
Implementation and Usage of the
PERUSE-Interface in Open MPI

Rainer Keller1, George Bosilca2, Graham Fagg2, Michael Resch1, and Jack
J. Dongarra2

1 High-Performance Computing Center, University of Stuttgart,
{keller,resch}@hlrs.de

2 Innovative Computing Laboratory, University of Tennessee
{bosilca,fagg,dongarra}@cs.utk.edu

Abstract. This paper describes the implementation, usage and expe-
rience with the MPI performance revealing extension interface (Peruse)
into the Open MPI implementation. While the PMPI-interface allows
timing MPI-functions through wrappers, it can not provide MPI-internal
information on MPI-states and lower-level network performance. We in-
troduce the general design criteria of the interface implementation and
analyze the overhead generated by this functionality. To support per-
formance evaluation of large-scale applications, tools for visualization
are imperative. We extend the tracing library of the Paraver-toolkit to
support tracing Peruse-events and show how this helps detecting perfor-
mance bottlenecks. A test-suite and a real-world application are traced
and visualized using Paraver.

1 Introduction

The Message Passing Interface (MPI) [7, 8] is the standard for distributed mem-
ory parallelization. Many scientific and industrial applications have been par-
allelized and ported on top of this parallel paradigm. From the very beginning
the MPI standard offered a way for performance evaluation of all provided func-
tions including the communication routines with the so-called Profiling-Interface
(PMPI). Thereby all MPI-function calls are accessible through the prefix PMPI_,
allowing wrapper-functions, which mark the time at entry and exit. The trac-
ing libraries of performance analysis tools, such as Vampir[3], Paraver[5] and
Tau[9] are build upon the PMPI-Interface. However, the information gathered
using this interface has a limited impact, as it can only provide high level details
about any communications (such as starting and ending time), rather than more
interesting internal implementation and networking activities triggered by the
MPI calls.

In order to know the internals of how the communication between two pro-
cesses proceeds and where possible bottlenecks are located, a more in-depth and
finer-grained knowledge is required than is available from the PMPI-interface
level. The Peruse-interface [2], a multi-institution effort driven by LLNL which



gained larger audience at a BoF at SC2002, proposes a standard way for applica-
tions and libraries to gather this information from a Peruse-enabled MPI-library.
Especially with more diverse hardware, such as multi-core chips using shared-
memory and many hierarchies in large-scale clusters, this performance evaluation
becomes essential for in-depth analysis.

This paper introduces an implementation of Peruse in the Open MPI [4] im-
plementation. In section 2 we describe the general design and implementation
of the Peruse-interface within Open MPI, and state the impact on communi-
cation performance degradation, while section 3 shows the performance metrics
gathered. Section 4 illustrates a possible method to evaluate the communication
performance by extending the mpitrace-library of the Paraver-toolkit. In sec-
tion 5 a real-world application is traced and visualized with Paraver. Finally, the
last section gives a conclusion and an outlook on future developments.

2 Design and Implementation

The Open MPI implementation uses the so-called modular component architec-
ture (MCA) to support several component implementations offering a specific
functionality [10]. In this paper, we will consider only the frameworks and com-
ponents used for communication purposes, i.e., the Point-to-Point management
layer (PML), the recursively named BML management layer (BML) and the
Bit-transport layer (BTL). These frameworks are stacked, as may be seen in
figure 1. MPI communication calls are passed on to the PML, which uses the
BML to select the best possible BTL, and then passes the message (possibly in
multiple fragments depending on length) to the BTL for transmission.

MPI

BML

PML

BTL/mvapi BTL/tcp

Fig. 1. Open MPI stack of frameworks and modules for communication.

The Peruse interface allows an application or performance measurement li-
brary to gather information on state-changes within the MPI library. For this,
user-level callbacks have to be registered with the Peruse interface, which are
subsequently invoked upon the triggering of corresponding events. The interface
allows a single callback function to be registered for multiple events, as well as
multiple callback functions for one event (which covers the rare instance of an ap-
plication and one or more libraries wanting to gather statistics on a single event
simultaneously). Peruse does not impose any particular message passing method
and recommends not supporting a particular event, if this would burden or slow
down the MPI implementation. The interface is portable in design, by allowing
applications or performance tracing libraries to query for supported events using



defined ASCII strings. The tracing library may then register for an event, sup-
plying a callback function, which is invoked upon triggering a particular event,
e. g. PERUSE_COMM_REQ_XFER_BEGIN when the first data transfer of a request
is scheduled. Registration then returns an event-handle. Events implemented in
Open MPI are presented in sec. 3.

Prior experience with the implementation of Peruse-functionality was gained
with PACX-MPI [6]. Special care was taken not to slow down the critical fast
path of the Open MPI library. The actual test for an active handle and the
immediate invocation of the callback function is implemented as a macro, which
the preprocessor optimizes away in a default build of the library. When building
with the configure parameter --enable-peruse, the actual test for an active
handle involves at most two additional if-statements: whether any handles are
set on this communicator and whether the particular one is set and active.

Although most of the events are pertaining to messages being sent and re-
ceived, the actual calls to the callback functions are performed in the PML-layer,
as it has all the necessary information regarding requests and fragments being
sent. Currently, only one major PML-module exists (ob1), in contrast to the six
major BTLs (sm, tcp, mvapi, openib, gm, mx), which would have each required
modifications for every possible Peruse event.

Additionally, this initial implementation only allows a single callback function
per event. As handles are stored per communicator (PERUSE_PER_COMM) as array
of ompi_peruse_handle_t-pointer, allowing more callbacks per event or worse
case multiple handles (instances) per event would have required iterating over all
the registered and active handles in the communicator-storage, greatly increasing
the overall overhead.

Cluster cacau strider

Processor Dual Intel Xeon EM64T, 3.2 GHz Dual AMD Opteron 246, 2GHz

Interconnect Infiniband Myrinet 2000

Interface mvapi-4.1.0 gm-2.0.8

Compiler Intel compiler 9.0 PGI compiler 6.1.3

Open MPI no debug, static build no debug, dynamic build

Native MPI Voltaire MPIch-1.2.6 MPIch-1.2.6
Table 1. Configuration of clusters for the Peruse overhead evaluation.

For performance comparison with and without the Peruse-interface imple-
mentation, several measurements were conducted on the clusters given in ta-
ble 1. We compare the latency induced by the additional overhead by using a
build without any Peruse-support and two versions with Peruse-support: one
without any callbacks and one with callbacks attached for all possible events.
Additionally this is compared to the latency of the native MPI-implementation
provided on each cluster.

Table 2 shows the measurements done with the Intel-MPI Benchmark using
the zero Byte PingPong-test. The IMB_settings.h was changed to perform



each test for 10000 iterations with ten warm-up phases. For the native MPI, the
optimized vendor’s version on the cluster was used as listed in table 1.

cacau strider
native mvapi sm native gm sm

No Peruse 4.13 4.69 1.02 7.16 7.16 1.33
Peruse, no callbacks 4.67 1.06 7.26 1.71
Peruse, no-op callbacks 4.77 1.19 7.49 1.84

Table 2. Latency (in µs) of zero-byte messages using IMB-2.3 with PingPong.

In comparison with the cluster’s native MPI, the Open MPI’s BTLs mvapi
and gm only show marginal difference in latency being 1.7% and 4.6% respec-
tively. Therefore, a much more sensitive test using the shared-memory BTL sm
was performed. Here, one experiences a degradation in latency – but even with
all 16 communication events registered, the increase is 16% and 38% respectively
for the two target systems. For larger message sizes, the overhead compared to
the bandwidth without any Peruse-support is shown in Fig. 2.

Fig. 2. Percentage of achieved bandwidth on cacau (left) and strider (right) compared
to Open MPI without Peruse.

3 Performance Metrics gathered

The current implementation in Open MPI supports all events stated in the
current Peruse-2.0 specification [2]. Orthogonal to the PERUSE_COMM_REQ_XFER_
BEGIN/_END Open MPI implements the PERUSE_COMM_REQ_XFER_CONTINUE no-
tifying of new fragments arriving for this request. This event is only issued in the
case of long messages not using the eager protocol. The sequence of callbacks
that may be generated on the way for sending / receiving a message are given
in Fig. 3.



IN_UNEX_Q
MSG_INSERT_

FROM_UNEX_Q
MSG_REMOVE

POSTED_REQ
MSG_MATCH_

IN_POSTED_Q
REQ_INSERT_

FROM_POSTED_Q
REQ_REMOVE

ACTIVATE
REQ_

ACTIVATE
REQ_

REQ_MATCH
UNEX

 

REQ_XFER_BEGIN

MSG_ARRIVED

Communication Layer

REQ_COMPLETE

REQ_XFER_END

MPI_Start
MPI_*send

MPI_Start
MPI_*recv

REQ_NOTIFY

MPI Library

User Code

(REQ_XFER_CONTINUE)*

MPI_Wait*/MPI_Test*
MPI_*send/MPI*recv

User Code

All incoming messages

Fig. 3. Sequence of Peruse events implemented in Open MPI.

The following example shows the callback sequence when sending a message
from rank zero to rank one, which nicely corresponds to figure 3. Here, we have
imposed an early receiver by delaying the sender by one second. One may note
the early activation of the request, searching in the unexpected receive queue,
insertion into the expected receive queue, and finally the arriving message with
the subsequent start of transfer of messages events (edited):

PERUSE_COMM_REQ_ACTIVATE at 0.00229096 count:10000 ddt:MPI_INT
PERUSE_COMM_SEARCH_UNEX_Q_BEGIN at 0.00229597 count:10000 ddt:MPI_INT
PERUSE_COMM_SEARCH_UNEX_Q_END at 0.00230002 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_INSERT_IN_POSTED_Q at 0.00230312 count:10000 ddt:MPI_INT
PERUSE_COMM_MSG_ARRIVED at 1.00425 count:0 ddt:0x4012bbc0
PERUSE_COMM_SEARCH_POSTED_Q_BEGIN at 1.00426 count:0 ddt:0x4012bbc0
PERUSE_COMM_SEARCH_POSTED_Q_END at 1.00426 count:0 ddt:0x4012bbc0
PERUSE_COMM_MSG_MATCH_POSTED_REQ at 1.00426 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_BEGIN at 1.00427 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_CONTINUE at 1.0043 count:10000 ddt:MPI_INT

-- subsequent XFER_CONTINUEs deleted --
PERUSE_COMM_REQ_XFER_CONTINUE at 1.00452 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_END at 1.00452 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_COMPLETE at 1.00453 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_NOTIFY at 1.00453 count:10000 ddt:MPI_INT

Collecting the output of the callbacks from a late sender:

PERUSE_COMM_REQ_ACTIVATE at 1.00298 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_BEGIN at 1.0031 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_CONTINUE at 1.00313 count:10000 ddt:MPI_INT

-- subsequent XFER_CONTINUEs deleted --
PERUSE_COMM_REQ_XFER_CONTINUE at 1.00322 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_XFER_END at 1.00327 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_COMPLETE at 1.00328 count:10000 ddt:MPI_INT
PERUSE_COMM_REQ_NOTIFY at 1.00328 count:10000 ddt:MPI_INT

4 Trace-File generation

To cope with the information provided by Peruse’s functionality, one needs tools
to visualize the output generated. We have ported the mpitrace-library of the
Paraver-toolkit [1] to Open MPI. Paraver is a powerful performance analysis
and visualization tool developed at CEPBA/BSC. Similar to Vampir, a trace
is a time-dependant function of values for each process. Through filtering and



combination of several functions, meaningful investigations may be deduced even
within large traces, e. g. searching and highlighting of parts of the trace with a
GFlop-rate below a specified value.

Several points had to be addressed when porting mpitrace to Open MPI:
removing assumptions on opaque MPI-objects (pointers to Open MPI internal
structures) being integer values and separating helper functions into C- and
Fortran-versions to avoid passing C-Datatypes to the Fortran PMPI-Interface.
The port was tested on the Cacau-Cluster (having 64-bit pointers and 32-bit
integers) with the mpi_test_suite, which employs combinations of simple func-
tionality to stretch tests to the boundaries of the MPI-standard’s definition.

For tracing, an application needs re-linking with the Peruse-enabled mpitrace-
library. Peruse-events to be tested for are specified by the environment variable
MPITRACE_PERUSE_EVENTS, separated by colons. Figure 4 shows the Paraver-
window of an exemplary trace of ten sends, each of 10MB-size messages from
rank zero to rank one with four Peruse-events attached3. Clearly, the initializa-
tion of the buffer on rank zero is visible as running time, while rank one awaits
the message in the first MPI_Recv. Only with the Peruse-events (shown in gray),
can the actual transfer be seen as the small green flags for each transmitted data
fragment. By clicking into the trace-window, one may get further information
on the Peruse-Events of the trace.

Fig. 4. Paraver visualization of 10 large msgs sent from rank zero to one (edited).

5 Application measurement

To demonstrate the suitability of Peruse-events tracing with the Paraver-toolkit,
we show the tracing of the large molecular-dynamics package IMD with a bench-
mark test (bench_cu3au_1048k.param). The overall trace with 32 processes on
cacau is shown in Fig. 5. One may note the long data distribution done using
a linear send, followed by a collective routine during the initialization at the

3 MPITRACE_PERUSE_EVENTS=PERUSE_COMM_REQ_XFER_BEGIN:PERUSE_COMM_REQ_XFER_

END:PERUSE_COMM_REQ_XFER_CONTINUE:PERUSE_COMM_REQ_NOTIFY



beginning of the execution. The overall run shows ten iterations and a final col-
lection phase. The right-hand window of Fig. 5 shows the achieved bandwidth,
here ranging from 101 to 612 MB/s.

Fig. 5. Trace of IMD with 32 processes – overall run (left) and bandwidth (right).

Figure 6 zooms into one communication step of the run (left) with the cor-
responding bandwidth graph on the right hand side with up to 611 MB/s using
on average 524 kB-sized messages. In order to appreciate the additional infor-
mation Peruse-events give to the performance analyst, the actual time between
message fragments arriving with the PERUSE_COMM_REQ_XFER_CONTINUE event
are shown at the top-right of Fig. 6. Here, one may see how the in-flow rate
of messages changes over time, ranging from 46µs to 224µs between fragments,
corresponding to 4464 fragments/s up to 21739 fragments/s.

Fig. 6. Zoom into one communication step; bandwidth(right) and interval between
fragments(right-top).



While with PMPI-based tracing it is possible to detect performance problems,
such as ”Late Sender”, or ”Late Receiver”, the actual transferral of the message
can not be seen. Particularly, for eager sends (small message) sends, the actual
logical transferral of the message is far longer than the physical. This may be
detected only with a corresponding PERUSE_COMM_MSG_ARRIVED-event on the
receiver side.

Similarly, ”Late Wait” situations of non-blocking communication cannot be
detected through PMPI, as the communication will only be considered fin-
ished upon the corresponding MPI_Wait/MPI_Wait; here the PERUSE_COMM_REQ_
COMPLETE-event notifies of the completion. Figure 7 shows a trace of such a
situation. Process zero again sends a small message with eager protocol to pro-
cess one, using non-blocking send and receive, respectively. The recv’s MPI_Wait
however is delayed by roughly 1.6ms. While the PMPI-based tracing considers
the logical communication to finish within the MPI_Wait only, with Peruse one
receives the early PERUSE_COMM_REQ_COMPLETE.

Fig. 7. Detection of late wait situation with Peruse on Open MPI (edited).

Furthermore, together with PMPI-wrapper, the tracing-library may addi-
tionally uncover book-keeping work commonly done by MPI-implementations
before returning to the application, e. g. running event-handlers to progress
other communication.

Additionally to message send/arrival times, Peruse allows information on
the timing of internal traversal of message queues, which may be used to distin-
guish low network performance from slow queue management. Finally, with the
introduction of the PERUSE_COMM_REQ_XFER_CONTINUE-event one may uncover
fluctuations of the stream of fragments in case of network congestion.

6 Conclusion

In this paper we have described the implementation of the Peruse-interface into
the Open MPI library. The integration into Open MPI was straightforward due
to the modular design and the target platform. The authors are however aware,
that for other implementations, the current design of the Peruse interface may



not be feasible due to MPI running in a different context, not allowing callbacks
or due to the overhead introduced.

In the future, the authors would like to extend the Open MPI Peruse system
with additional events yet to be defined in the current Peruse specification, e.g.,
collective routines and/or one-sided operations. Additionally the functionality
for very low level events such as those defined within networking devices is also
envisaged.

We would like to thank BSC for making mpitrace available. This work was
made possible by funding of the EU-project HPC-Europa (Contract No. 506079),
and also by the ”Los Alamos Computer Science Institute (LACSI)”, funded
by Rice University Subcontract No. R7B127 under Regents of the University
Subcontract No. 12783-001-05 49.

References

1. Paraver Homepage. WWW, May 2006. http://www.cepba.upc.es/paraver.
2. Peruse specification. WWW, May 2006. http://www.mpi-peruse.org.
3. Holger Brunst, Manuela Winkler, Wolfgang E. Nagel, and Hans-Christian Hoppe.

Performance Optimization for Large Scale Computing: The scalable VAMPIR ap-
proach. In V.N. Alexandrov et al., editors, Computational Science (ICCS’01),
volume 2, pages 751–760. Springer, May 2001.

4. Edgar Gabriel, Graham E. Fagg, George Bosilca, Thara Angskun, Jack J. Don-
garra, and Jeffrey M. Squyres et al. Open MPI: Goals, Concept, and Design of a
Next Generation MPI Implementation. In D. Kranzlmüller, P. Kacsuk, and J.J.
Dongarra, editors, Recent Advances in Parallel Virtual Machine and Message Pass-
ing Interface, volume 3241, pages 97–104, Budapest, Hungary, September 2004.
Springer.

5. Gabriele Jost, Haoquian Jin, Jesus Labarta, Judit Gimenez, and Jordi Caubet.
Performance analysis of multilevel parallel applications on shared memory archi-
tectures. In International Parallel and Distributed Processing Symposium (IPDPS
2003), volume 00, page 80b, April 2003. Nice, France.

6. Rainer Keller, Edgar Gabriel, Bettina Krammer, Matthias S. Müller, and
Michael M. Resch. Towards efficient execution of MPI applications on the Grid:
Porting and Optimization issues. Journal of Grid Computing, 1(2):133–149, 2003.

7. Message Passing Interface Forum. MPI: A Message Passing Interface Standard,
June 1995. http://www.mpi-forum.org.

8. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997. http://www.mpi-forum.org.

9. Sameer Shende and Allen D. Malony. TAU: The TAU Parallel Performance System.
2005.

10. T.S. Woodall, R.L. Graham, R.H. Castain, D.J. Daniel, M.W. Sukalski, G.E. Fagg,
E. Gabriel, G. Bosilca, T. Angskun, J.J. Dongarra, J.M. Squyres, V. Sahay, P. Kam-
badur, B. Barrett, and A. Lumsdaine. Open MPI’s TEG Point-to-Point Commu-
nications Methodology: Comparison to Existing Implementations. In Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, volume 3241,
pages 105–111, Budapest, Hungary, September 2004. Springer.


