
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS 1

Solving Systems of Linear Equations on the CELL
Processor Using Cholesky Factorization

Jakub Kurzak, Member, IEEE, Alfredo Buttari, and Jack Dongarra, Fellow, IEEE

Abstract— The Sony/Toshiba/IBM (STI) CELL processor in-
troduces pioneering solutions in processor architecture. At the
same time it presents new challenges for the development
of numerical algorithms. One is effective exploitation of the
differential between the speed of single and double precision
arithmetic; the other is efficient parallelization between the
short vector SIMD cores. The first challenge is addressed by
utilizing the well known technique of iterative refinement for
the solution of a dense symmetric positive definite system of
linear equations, resulting in a mixed-precision algorithm, which
delivers double precision accuracy, while performing the bulk of
the work in single precision. The main contribution of this paper
lies in addressing the second challenge by successful thread-level
parallelization, exploiting fine-grained task granularity and a
lightweight decentralized synchronization. The implementation
of the computationally intensive sections gets within 90 percent
of peak floating point performance, while the implementation
of the memory intensive sections reaches within 90 percent of
peak memory bandwidth. On a single CELL processor, the
algorithm achieves over 170 Gflop/s when solving a symmetric
positive definite system of linear equation in single precision and
over 150 Gflop/s when delivering the result in double precision
accuracy.

Index Terms— Parallel algorithms, Numerical Linear Algebra,
Cell Broadband Engine.

I. MOTIVATION

IN numerical computing, there is a fundamental performance
advantage of using single precision floating point data format

over double precision data format, due to more compact represen-
tation, thanks to which, twice the number of single precision data
elements can be stored at each stage of the memory hierarchy.
Short vector SIMD processing provides yet more potential for
performance gains from using single precision arithmetic over
double precision. Since the goal is to process the entire vector
in a single operation, the computation throughput can be dou-
bled when the data representation is halved. Unfortunately, the
accuracy of the solution is also halved.

Most of the processor architectures available today have been
at some point augmented with short vector SIMD extensions.
Examples include:
• Streaming SIMD Extensions (SSE) for the AMD and Intel

lines of processors,
• PowerPC Velocity Engine / AltiVec / VMX,
• Sparc Visual Instruction Set (VIS),
• Alpha Motion Video Instructions (MVI),

J. Kurzak and A. Buttari are with the Department of Electrical Engineering
and Computer Science, University of Tennessee, Knoxville, Tennessee 37996-
3450. E-mail: {kurzak, buttari}@cs.utk.edu

J. Dongarra is with the Department of Electrical Engineering and Com-
puter Science, University of Tennessee, Knoxville, Tennessee 37996 and the
Computer Science and Mathematics Division, Oak Ridge National Laboratory,
Oak Ridge, Tennessee 37831. E-mail: dongarra@cs.utk.edu.

This work was supported in part by grants from NSF and DoE.

• PA-RISC Multimedia Acceleration eXtensions (MAX),
• MIPS-3D Application Specific Extensions (ASP), and Dig-

ital Media Extensions (MDMX),
• ARM NEON.

The different architectures exhibit big differences in their capa-
bilities. The vector size is either 64 bits or, more commonly, 128
bits. The register file size ranges from just a few to as many as
128 registers. Some extensions only support integer types, others
also operate on single precision floating point numbers, and yet
others also process double precision values.

Today the Synergistic Processing Element (SPE) of the STI
CELL processor [1], [2], [3] can probably be considered the
state of the art in short vector SIMD processing. Possessing
128-byte long registers and a fully pipelined, fused add-multiply
instruction, it is capable of completing eight single precision
floating point operations each clock cycle, which combined with
the size of the register file of 128 registers delivers close to peak
performance on many common workloads. At the same time, built
with multimedia and embedded applications in mind, the current
incarnation of the CELL architecture does not implement double
precision arithmetic on par with single precision performance,
which makes the processor a very attractive target for exploring
mixed-precision approaches.

Another important phenomenon in recent years has been the
gradual shift of focus in processor architecture from aggressive
exploitation of instruction level parallelism towards thread-level
parallelism, resulting in the introduction of chips with multiple
processing units commonly referred to as multi-core processors.
The new architectures deliver the much desired improvement in
performance, and at the same time challenge the scalability of
existing algorithms, and force the programmers to seek more
parallelism by going to much finer levels of problem granularity.
In linear algebra, it enforces the departure from the model relying
on parallelism encapsulated at the level of BLAS and shifts to
more flexible methods of scheduling work.

II. RELATED WORK

Iterative refinement is a well known method for improving the
solution of a linear system of equations of the form Ax = b.
Typically, a dense system of linear equations is solved by applying
a factorization to the coefficient matrix, followed by a back solve.
Due to roundoff errors, the solution carries an error related to the
condition number of the coefficient matrix. In order to improve the
computed solution, an iterative refinement process can be applied,
which produces a correction to the computed solution at each
iteration. In principle, the algorithm can produce a solution correct
to the working precision.

Iterative refinement is a fairly well understood concept and was
analyzed by Wilkinson [4], Moler [5] and Stewart [6]. Higham
gives error bounds for both single and double precision iterative

2 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

refinement algorithms, where the entire algorithm is implemented
with the same precision (single or double respectively) [7]. He
also gives error bounds in single precision arithmetic, with re-
finement performed in double precision arithmetic. Error analysis
for the case described in this work, where the factorization
is performed in single precision and the refinement in double
precision, is given by Langou et al. [8].

The authors of this work have previously presented an initial
implementation of the mixed-precision algorithm for the general,
non-symmetric, case using LU factorization on the CELL proces-
sors. Although respectable performance numbers were presented,
both the factorization and the refinement steps relied on rather
classic parallelization approaches. Also, a somewhat general dis-
cussion of algorithmic and implementation details was presented.
This work extends the previous presentation by introducing a
novel scheme for parallelization of the computational components
of the algorithm, and also describes in much more detail the im-
plementation of both computation-intensive, as well as memory-
intensive operations.

Although the thread-level parallelization of the Cholesky fac-
torizations presented here is quite unique, due to the unique nature
of the CELL processor, many of the concepts are not new. Seminal
work in the area of parallelel dense matrix factorizations was done
by Agarwal and Gustavson [9], [10].

III. ALGORITHM

The standard approach to solving symmetric positive definite
systems of linear equations is to use the Cholesky factorization.
The Cholesky factorization of a real symmetric positive definite
matrix A has the form A = LLT , where L is a real lower
triangular matrix with positive diagonal elements. The system is
solved by first solving Ly = b (forward substitution) and then
solving LT x = y (backward substitution). In order to improve
the accuracy of the computed solution, an iterative refinement
process is applied, which produces a correction to the computed
solution, x.

The mixed-precision iterative refinement algorithm using
Cholesky factorization is outlined by Algorithm 1. The factor-
ization A = LLT (line 2) and the solution of the triangular
systems Ly = b and LT x = y (lines 3 and 8) are computed using
single precision arithmetic. The residual calculation (line 6) and
the update of the solution (line 10) are computed using double
precision arithmetic and the original double precision coefficients.
The most computationally expensive operations, including the
factorization of the coefficient matrix A and the forward and
backward substitution, are performed using single precision arith-
metic and they take advantage of the single precision speed. The
only operations executed in double precision are the residual
calculation and the update of the solution.

It can be observed that all operations of O(n3) complexity
are handled in single precision, and all operations performed in
double precision are of at most O(n2) complexity. The coefficient
matrix A is converted to single precision for the Cholesky
factorization. At the same time, the original matrix in double
precision is preserved for the residual calculation.

The algorithm described above, and shown on Algorithm 1 is
available in the LAPACK 3.1 library and implemented by the
routine DSGESV.

Algorithm 1 Solution of a symmetric positive definite system of
linear equations using mixed-precision iterative refinement based
on Cholesky factorization.

1: A(32), b(32) ← A, b

2: L(32), L
T
(32) ←SPOTRFa(A(32))

3: x
(1)
(32)
←SPOTRSb(L(32), L

T
(32), b(32))

4: x(1) ← x
(1)
(32)

5: repeat
6: r(i) ← b−Ax(i)

7: r
(i)
(32)
← r(i)

8: z
(i)
(32)
←SPOTRSb(L(32), L

T
(32), r

(i)
(32)

)

9: z(i) ← z
(i)
(32)

10: x(i+1) ← x(i) + z(i)

11: until x(i) is accurate enough

aLAPACK name for Cholesky factorization
bLAPACK name for symmetric back solve

64-bit representation is used in all cases where 32-bit representation is not
indicated by a subscript.

IV. IMPLEMENTATION

A. Essential Hardware Features

An extensive hardware overview would be beyond the scope
of this publication. Vast amounts of information are publicly
available for both experienced programmers [11], as well as
newcomers to the field [12], [13]. It is assumed that the reader
has some familiarity with the architecture. Here, the features are
mentioned that have the most influence on the implementation
presented.

The CELL is a multi-core chip that includes nine different
processing elements. One core, the POWER Processing Element
(PPE), represents a standard processor design implementing the
PowerPC instruction set. The remaining eight cores, the Synergis-
tic Processing Elements (SPEs), are short vector Single Instruction
Multiple Data (SIMD) engines with big register files of 128 128-
bit vector registers and 256 KB of local memory, referred to as
local store (LS).

Although standard C code can be compiled for the execution
on the SPEs, the SPEs do not execute scalar code efficiently. For
efficient execution, the code has to be vectorized in the SIMD
sense, by using C language vector extensions (intrinsics), or by
using assembly code. The system’s main memory is accessible
to the PPE through L1 and L2 caches and to the SPEs through
DMA engines associated with them. The SPEs can only execute
code residing in the local store and can only operate on data in
the local store. All data has to be transferred in and out of local
store via DMA transfers.

The theoretical computing power of a single SPE is
25.6 Gflop/s in single precision and roughly 1.8 Gflop/s in double
precision. Floating point arithmetic follows the IEEE format,
with double precision operations complying numerically with the
standard and single precision providing only rounding toward
zero. The theoretical communication speed for a single SPE is
25.6 GB/s. The theoretical peak bandwidth of the main memory
is 25.6 GB/s as well.

The size of the register file and the size of the local store dictate
the size of the elementary operation subject to scheduling to the
SPEs. The ratio of computing power to the memory bandwidth

KURZAK et al.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION 3

A

C

A

B C

T TT

T = T – A AT

SSYRK

T = LLT

SPOTRF
C = C – B AT

SGEMM

C = C \ T
STRSM

A T

C

A

B C

TT

Fig. 1. Top - steps of left-looking Cholesky factorization. Bottom - tiling of operations.

dictates the overall problem decomposition for parallel execution.

B. Factorization

A few varieties of Cholesky factorization are known. In par-
ticular, the right-looking variant and the left-looking variant [14].
It has also been pointed out that those variants are borders of a
continuous spectrum of possible execution paths [15].

Generally, the left-looking factorization is preferred for several
reasons. During the factorization, most time is spent calculat-
ing a matrix-matrix product. In the case of the right-looking
factorization, this product involves a triangular matrix. In the
case of the left-looking factorization, this product only involves
rectangular matrices. It is generally more efficient to implement
a matrix-matrix product for rectangular matrices and it is easier
to balance the load in parallel execution. The implementation
presented here is derived from the left-looking formulation of
the Cholesky factorization, which follows the implementation of
the LAPACK routine SPOTRF.

Due to the limited size of the local store, all numerical
operations have to be decomposed into elementary operations that
fit in the local store. The simplicity of implementing the Cholesky
factorization lies in the fact that it can be easily decomposed into
tile operations - operations on fixed-size submatrices that take
from one to three tiles as input and produce one tile as output.
These elementary operations will further be referred to as tile
kernels. Figure 1 illustrates the steps of the left-looking Cholesky
factorization and how each step is broken down to tile operations.

1) Computational Kernels: Implementation of the tile kernels
assumes a fixed size of the tiles. Smaller tiles (finer granularity)
have a positive effect on scheduling for parallel execution and
facilitate better load balance and higher parallel efficiency. Bigger
tiles provide better performance in sequential execution on a
single SPE.

In the case of the CELL chip, the crossover point is rather
simple to find for problems in dense linear algebra. From the
standpoint of this work, the most important operation is matrix
multiplication in single precision. It turns out that this operation
can achieve within a few percent off the peak performance on a

Operation BLAS / LAPACK Call
T ← T −A×AT cblas ssyrk(CblasRowMajor,

CblasLower, CblasNoTrans,
64, 64, 1.0, A, 64, 1.0, T, 64);

C ← C −B ×AT cblas sgemm(CblasRowMajor,
CblasNoTrans, CblasTrans,
64, 64, 64,
1.0, B, 64, A, 64, 1.0, C, 64);

B ← B × T−T cblas strsm(CblasRowMajor,
CblasRight, CblasLower,

(B = B/T T)a CblasTrans, CblasNonUnit,
64, 64, 1.0, T, 64, B, 64);

T ← L× LT lapack spotrf(lapack lower,
64, trans(T), 64, &info);b

ausing MATLAB notation
busing LAPACK C interface by R. Delmas and J. Langou,

http://icl.cs.utk.edu/∼delmas/lapwrapc.html

TABLE I
SINGLE PRECISION CHOLESKY TILE KERNELS.

single SPE for matrices of size 64×64. The fact that the peak
performance can be achieved for a tile of such a small size has to
be attributed to the large size of the register file and fast access
to the local store, undisturbed with any intermediate levels of
memory. Also, such a matrix occupies a 16 KB block of memory,
which is the maximum size of a single DMA transfer. Eight such
matrices fit in half of the local store providing enough flexibility
for multibuffering and, at the same time, leaving enough room for
the code. Discussion of tile size consideration was also presented
before by the authors of this publication [16]. Table I represents
the Cholesky tile kernels for tile size of 64×64 as BLAS and
LAPACK calls.

It has already been pointed out that a few derivations of the
Cholesky factorization are known, in particular the right-looking
variant and the left-looking variant [14]. Dynamic scheduling of
operations is another possibility. However, no matter which static
variant is used, or whether dynamic execution is used, the same
set of tile kernels is needed. The change from one to another will
only alter the order in which the tile operations execute.

4 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

All the kernels were developed using SIMD C language ex-
tensions. Extra effort was invested into optimizing the matrix
multiplication (SGEMM1) kernel performing the calculation C =

C −B ×AT , since this operation dominates the execution time.
All the tile kernels were written by consistently applying the idea
of blocking with a block size of four. A short discussion of each
case follows.

The SSYRK kernel applies a symmetric rank-k update to a
tile. In other words, it performs the operation T ← T −A×AT ,
where only the lower triangular part of T is modified. The SSYRK
kernel consists of two nested loops, where in each inner iteration
a 4×4 block of the output tile is produced and the body of the
inner loop is completely unrolled. The #define and nested #define
C language directives are used to create a single basic block -
a block of straight line code. Static offsets are used within the
basic block, and pointer arithmetic is used to advance pointers
between iterations.

The construction of the SSYRK tile kernel is presented by
Algorithm 2. The unrolled code consists of four distinct seg-
ments. A computation segment (line 3) includes only multiply
and add operations to calculate a product of two 4×64 blocks
of tile A and it produces 16 4-element vectors as output. A
permutation/reduction segment (line 4) performs transpositions
and reductions on these 16 vectors and delivers the four 4-element
vectors constituting the 4×4 block of the output tile. The two
segments mentioned above handle the off-diagonal, square blocks
(lines 3 and 4), and two more segments handle the triangular,
diagonal blocks (lines 6 and 7). It is an elegant and compact,
but suboptimal design. The kernel could be further optimized by
using pipelining of iterations (double-buffering), similarly to the
SGEMM kernel described in the following paragraphs.

Algorithm 2 SSYRK tile kernel T ← T −A×AT .
1: for j = 0 to 15 do
2: for i = 0 to j − 1 do
3: Compute block [j,i]
4: Permute/reduce block [j,i]
5: end for
6: Compute block [j,j]
7: Permute/reduce block [j,j]
8: end for

block is a 4×4 submatrix of tile T .

The SGEMM kernel performs the operation
C ← C −B ×AT , which is very similar to the operation
performed by the SSYRK kernel. One difference is that it
updates the tile C with a product of two tiles, B and AT , and
not the tile A and its transpose. The second difference is that the
output is the entire tile and not just its lower triangular portion.
Also, since the SGEMM kernel is performance-critical, it is
subject to more optimizations compared to the SSYRK kernel.

The main idea behind additional optimization of the SGEMM
kernel comes from the fact that the SPE is a dual issue archi-
tecture, where arithmetic operations can execute in parallel with
permutations of vector elements. Therefore, a pipelined imple-
mentation is possible, where the operations of the permute/reduce
segment from iteration k can be mixed with the operations of the

1Tile kernels are referred to using the names of BLAS and LAPACK
routines implementing the same functionality.

compute segment from iteration k+1. The two nested loops used
for SSYRK are replaced with a single loop, where the 256 4×4
blocks of the output tile are produced in a linear row-major order,
which results in Algorithm 3.

Algorithm 3 SGEMM tile kernel C ← C −B ×AT

1: Compute block 0

2: for i = 1 to 127 do
3: Permute/reduce blk 2i− 2 & compute blk 2i− 1

4: Permute/reduce blk 2i− 1 & compute blk 2i

5: end for
6: Permute/reduce blk 254 & compute blk 255

7: Permute/reduce blk 255

blk is a 4×4 submatrix of tile C.

The STRSM kernel computes a triangular solve with multiple
right-hand-sides B ← B × T−T . The computation is conceptu-
ally easiest to SIMD’ize if the same step is applied at the same
time to different right-hand-sides. This can be easily achieved if
the memory layout of tile B is such that each 4-element vector
contains elements of the same index of different right-hand-sides.
Since this is not the case here, each 4×4 block of the tile is
transposed, in place, before and after the main loop implementing
the solve. The operation introduces a minor overhead, but allows
for a very efficient implementation of the solve - one which
achieves good ratio of the peak with small and simple code.

Algorithm 4 presents the structure of the code implementing the
triangular solve, which is an application of the lazy variant of the
algorithm. The choice of the lazy algorithm versus the aggressive
algorithm is arbitrary. The code includes two segments of fully
unrolled code, both of which operate on 64×4 blocks of data.
The outer loop segment (line 5) produces a 64×4 block j of the
solution. The inner loop segment (line 3) applies the update of
step i to block j.

Algorithm 4 STRSM tile kernel B ← B × T−T .
1: for j = 0 to 15 do
2: for i = 0 to j − 1 do
3: Apply block i towards block j

4: end for
5: Solve block j

6: end for

block is a 64×4 submatrix of tile B.

The SPOTRF kernel computes the Cholesky factorization, T ←
L×LT , of a 64×64 tile. This is the lazy variant of the algorithm,
more commonly referred to as the left-looking factorization,
where updates to the trailing submatrix do not immediately follow
panel factorization. Instead, updates are applied to a panel right
before factorization of that panel.

It could be expected that this kernel is implemented using
Level 2 BLAS operations, as this is the usual way of imple-
menting panel factorizations. Such a solution would, however,
lead to code being difficult to SIMD’ize and yield very poor
performance. Instead, the implementation of this routine is simply
an application of the idea of blocking with block size equal to
the SIMD vector size of four. Algorithm 5 presents the structure
of the SPOTRF tile kernel.

KURZAK et al.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION 5

Kernel Source Compilation Object Execution Execution Fraction
Kernel Code Code Time Rate of Peak

[LOC] [KB] [µs] [Gflop/s] [%]
SSYRK 160 spuxlca -O3 4.7 13.23 20.12 78
SGEMM 330 spu-gccb -Os 9.0 22.78 23.01 90
STRSM 310 spuxlca -O3 8.2 16.47 15.91 62
SPOTRF 340 spu-gccb -O3 4.1 15.16 5.84 23
aversion 1.0 (SDK 1.1)
bversion 4.0.2 (toolchain 3.2 - SDK 1.1)

TABLE II
PERFORMANCE OF SINGLE PRECISION CHOLESKY FACTORIZATION TILE KERNELS.

Algorithm 5 SPOTRF tile kernel T ← L× LT .
1: for k = 0 to 15 do
2: for i = 0 to k − 1 do
3: SSYRK (apply block [k,i] to block [k,k])
4: end for
5: SPOTF2 (factorize block [k,k])
6: for j = k to 15 do
7: for i = 0 to k − 1 do
8: SGEMM (apply block [j,i] to block [j,k])
9: end for

10: end for
11: for j = k to 15 do
12: STRSM (apply block [k,k] to block [j,k])
13: end for
14: end for

block is a 4×4 submatrix of tile T .

Table II compares the tile kernels in terms of source and object
code size and performance. Although performance is the most
important metric, code size is not without meaning, due to the
limited size of local store. Despite the fact that code can be
replaced in the local store at runtime, it is desirable that the entire
code that implements the single precision factorization fits into the
local store at the same time. Code motion during the factorization
would both complicate the code and adversely affect performance.

Although the matrix multiplication achieves quite good per-
formance - 23 Gflop/s, which is 90 percent of the peak, there
is no doubt that better performance could be achieved by using
assembly code instead C language SIMD extensions. Performance
in excess of 25 Gflop/s has been reported for similar, although not
identical, SGEMM kernels [17]. It is remarkable that this perfor-
mance can be achieved for operations of such small granularity,
which has to be attributed to the unique features of the CELL
architecture, especially register file and memory organization.

It is worth noting that, although significant effort was re-
quired to optimize the SGEMM kernel (and yet more would
be required to further optimize it), the other kernels in-
volved a rather small programming effort in a higher level
language to deliver satisfactory performance (execution time
shorter than execution time of SGEMM kernel). This means
that the Pareto principle (also known as the 80-20 rule)
(http://en.wikipedia.org/wiki/Pareto principle) applies very well
in this case. Only a small portion of the code requires stren-
uous optimizations for the application to deliver close to peak

performance.
2) Parallelization: The presentation of the parallelization of

the Cholesky factorization needs to be preceded by a discussion
of memory bandwidth considerations.

The SGEMM kernel can potentially execute at a rate very close
to 25.6 Gflop/s on a single SPE. In such a case, it performs the
2× 643 = 524288 operations in 20.48 µs. The operation requires
the transmission of three tiles from main memory to the local
store (tiles A, B and C) and a transmission of one tile from local
store to main memory (updated tile C), consuming the bandwidth
equal to:

4tiles × 642 × 4sizeof(float)[B]

20.48[µs]
= 3.2[GB/s].

This means that eight SPEs performing the SGEMM operation at
the same time will require the bandwidth of 8 × 3.2GB/s =

25.6GB/s, which is the theoretical peak main memory band-
width.

It has been shown that arithmetic can execute almost at the
theoretical peak rate on the SPE. At the same time, it would not
be realistic to expect theoretical peak bandwidth from the memory
system. By the same token, data reuse has to be introduced
into the algorithm to decrease the load on the main memory.
A straightforward solution is to introduce 1D processing, where
each SPE processes one row of tiles of the coefficient matrix at
a time.

Please see Figure 1 for the following discussion. In the SSYRK
part, one SPE applies a row of tiles A to the diagonal tile T ,
followed by the SPOTRF operation (factorization) of the tile T .
Tile T only needs to be read in at the beginning of this step
and written back at the end. The only transfers taking place in
between are reads of tiles A. Similarly, in the SGEMM part, one
SPE applies a row of tiles A and a row of tiles B to tile C,
followed by the STRSM operation (triangular solve) on tile C

using the diagonal, triangular tile T . Tile C only needs to be read
in at the beginning of this step and written back at the end. Tile
T only needs to be read in right before the triangular solve. The
only transfers taking place in between are reads of tiles A and
B. Such work partitioning approximately halves the load on the
memory system.

It may also be noted that 1D processing is a natural match for
the left-looking factorization. In the right-looking factorization,
the update to the trailing submatrix can easily be partitioned in
two dimensions. However, in case of the left-looking factorization,
2D partitioning would not be feasible due to the write dependency
on the panel blocks (tiles T and C).

6 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

Fig. 2. Execution chart of Cholesky factorization of a matrix of size 1024×1024. Color scheme follows the one from Figure 1. Different shades of green
correspond to odd and even steps of the factorization.

 1

 2

 3

 4

 2

 3 2

 1

 1

5

6

7

8

4

5

6

7

3

4

5

6

8 7

8

Fig. 3. Load imbalance caused by 1D processing.

 1

 2

 3

 4

 6

 7 ...

 5

 8

Fig. 4. Pipelining of factorization steps.

1D partitioning introduces a load balancing problem. With
work being distributed by block rows, in each step of the
factorization, a number of processors is going to be idle, which
is equal to the number of block rows factorized in a particular
step modulo the number of processors. Figure 3 shows three
consecutive steps on a factorization with the processors being
occupied and idle in these steps. Such behavior is going to put a
harsh upper bound on achievable performance.

It can be observed, however, that at each step of the fac-
torization, a substantial amount of work can be scheduled, to
the otherwise idle processors, from the upcoming steps of the
factorization. The only operations that cannot be scheduled at a
given point in time are those that involve panels that have not
been factorized yet. This situation is illustrated in Figure 4. Of
course, this kind of processing requires dependency tracking in
two dimensions, but since all operations proceed at the granularity
of tiles, this does not pose a problem.

In the implementation presented here, all SPEs follow a static
schedule presented in Figure 4, with cyclic distribution of work
from the steps of the factorization. In this case, a static schedule
works well, due to the fact that performance of the SPEs is very
deterministic (unaffected by any non-deterministic phenomena,
like cache misses). This way the potential bottleneck of a cen-

tralized scheduling mechanism is avoided.
Figure 2 presents the execution chart (Gantt chart) of factor-

ization of a 1024×1024 matrix. Colors correspond to the ones
in Figure 1. The two shades of green distinguish the SGEMM
operation in odd and even steps of the factorization. The yellow
color marks the barrier operation, which corresponds to the load
imbalance of the algorithm.

It can be observed that; load imbalance is minimal (the yellow
region), dependency stalls are minimal (the white gaps), and
communication and computation overlapping is very good (the
colored blocks represent purely computational blocks).

3) Synchronization: With the SPEs following a static schedule,
synchronization is required, such that an SPE does not proceed
if data dependencies for an operation are not satisfied.

Several dependencies have to be tracked. The SSYRK and
SGEMM operations cannot use as input tiles A and B that have
not been factorized yet. The off-diagonal tiles A and B are
factorized if the STRSM operation has completed on these tiles.
In turn the STRSM operation cannot use as input a diagonal tile
T that has not been factorized yet. A diagonal tile T is factorized
if the SPOTRF operation has completed on this tile.

Dependency tracking is implemented by means of a replicated
progress table. The progress table is a 2D triangular array with
each entry representing a tile of the coefficient matrix and
specifies if the tile has been factorized or not, which means
completion of a SPOTRF operation for diagonal tiles and STRSM
operation for off-diagonal tiles.

By replication of the progress table, the potential bottleneck
of a centralized progress tracking mechanism is avoided. Each
SPE can check dependencies by testing an entry in its local copy
of the progress table. The SPE completing the factorization of
a tile updates the progress tables of all other SPEs, which is
done by a DMA transfer and which introduces no overhead due
to the non-blocking nature of these transfers. Since the smallest
amount of data subject to DMA transfer is one byte, the progress
table entries are one byte in size. These transfers consume an
insignificant amount of bandwidth of the EIB and their latency is
irrelevant to the algorithm.

4) Communication: The most important feature of communi-
cation is double-buffering of data (overlapping computation and
communication). With eight tile buffers available, each operation
involved in the factorization can be double-buffered indepen-
dently.

Thanks to this fact, double-buffering is implemented not only
between operations of the same type, but also between different
operations. In other words data is always prefetched for the
upcoming operation, no matter what operation it is. In absence
of dependency stalls, the SPEs never wait for data, which results
in big portions of the execution chart without any gaps between
computational blocks (Figure 5).

KURZAK et al.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION 7

Fig. 5. Magnification of a portion of the execution chart from Figure 2.

Tiles are never exchanged internally between local stores, but
always read from main memory and written to main memory. An
attempt to do otherwise could tie up buffers in the local store
and prevent asynchronous operation of SPEs. At the same time,
with the work partitioning implemented here, the memory system
provides enough bandwidth to fully overlap communication and
computation.

Reads of tiles involve dependency checks. When it comes to
prefetching of a tile, a dependency is tested and a DMA transfer
is initiated if the dependency is satisfied. The DMA completion
is tested right before processing of the tile. If the dependency is
not satisfied in time for the prefetch, the prefetch is abandoned in
order to not stall the execution. Instead, right before processing of
the tile, the SPE busy-waits for the dependency and then transfers
the tile in a blocking way (initiates the transfer and immediately
waits for its completion).

5) Performance: Figure 6 shows performance of the single
precision Cholesky factorization calculated as the ratio of execu-
tion time to the number of floating point operations calculated as
N3/3, where N is the matrix size of the input matrix.

Table III gives numerical performance values for selected
matrix sizes in Gflop/s and also as ratios relative to the peak
of the processor of 204.8 Gflop/s and the peak of the SGEMM
kernel of 8× 23.01 = 184.8 Gflop/s.

The factorization achieves 95 percent of the peak of the
SGEMM kernel, which means that overheads of data commu-
nication, synchronization and load imbalance are minimal, and
at this point the only inefficiency comes from the suboptimal
performance of the SGEMM kernel. Hopefully, in the future
the kernel will be fully optimized, perhaps using hand-coded
assembly.

C. Refinement

The two most expensive operations of the refinement are the
back solve (Algorithm 1, steps 3 and 8) and residual calculation
(Algorithm 1, step 6).

The back solve consists of two triangular solves involving
the entire coefficient matrix and a single right-hand-side (BLAS
STRSV operation). The residual calculation is a double precision
matrix-vector product using a symmetric matrix (BLAS DSYMV
operation).

0 1000 2000 3000 4000
0

25

50

75

100

125

150

175

200

Size

G
flo

p/
s

SP peak

SGEMM peak

DP peak

SPOTRF

Fig. 6. Performance of single precision Cholesky factorization.

Size Gflop/s % CELL Peak % SGEMM Peak
512 92 45 50
640 113 55 62
1024 151 74 82
1280 160 78 87
1536 165 80 89
1664 166 81 90
2176 170 83 92
4096 175 85 95

TABLE III
SELECTED PERFORMANCE POINTS OF SINGLE PRECISION CHOLESKY

FACTORIZATION.

Both operations are BLAS Level 2 operations and on most pro-
cessors would be strictly memory-bound. The STRSV operation
actually is a perfect example of a strictly-memory bound operation
on the CELL processor. However, the DSYMV operation is on
the border line of being memory bound versus compute bound
due to very high speed of the memory system versus the relatively
low performance of double precision arithmetic.

1) Triangular Solve: The triangular solve is a perfect example
of a memory-bound workload, where the memory access rate sets
the upper limit on achievable performance. The STRSV performs
approximately two floating point operations per each data element
of four bytes, which means that the peak memory bandwidth of
25.6 GB/s allows for at most

25.6 GB/s× 2ops/float/4bytes/float = 12.8 Gflop/s,

which is only 1/16 or 0.625 percent of the single precision floating
point peak of the processor. Owing to this fact, the goal of
implementing memory-bound operations is to get close to the
peak memory bandwidth, unlike for compute-bound operations,
where the goal is to get close to the floating point peak. This task
should be readily achievable, given that a single SPE possesses
as much bandwidth as the main memory.

Practice shows, however, that a single SPE is not capable of
generating enough traffic to fully exploit the bandwidth, and a few
SPEs solving the problem in parallel should be used. Efficient
parallel implementation of the STRSV operation has to pursue

8 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

11

 2 2 2 2

 3 3 3 3
00

00

00

00

00

00

00

00

00

1 1

2 2

3 3

1 1

11

22

33

11

22

33

11

x

A

Fig. 7. Distribution of work in the triangular solve routine.

0 1000 2000 3000 4000
0

4

8

12

16

20

24

Size

G
B

/s

Memory peak

Fig. 8. Performance of the triangular solve routines.

two goals: continuous generation of traffic in order to saturate the
memory system and aggressive pursuit of the algorithmic critical
path in order to avoid dependency stalls. A related question is
the desired level of parallelism - optimal number of processing
elements used. Since the triangular solve is rich in dependencies,
increasing the number of SPEs increases the number of execution
stalls caused by interprocessor dependencies. Obviously, there is
a crossover point, a sweet spot, for the number of SPEs used for
the operation.

Same as other routines in the code, the STRSV operation
processes the coefficient matrix by 64×64 tiles. Triangular solve
is performed on the diagonal tiles and a matrix-vector product
(SGEMV equivalent) is performed on the off-diagonal tiles.
Processing of the diagonal tiles constitutes the critical path in
the algorithm. One SPE is solely devoted to processing of the
diagonal tiles, while the goal of the others is to saturate the
memory system with processing of the off-diagonal tiles. The
number of SPEs used to process the off-diagonal tiles is a function
of a few parameters. The efficiency of the computational kernels
used is one of the factors. In this case, number four turned out to
deliver the best results, with one SPE pursuing the critical path
and three others fulfilling the task of memory saturation. Figure 7
presents the distribution of work in the triangular solve routines.

The solve is done in place. The unknown/solution vector is

00

11

22

33
00 11 22 33

reduce

x

A

y

00

11

22

33

00

11

22

33

Fig. 9. Distribution of work in the matrix-vector product routine.

read in its entirety by each SPE to its local store at the beginning
and returned to the main memory at the end. As the computation
proceeds, updated pieces of the vector are exchanged internally by
means of direct, local store to local store, communication. At the
end SPE 0 possesses the full solution vector and writes it back to
the main memory. Synchronization is implemented analogously
to the synchronization in the factorization and is based on the
replicated triangular progress table (the same data structure is
reused).

Figure 8 shows performance, in terms of GB/s of the two
triangular solve routines required in the solution/refinement step
of the algorithm. The two routines perform slightly differently
due to different performance of their computational kernels. The
figure shows clearly that the goal of saturating the memory system
is achieved quite well. Performance as high as 23.77 GB/s is
obtained, which is 93 percent of the peak.

2) Matrix-Vector Product: For most hardware platforms the
matrix-vector product would be a memory-bound operation, the
same as the triangular solve. On the CELL processor, however,
due to the relative slowness of the double precision arithmetic,
the operation is on the border of being memory-bound and
compute-bound. Even with use of all eight SPEs, saturation of
the memory is harder than in the case of the STRSV routine.

The DSYMV routine also operates on tiles. Here, however,
the double precision representation of the coefficient matrix is
used with a tile size of 32×32, such that an entire tile can also
be transferred with a single DMA request. The input vector is
only read in once, at the beginning, in its entirety, and the output
vector is written back after the computation is completed. Since
the input matrix is symmetric, only the lower portion is accessed,
and implicit transposition is used to reflect the effect of the upper
portion - each tile is read in only once, but applied to the output
vector twice (with and without transposition).

Since load balance is a very important aspect of the imple-
mentation, work is split among SPEs very evenly by applying the
partitioning reflected in Figure 9. Such work distribution causes
multiple write dependencies on the output vector and, in order to
let each SPE proceed without stalls, the output vector is replicated
on each SPE and the multiplication is followed by a reduction
step. The reduction is also performed in parallel by all SPEs and
introduces a very small overhead, compensated by the benefits of
very good load balance.

Figure 10 shows the performance, in terms of GB/s, of the
double precision, symmetric matrix-vector product routine. Per-

KURZAK et al.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION 9

0 1000 2000 3000 4000
0

4

8

12

16

20

24

Size

G
B

/s

Memory peak

Fig. 10. Performance of the matrix-vector product routine.

formance of 20.93 GB/s is achieved, which is 82 percent of
the peak. Although the DSYMV routine represents a Level 2
BLAS operation and is parallelized among all SPEs, it is still
compute bound. Perhaps its computational components could be
further optimized. Nevertheless, at this point the delivered level
of performance is considered satisfactory

V. LIMITATIONS

The implementation presented here should be considered a
proof of concept prototype with the purpose of establishing the
upper bound on performance achievable for mixed-precision,
dense linear algebra algorithms on the CELL processor. As such,
it has a number of limitations. Only systems that are multiples
of 64 in size are accepted, what means that the cost of solving a
system of size 65×65 is equal to the cost of solving a system of
size 128×128. Also, only systems with a single right hand side
are supported. There are no tests for overflow during conversions
from double to single precision. There is no test for the positive
definite property during the single precision factorization step, so
it is up to the user to guarantee this attribute. The maximum
size of the coefficient matrix is set to 4096, which makes it
possible to fit the progress table in each local store. This also
makes it possible to fit the entire unknown/solution vector in
each local store, which facilitates internal, local store to local
store, communication and is very beneficial for performance. The
current implementation is wasteful in its use of the main memory.
The entire coefficient matrix is stored explicitly without taking
advantage of its symmetry, both in single precision representation
and double precision representation, an issue which can be
resolved by using specialized storage formats [18].

VI. RESULTS AND DISCUSSION

Figure 11 compares the performance of a single precision
factorization (SPOTRF), solution of the system in single precision
(SPOSV), and solution of the system in double precision by
using factorization in single precision and iterative refinement
to double precision (DSPOSV). These results were obtained on
an IBM CELL blade using one of the two available CELL

0 1000 2000 3000 4000
0

25

50

75

100

125

150

175

200

Size

G
flo

p/
s

SP peak

SGEMM peak

DP peak

DSPOSV

SPOSV
SPOTRF

Fig. 11. Performance of the mixed-precision algorithm versus the single
precision algorithm on IBM CELL blade system (using one CELL processor).

processors. Huge memory pages (16 MB) were used for improved
performance [16]. The performance is calculated as the ratio of
the execution time to the number of floating point operations,
set in all cases to N3/3. In all cases well conditioned input
matrices were used, resulting in two steps of refinement delivering
accuracy equal or higher than the one delivered by the purely
double precision algorithm.

At the maximum size of 4096, the factorization achieves
175 Gflop/s and the system solution runs at the relative speed of
171 Gflop/s. At the same time, the solution in double precision
using the refinement technique delivers the relative performance
of 156 Gflop/s, which is an overhead of less than 9 percent
compared to the solution of the system in single precision. It can
also be pointed out that by using the mixed-precision algorithm,
double precision results are delivered at a speed over 10 times
greater than the double precision peak of the processor.

Figure 12 shows results obtained on the Sony PlayStation 3,
using the six available SPEs and 256 KB1 available memory
allocated using huge pages (16 MB). For the maximum problem
size of 2048, the performance of 127 Gflop/s was achieved for
the factorization, 122 Gflop/s for the single precision solution,
and 104 Gflop/s for the double precision solution. In this case,
the double precision solution comes at the cost of roughly 15
percent overhead compared to the single precision solution.

VII. CONCLUSIONS

The CELL Broadband Engine has a very high potential for
dense linear algebra workloads offering a very high peak floating
point performance and a capability to deliver performance close
to the peak even for quite small problems. The same applies
to the memory system of the CELL processor, which allows
for data transfer rates very close to the peak bandwidth for
memory-intensive workloads.

Although the double precision performance of the CELL
processor is much lower than the single precision performance,

1only approximately 200 KB available to the application

10 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS

0 500 1000 1500 2000
0

20

40

60

80

100

120

140

160

Size

G
flo

p/
s

SP peak

SGEMM peak

DP peak

DSPOSV

SPOSVSPOTRF

Fig. 12. Performance of the mixed-precision algorithm versus the single
precision algorithm on Sony PlayStation 3.

mixed-precision algorithms permit exploiting the single precision
speed while achieving full double precision accuracy.

VIII. FUTURE PLANS

One of the main considerations for the future is application of
the pipelined processing techniques to factorizations where the
panel does not easily split into independent operations, like the
factorizations where pivoting is used.

Another important question is the one of replacing the static
scheduling of operations with dynamic scheduling by an au-
tomated system and also the impact of such mechanisms on
programming ease and productivity.

IX. ACKNOWLEDGEMENTS

The authors thank Gary Rancourt and Kirk Jordan at IBM for
taking care of our hardware needs and arranging for partial finan-
cial support for this work. The authors are thankful to numerous
IBM researchers for generously sharing their CELL expertise,
in particular Sidney Manning, Daniel Brokenshire, Mike Kistler,
Gordon Fossum, Thomas Chen and Michael Perrone.

X. CODE

The code is publicly available at the location
http://icl.cs.utk.edu/iter-ref/ → CELL BE Code.

REFERENCES

[1] H. P. Hofstee, “Power efficient processor architecture and the Cell
processor,” in Proceedings of the 11th Int’l Symposium on High-
Performance Computer Architecture, 2005.

[2] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer,
and D. Shippy, “Introduction to the Cell multiprocessor,” IBM J. Res.
& Dev., vol. 49, no. 4/5, pp. 589–604, 2005.

[3] Cell Broadband Engine Architecture, Version 1.0, IBM, August 2005.
[4] J. H. Wilkinson, Rounding Errors in Algebraic Processes. Prentice-

Hall, 1963.
[5] C. B. Moler, “Iterative refinement in floating point,” J. ACM, vol. 14,

no. 2, pp. 316–321, 1967.
[6] G. W. Stewart, Introduction to Matrix Computations. Academic Press,

1973.

[7] N. J. Higham, Accuracy and Stability of Numerical Algorithms. SIAM,
1996.

[8] J. Langou, J. Langou, P. Luszczek, J. Kurzak, A. Buttari, and J. J. Don-
garraa, “Exploiting the performance of 32 bit floating point arithmetic
in obtaining 64 bit accuracy,” in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, 2006.

[9] R. C. Agarwal and F. G. Gustavson, “A parallel implementation of matrix
multiplication and LU factorization on the IBM 3090,” in Proceedings
of the IFIP WG 2.5 Working Conference on Aspects of Computation on
Asynchronous Parallel Processors, M. H. Wright, Ed. North-Holland:
Elsevier Science Publishers B. V., 1988, pp. 217–221.

[10] ——, “Vector and parallel algorithm for Cholesky factorization on
IBM 3090,” in Proceedings of the 1989 ACM/IEEE Conference on
Supercomputing, 1989.

[11] Cell Broadband Engine Programming Handbook, Version 1.0, IBM,
April 2006.

[12] Cell Broadband Engine Programming Tutorial, Version 2.0, IBM, De-
cember 2006.

[13] A. Buttari, P. Luszczek, J. Kurzak, J. J. Dongarra, and G. Bosilca, “A
rough guide to scientific computing on the PlayStation 3, version 1.0,”
Computer Science Department, University of Tennessee, Tech. Rep. UT-
CS-07-595, 2007, http://www.cs.utk.edu/ library/ TechReports/ 2007/
ut-cs-07-595.pdf.

[14] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van der Vorst,
Numerical Linear Algebra for High-Performance Computers. SIAM,
1998.

[15] J. Kurzak and J. J. Dongarra, “Implementing linear algebra routines on
multi-core processors with pipelining and a look-ahead,” in Proceedings
of the 2006 Workshop on State-of-the-Art in Scientific and Parallel
Computing (PARA’O6), Umea, Sweden, 2006, lecture Notes in Computer
Science series, Springer, 2007 (to appear).

[16] ——, “Implementation of mixed precision in solving systems of linear
equations on the CELL processor,” Concurrency Computat.: Pract.
Exper, 2007, in press, DOI: 10.1002/cpe.1164.

[17] T. Chen, R. Raghavan, J. Dale, and E. Iwata, “Cell Broadband En-
gine architecture and its first implementation, A performance view,”
http://www-128.ibm.com/ developerworks/ power/ library/ pa-cellperf/,
November 2005.

[18] B. S. Andersen, J. A. Gunnels, F. G. Gustavson, J. K. Reid, and
J. Waśniewski, “A fully portable high performance minimal storage
hybrid format Cholesky algorithm,” ACM Trans. Math. Soft., vol. 31,
no. 2, pp. 201–227, 2005.

Jakub Kurzak received the MSc degree in electrical
and computer engineering from Wroclaw University
of Technology, Poland, and the PhD degree in com-
puter science from the University of Houston. He
is a research associate in the Innovative Computing
Laboratory in the Department of Electrical Engi-
neering and Computer Science at the University of
Tennessee, Knoxville. His research interests include
parallel algorithms, specifically in the area of numer-
ical linear algebra, and also parallel programming
models and performance optimization for parallel

architectures spanning distributed and shared memory systems, as well as
next generation multi-core and many-core processors.

Alfredo Buttari received the MSc degree in com-
puter science and the PhD degree in computer sci-
ence and control engineering from the University
of Rome, Italy. He is a research associate in the
Innovative Computing Laboratory in the Department
of Electrical Engineering and Computer Science at
the University of Tennessee, Knoxville. His research
interests include numerical linear algebra, dense and
sparse methods, direct and iterative solvers, parallel
algorithms and performance optimization for parallel
architectures including next generation multi-core

and many-core processors.

KURZAK et al.: SOLVING SYSTEMS OF LINEAR EQUATIONS ON THE CELL PROCESSOR USING CHOLESKY FACTORIZATION 11

Jack Dongarra received a Bachelor of Science
in Mathematics from Chicago State University in
1972 and a Master of Science in Computer Sci-
ence from the Illinois Institute of Technology in
1973. He received his Ph.D. in Applied Mathematics
from the University of New Mexico in 1980. He
worked at the Argonne National Laboratory until
1989, becoming a senior scientist. He now holds an
appointment as University Distinguished Professor
of Computer Science in the Department of Electrical
Engineering and Computer Science at the University

of Tennessee, has the position of a Distinguished Research Staff member
in the Computer Science and Mathematics Division at Oak Ridge National
Laboratory (ORNL), Turing Fellow in the Computer Science and Mathematics
Schools at the University of Manchester, and an Adjunct Professor in the
Computer Science Department at Rice University.

