x, running them continuously will reuse the d ele-
ments and improve the temporal locality.

4.2 Sparse Matrix-Matrix Multiplication
To compute sparse matrix-matrix multiplication (SpMM),

we store matrix A row by row in CRS format and store
matrix B column by column in CCS format. The parallel
SpMM program is described in Figure 8. Sparse matrices are
distributed by rows across the p processors. Each processor
computes for a number of N

p
consecutive rows in matrix C.

The outer two loops i and j in Figure 8 are data indepen-
dent and can be executed in parallel. A user-level thread
may either compute a dot product of the ith row of ma-
trix A and the jth column of matrix B (i.e., the outer two
loops are parallelized), or multiply the ith row of A and the
whole matrix of B (i.e., only the outermost loop i is par-
allelized). The former definition is more fine-grained and
can identify a greater number of threads to reorder to max-
imize the program locality. But it is too costly to compute
since the number of threads N2 may result in a very large
graph. Instead, we use the latter coarse-grained definition to
do our experiments. The experimental results demonstrate
that we can still speedup the program by 10-20% even using
the coarse-grained threads.

4.3 Parallel Radix Sorting
Sorting is also an important kernel for high-performance

multiprocessing. Parallel radix sorting has been shown to
be a simple and efficient parallel method that outperforms
other parallel sorting algorithms [6, 15]. It is one of the im-
portant kernels in the NAS Parallel Benchmark and SPLASH-
2 benchmark suites.

The radix sorting algorithm performs one round of sorting
for every r bits of the keys. For a set of 32-bit integer keys

1 struct CRS A;
2 struct CCS B;
3 double *C;
4 #pragma omp parallel for
5 for i = 1, N
6 for j = 1, N
7 c = C[i*N+j];
8 for idx_a = A.row[i],A.row[i+1]-1
9 for idx_b = B.col[j],B.col[j+1]-1
10 if(A.col[idx_a]==B.row[idx_b])
11 c+=A.val[idx_a]*B.val[idx_b];
12 end for
13 end for
14 C[i*N+j] = c;
15 end for
16end for

Figure 8: Parallel version of SpMM.

and r=8, four rounds of iterations are needed. Suppose N
keys are stored in an array and distributed to p threads t0,
t1, . . . , tp−1, and that thread ti has to perform a local radix
sort on the segment of [N

p
× ti,

N

p
× ti+1) keys. During each

round, a thread builds a local histogram of the occurrences
of its local keys. Next it computes a global histogram by
combining other threads’ histograms. Finally, each thread
writes its keys back to corresponding positions in the array.
Likewise, the next round of sorting starts for another r bits
of keys.

Regarding the memory access pattern, each thread first
reads keys from its assigned segment, sorts them, and then
writes keys to remote positions in other segments. Therefore
if we place two threads onto the same node that write many
keys to each other, the remote memory accesses will become
local memory accesses, leading to better performance.

In our experiments, we schedule threads based on the first
round of r bits. We apply the optimization to the partitioned
parallel radix sorting algorithm which sorts keys in a left-to-
right fashion instead of the traditional right-to-left [6]. The
algorithm uses the most significant r bits at the beginning.
After the first round, the rest of sorting is always confined
locally within each thread. Hence the number of remote
memory accesses is greatly reduced during the whole process
of radix sorting.

4.4 IRREG
The IRREG kernel is an iterative irregular-mesh partial

differential equation (PDE) solver abstracted from computa-
tional fluid dynamics (CFD) applications [14]. The irregular
meshes are used to model physical structures and consist of
nodes and edges. The computational kernel iterates over the
edges of the mesh, computing the forces between both end
points of each edge. It then modifies the values of all nodes.
Figure 9 shows the parallel version of IRREG.

Each edge is a user-level thread in our experiment. We
partition the threads (or edges) into p sets (for p processors)
to maximize data reuse by grouping together the threads
accessing the same nodes. In addition, for each group, we
reorder the threads by means of the breadth-first traversal of
the group’s corresponding subgraph. Running the optimized
schedule reduces the execution time by around 35%.

5. EXPERIMENTAL RESULTS
All of the experiments are conducted on an SGI Altix

1 for iter = 1, NUM_ITER
2 #pragma omp parallel for
3 for i = 1, edges
4 n1 = left[i];
5 n2 = right[i];
6 force = f(x[n1],x[n2]);
7 y[n1] += force;
8 y[n2] -= force;
9 end for
10end for

Figure 9: Parallel version of IRREG.

3700 system with 256 nodes, each of which has two 1.6
GHz Itanium processors. The system has a ccNUMA Dis-
tributed Shared Memory (DSM) architecture and the mem-
ory is physically distributed across nodes. Each processor
can access any memory location through the SGI NUMA-
link 4 interconnect. Memory access time depends on the
distance between the processors and the nodes where the
physical memory is located. Our approach is a generic ap-
proach that works for various types of applications, there-
fore we compare our programs using the feedback-directed
method to the programs built by compiler optimizations.

5.1 Implementation Issues
All the parallel applications are implemented in C using

Pthreads. We obtain the optimized schedule automatically
through our memory trace analysis tool described in Section
2. Since we can only set thread and memory affinity on the
login node of the system, to verify our prototype, we run
a small number of four kernel threads on two nodes with
four processors to conduct the experiments. In all of the
experiments, the fine-grained user level threads are totally
independent and can be executed in parallel.

In order to execute the program with the new schedule,
we need to make a minor change to the original program
manually. This step could be done easily by extending a
compiler. For instance, instead of running for i = 0 to n,
the compiler can wrap the fundamental computation unit
by for i = mytasks[0] to mytasks[n], where mytasks is
specified in the optimal schedule.

After finding the affinity relationship between threads,
we use the cpuset library provided by SGI Linux [18] to
bind threads to different processors. Note that the bind-
ing of threads to processors happens only once when the
threads are created. The cpuset APIs cpuset pin() and
cpuset membind() allow our C programs to place both pro-
cessor and physical memory within a cpuset.

5.2 SpMV
Sparse matrix-vector multiplication is called by a syn-

chronous iterative method. For each sparse matrix, we run
a fixed number of iterations. There are two programs writ-
ten for SpMV. One program uses the CCS storage format
and the other one uses the CRS format. Users often choose
one of the two formats to implement their programs. Table
1 lists the sparse matrices used in our SpMV experiments.
They were downloaded from the UF Sparse Matrix Collec-
tion [1]. A matrix was selected if the amount of computation
for each row is approximately equal.

Figure 10 shows the effect of the optimization. Values
less than 1 indicate performance speedup. Our scheduling

Table 1: Sparse matrices used in the SpMV experi-

ment.

Name Dimension NNZ

1 msc01440 1,440 44,998

2 circuit 1 2,624 35,823

3 bp 1000 822 4,661

4 coater1 1,348 19,457

5 msc23052 23,052 1,142,686

6 mark3jac040 18,289 106,803

7 utm3060 3,060 42,211

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

utm3060coater1msc23052lhr01bp_1000circuit_1msc01440

no
rm

al
iz

ed
 to

 o
rig

in
al

matrix in CCS format
matrix in CRS format

Figure 10: Performance of SpMV. Both formats of

CCS and CRS are used for each sparse matrix.

method reduces execution times by 10% to 25% for four out
of seven matrices in both CCS and CRS formats. The im-
provement for the CRS program comes from maximized data
reuse, and the improvement for the CCS program comes
from reduced false sharing. Only three matrices (circuit 1,
lhr01, and coater1 in CCS format) show a little slowdown
(less than than 5%). There are three possible reasons: 1)
each row has too few elements so that the scheduling over-
head exceeds the gain of the improved data reuse; 2) the
amount of computation for each processor becomes imbal-
anced; 3) there is no opportunity to enhance the data reuse
for certain sparse matrices (i.e., the original order is near-
optimal).

5.3 SpMM
We conducted sparse matrix-matrix multiplication C =

AB with four test inputs which are shown in Table 2. In-
stead of attempting various combinations of pairing sparse
matrices, we simply let B equal the transpose of A. In the ex-
periment, matrix A is stored row by row in the CRS format
and matrix B is stored by columns in the CCS format. We
let a user-level thread compute the product of the ith row
of A and the whole matrix of B. Figure 11 indicates that
the reduction of the total execution time is around 20%.
Unlike the above SpMV experiment, this time the thread
scheduling method is effective for all the test inputs.

Table 2: Sparse matrices used in the SpMM exper-

iment.

Name Dimension NNZ

1 msc01440 1,440 44,998

2 msc01050 1,050 26,198

3 utm3060 3,060 42,211

4 bcsstk13 2,003 83,883

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

bcsstk13utm3060msc01050msc01440
no

rm
al

iz
ed

 to
 o

rig
in

al

SpMM

Figure 11: Performance of SpMM.

5.4 Parallel Radix Sorting
The input keys array is distributed across four processors

(i.e., four kernel threads) to do the parallel radix sorting.
Suppose we create the four threads t0, . . . , t3 on processors
p0, . . . , p3. Thread ti keeps the corresponding ith block of
the array. Processors p0 and p1 are co-located in one com-
pute node while p2 and p3 are in another one.

We use a synthetic input to compare the effect of different
placements of threads on processors. Taking as input the
synthetic input, t0 and t3 have to swap keys while t1 and
t2 have to swap as well. A straightforward placement would
be placing thread ti on processor pi correspondingly (we
call this experiment ”original”). In this experiment each
swapping involves a pair of remote memory writes. A better
way would be to put p0 and p3 on the same node so that
data swapping only involves local memory accesses (we call
this experiment ”optimized”).

To find out what the best performance could be, we mod-
ified the program and removed those operations performing
remote memory write (we call it ”original without memory
write”). The modified program provides further insight into
the lower bound of the execution time, which is the best
we could achieve. Figure 12 depicts the wallclock execu-
tion time of the three programs with different input sizes.
Although the execution time is improved by just 10%, the
reduction in remote memory accesses is equal to 30% - 50%
of the total memory access time (i.e., 30% - 50% of the total
communication time).

5.5 IRREG
The IRREG program takes an irregular mesh as the in-

put and iterates through all the edges and updates the end

 0

 5

 10

 15

 20

 25

 30

 35

 40

 24 25 26 27 28 29 30

ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

keys array size (2^n)

original
optimized

original w/o memory write

Figure 12: Performance of one-round parallel radix

sorting.

points of each edge. Suppose a mesh has N nodes and E
edges. We use a random generator to assign nodes to the
end points of every edge which are uniformly distributed be-
tween 0 and N-1. We analyze the memory trace of the pro-
gram to determine an optimal schedule. The new schedule
defines four sets of edges (for four processors) and each set
has an ordered list of edges. We compare the performance
of the original program to the optimized program with the
new schedule. As shown in Table 3, our feedback-directed
optimization method reduces the program execution time
by 33% to 38%. The reason for the increased performance
improvement with the larger mesh size is because a larger
working set often results in a greater number of cache misses
which is later reduced by using an optimized schedule.

Table 3: Performance of IRREG.

Irregular Meshes Time Time Reduced

Nodes Edges (original) (optimized) Time

400 4,000 1.11 0.74 33.3%

4,000 40,000 10.88 6.87 36.9%

40,000 400,000 102.88 63.57 38.2%

6. RELATED WORK
A lot of previous research work has proposed ways of re-

organizing data structures and altering programs to maxi-
mize the data reuse. Philbin et al. [11] describe a user-level
thread library to improve cache locality using fine-grained
threads. All data-independent units of computation implied
in the sequential program are created as fine-grained threads
all at once. When a thread is created, a hint of the starting
addresses of the accessed arrays must be provided as an ar-
gument. After thread creation, the thread library resched-
ules the threads at runtime to reduce the number of L2
cache misses. This method only works well for sequential
programs.

Yan et al. [19] developed a runtime library to maximize
data reuse. Yan’s approach is more generic and can be ap-

plied to parallel programs on SMP machines. In addition,
they adopt an adaptive scheduler to achieve load balance
between processors. Like Philbin’s approach, they also use
the starting addresses of arrays as hints to determine an
optimal schedule. Pingali et al. [14] use locality groups to
restructure computations for a variety of applications but
require hand-coded optimizations. In contrast, we use a bi-
nary instrumentation tool to analyze memory trace offline
and automatically acquire more precise relationship infor-
mation between threads. Such precise information is criti-
cal for thread scheduling on a ccNUMA distributed shared
memory system. Our approach also has less overhead than
the runtime approaches by employing a feedback-directed
method.

Ding [3] improves the program locality through trace-
driven computation regrouping. He developed a trace-driven
tool to measure the exact control dependence between in-
structions and applied techniques of memory renaming and
reallocation. Due to the expense of scheduling individual in-
structions, this method is limited to small fragments of a few
kernels. It is also only applicable to sequential programs.
Ding and Kennedy [2] introduced a compiler technique to
minimize program bandwidth consumption. They propose
a two-step strategy to fuse loops based on the reuse dis-
tance and regroup (intermix) several arrays based on their
reference affinity.

Similar to our approach, Pichel et al. [12, 13] formulate
sparse matrix-vector product as a graph problem. In the
graph, each row of the sparse matrix represents a vertex.
The distance between vertices are determined by their lo-
cality model. The proposed technique tries to improve the
program locality by reorganizing rows of the original ma-
trix through graph partitioning and subgraph reordering. It
works effectively on ccNUMA DSM systems, but is limited
to the SpMV application.

Affinity loop scheduling minimizes the cache miss rate by
allocating loop iterations to the processor whose cache al-
ready contains the necessary data [10]. The affinity schedul-
ing emphasizes loop iteration assignment and assumes that
the loop iterations have an affinity to particular processors.
A typical use of this method is to schedule a parallel loop
that is nested within a sequential loop. Unlike affinity loop
scheduling, our method tries to reorder and parallelize the
inner loop iterations before assigning them to particular
processors. Furthermore, we use more generic fine-grained
threads as the scheduling unit rather than loop iterations.

Marathe et al. investigated how to place pages on a cc-
NUMA DSM system using a hardware profile-guided method
[9]. They run a truncated version of a user application to
decide a good page placement through a hardware monitor.
Then they leverage the ”first-touch” technique to allocate
pages to assigned processors. Differently, we use a binary
instrumentation tool to analyze the memory trace to deter-
mine the memory sharing relationship between threads and
we don’t rely on any hardware facilities.

7. DISCUSSION
In our model, we assume each thread has the same amount

of computation. Unfortunately it is not true for many ap-
plications. If two threads have heavier workload and larger
footprints than the others, they are more likely to be grouped
together because the number of shared addresses might be
large too. This kind of grouping may result in a load imbal-

ance problem. To solve this problem, we are extending the
current graph model by assigning weights to vertices.

The graph model doesn’t distinguish read and write op-
erations. On a ccNUMA DSM system, a memory write will
invalidate a number of cache lines in other processors. It
is also an expensive operation. Therefore when perform-
ing graph partitioning, we hope to give a higher priority
to writes than to reads. Our model represents the affinity
relationship by the number of addresses accessed in com-
mon. A more accurate way would be using virtual cache-
line numbers to reflect the real data movement (load/store
of cache lines). It can also reduce the space complexity of
our method.

We adopt DenseRatio to control the number of edges (or
sparsity) in the graph. The current prototype cannot han-
dle too huge a graph with hundreds of millions of threads.
Such a huge graph without edges still requires a lot of mem-
ory. We could build the graph and write it to disk to solve
this issue. Since we adopt a diskless approach to analyz-
ing the memory trace, the ability to record traces is limited
by the amount of memory. To reduce the memory require-
ment, we hope to represent contiguous memory addresses by
regions instead of individual points. Other alternative solu-
tions might be designing an online algorithm, or collecting
a partial memory trace for each thread.

Furthermore, executing the complete instrumented exe-
cutable could be much slower (e.g., 10 to 100 times) than
the original executable due to the cost of calling the analysis
subroutine, storing the memory trace in associated arrays,
and creating graphs in the end. However, a partial execution
of the truncated program can overcome the problem. For in-
stance, a single outer-loop iteration of an iterative method
is sufficient to build an affinity graph. Our ongoing work is
implementing a mechanism to support the partial memory
tracing method.

8. CONCLUSION
We present a feedback-directed framework to maximize

program locality on distributed shared-memory systems. We
first run a binary instrumentation tool to automatically iden-
tify the nature of memory sharing between threads which is
represented by an affinity graph. The second step is to per-
form graph partitioning to determine an optimized schedule
for assigning threads to particular processors. The opti-
mized schedule improves the data locality of the original
program and reduces TLB misses as well as the number of
remote memory references on DSM systems.

Experiments on four different types of applications have
shown that our method is significantly effective and can re-
duce the program execution time by up to 38%. Although
we are using a memory tracing method, the online analysis
completely eliminates expensive disk I/O operations. Our
approach demonstrates that the feedback-directed method
is especially good for applications with irregular computa-
tion and dynamic memory access patterns. The overhead
to execute the applications using the optimal schedule (i.e.,
feedback) is also cheap.

With the affinity graph model, we are able to use a hier-
archical mechanism to partition the graph corresponding to
the actual memory hierarchy on a real system (e.g., node,
chips, and processor cores). Our experiments so far involved
either the node level or the processor level. After incorpo-
rating the hierarchy structure into our framework, we shall

conduct more experiments on a large number of processors.
It would also be possible to implement the feedback-directed
strategy in commercial compilers so that the programmer
can automatically achieve high-performance on leading-edge
shared memory systems.

9. ACKNOWLEDGMENTS
The authors would like to thank HPDC’07 reviewers for

their valuable comments and suggestions on the initial draft
of the paper. This research is supported by the National
Science Foundation under grant No. 0444363.

10. REFERENCES
[1] T. Davis. University of Florida sparse matrix

collection. In http://www.cise.ufl.edu/research/sparse,
1997.

[2] C. Ding and K. Kennedy. Improving effective
bandwidth through compiler enhancement of global
cache reuse. J. Parallel Distrib. Comput.,
64(1):108–134, 2004.

[3] C. Ding and M. Orlovich. The potential of
computation regrouping for improving locality. In SC,
page 13. IEEE Computer Society, 2004.

[4] B. Hendrickson and R. Leland. The Chaco user’s
guide: Version 2.0. In Sandia Tech Report
SAND94-2692, 1994.

[5] B. Hendrickson and R. Leland. A multilevel algorithm
for partitioning graphs. In Supercomputing ’95:
Proceedings of the 1995 ACM/IEEE conference on
Supercomputing, page 28, New York, NY, USA, 1995.
ACM Press.

[6] S.-J. Lee, M. Jeon, D. Kim, and A. Sohn. Partitioned
parallel radix sort. J. Parallel Distrib. Comput.,
62(4):656–668, 2002.

[7] H. Lu, S. Dwarkadas, A. L. Cox, and W. Zwaenepoel.
Message passing versus distributed shared memory on
networks of workstations. In Supercomputing ’95:
Proceedings of the 1995 ACM/IEEE conference on
Supercomputing (CDROM), page 37. ACM Press,
1995.

[8] C.-K. Luk, R. S. Cohn, R. Muth, H. Patil, A. Klauser,
P. G. Lowney, S. Wallace, V. J. Reddi, and K. M.
Hazelwood. Pin: building customized program
analysis tools with dynamic instrumentation. In
V. Sarkar and M. W. Hall, editors, PLDI, pages
190–200. ACM, 2005.

[9] J. Marathe and F. Mueller. Hardware profile-guided
automatic page placement for ccNUMA systems. In
J. Torrellas and S. Chatterjee, editors, PPOPP, pages
90–99. ACM, 2006.

[10] E. P. Markatos and T. J. LeBlanc. Using processor
affinity in loop scheduling on shared-memory
multiprocessors. IEEE Trans. Parallel Distrib. Syst.,
5(4):379–400, 1994.

[11] J. Philbin, J. Edler, O. J. Anshus, C. C. Douglas, and
K. Li. Thread scheduling for cache locality. In
ASPLOS, pages 60–71, 1996.

[12] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F.
Rivera. Improving the locality of the sparse
matrix-vector product on shared memory
multiprocessors. In PDP, pages 66–71. IEEE
Computer Society, 2004.

[13] J. C. Pichel, D. B. Heras, J. C. Cabaleiro, and F. F.
Rivera. A new technique to reduce false sharing in
parallel irregular codes based on distance functions. In
International Symposium on Parallel
Architectures,Algorithms and Networks, 2005 (ISPAN
2005)., 2005.

[14] V. K. Pingali, S. A. McKee, W. C. Hsieh, and J. B.
Carter. Restructuring computations for temporal data
cache locality. International Journal of Parallel
Programming, 31(4):305–338, 2003.

[15] H. Shan and J. P. Singh. Parallel sorting on
cache-coherent dsm multiprocessors. In
Supercomputing ’99: Proceedings of the 1999
ACM/IEEE conference on Supercomputing, page 40,
New York, NY, USA, 1999. ACM Press.

[16] B. Sinharoy, R. Kalla, J. Tendler, R. Eickemeyer, and
J. Joyner. Power5 system microarchitecture. IBM
Journal of Research and Development,
49(4/5):505–521, 2005.

[17] F. Song, S. Moore, and J. Dongarra. Modeling of L2
cache behavior for thread-parallel scientific programs
on Chip Multi-Processors. In UT Computer Science
Technical Report UT-CS-06-583, 2006.

[18] SGI. Linux resource administration guide. In SGI
Techpubs Library 007-4413-011, 2006.

[19] Y. Yan, X. Zhang, and Z. Zhang. Cacheminer: A
runtime approach to exploit cache locality on SMP.
IEEE Trans. Parallel Distrib. Syst., 11(4):357–374,
2000.

