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Abstract

We present a new technique to accelerate the convergence of the folded spectrum
method in empirical pseudopotential band edge state calculations for colloidal quan-
tum dots. We use bulk band states of the materials constituent of the quantum dot
to construct initial vectors and a preconditioner. We apply these to accelerate the
convergence of the folded spectrum method for the interior states at the top of
the valence and the bottom of the conduction band. For large CdSe quantum dots,
the number of iteration steps until convergence decreases by about a factor of 4
compared to previous calculations.
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1 Introduction

A challenging task in computational nano-science is to predict electronic prop-
erties and their changes due to quantum confinement effects in experimentally
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synthesized nano-systems such as quantum dots.

One approach to large scale quantum dot calculations is to first construct the
single particle Hamiltonian of the system either by the empirical pseudopo-
tential or the charge patching method. Only a few of the interior eigenvalues
on either side of the band gap are computed as they determine many of the
optical and electronic properties of the system. These band edge states are
solutions of an effective single particle Schrödinger equation

HΨi ≡
[

−
1

2
∇2 + V

]

Ψi = ǫiΨi, (1)

see [12,13,16,20]. In (1),H represents the Hamiltonian, ψi(r) denotes the single
particle wave function with energy ǫi and V the potential. In contrast, in the
Self-Consistent Field (SCF) iteration [17,18], a large number of eigenstates of
(1) need to be computed [21].

We apply the parallel Energy SCAN (ESCAN) method [4,25] where a semi-
empirical potential or a charge patching method [24] is used to construct
V . In a plane wave basis, the Hamiltonian H is only implicitly available:
the kinetic energy part is represented in Fourier space where it is diagonal,
and the potential energy part is evaluated in real space (via the Fast Fourier
Transformation, FFT) so that the number of calculations used to construct
the matrix-vector product scales as n logn rather than n2 where n is the
dimension of H . To compute interior eigenstates close to a reference energy
Eref , we use the Preconditioned Conjugate Gradient (PCG) [14,16] method
with a spectral transformation, the folded spectrum approach [26]: the interior
eigenvalue problem is transformed to find the smallest eigenvalues of

(H − ErefI)
2Ψi = ǫiΨi. (2)

However, there can be convergence problems for large quantum dot systems
with strongly clustered, nearly degenerate eigenstates. Squaring the Hamil-
tonian in (2) contributes to the stronger clustering of the eigenvalues and a
decreased convergence rate of PCG. This current work addresses these difficul-
ties. The foundation of our approach lies in the observation that the converged
quantum dot states around the band gap are confined to the interior of the
quantum dot and are ‘bulk-like’. We show how to make use of these cheaply
computable bulk eigenstates to improve the choice of the starting vector and
the preconditioner for the quantum dot PCG eigensolver in ESCAN. We val-
idate our approach on both CdSe bulk systems and colloidal quantum dots.
From a physical point of view, CdSe quantum dots are one of the most thor-
oughly studied nanostructures because photoluminescence occurs at different
frequencies, depending on the size of the dot. This property has many impor-
tant practical applications such as optical tags in biological systems.
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The rest of the paper is organized as follows. In Section 2 we explain the
relationship between colloidal quantum dot and bulk band (BB) structure. The
Preconditioned Conjugate Gradient (PCG) method is explained in Section 3.
Next, in Section 4, we show how to use bulk band information in the derivation
of BB-type preconditioners for PCG. Section 5 contains our computational
results. Finally, in Section 6, we state our conclusions and possible further
extensions of this work.

2 Quantum dot and bulk band structure

The properties of ideal bulk systems such as crystals are well understood:
their Bloch states can be computed relatively cheaply using direct G-space
diagonalization when only a few atoms are in a unit cell. Colloidal quantum
dots are more complicated physical objects where bulk materials and vacuum
constitute the interior and exterior, respectively. Moreover, they usually are
much larger, possibly consisting of thousands of atoms.

However, our key observation relating these two systems is that for large
enough systems, the converged quantum dot states around the band gap have
a small angle to the subspace defined by the corresponding bulk system states.
This section describes the mathematical tools for relating the bulk and the
quantum dot eigen-systems.

2.1 Quantum dot and BB space embedding

We first consider a bulk system on a primary cell with periodicity a. The
periodicity of the bulk in terms of this crystal unit corresponds to a periodic
potential satisfying V (r + a) = V (r). Bloch’s theorem [1] states that the
eigenstates Ψnk of the bulk Hamiltonian H are of the form

Ψnk(r) = unk(r)e
ikr, unk(r + a) = unk(r). (3)

The corresponding eigen-energies are denoted by Enk. From the expansion

unk(r) =
∑

G

cknGe
iGr, (4)

the a-periodicity of unk requires that

eiG(r+a) = eiGr ⇔ G =
2π

a1
j1e1 +

2π

a2
j2e2 +

2π

a3
j3e3, j{1,2,3} = . . . ,−1, 0, 1, . . .

(5)
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To limit the computational effort, we only consider the truncated expansion

Ψnk(r) =
∑

G,|G+k|<qcut

cknGe
i(G+k)r, (6)

with the k from the so-called first Brillouin zone (FBZ), see [1], and where
qcut refers to an energy cut-off.

Now consider the quantum dot in a supercell of extension na. The analogous
periodicity argument requires the supercell solution to be of the form

Ψ(r) =
∑

q

cqe
iqr, (7)

where

eiq(r+na) = eiqr ⇔ q =
2π

n1a1
j1e1+

2π

n2a2
j2e2+

2π

n3a3
j3e3, j{1,2,3} = . . . ,−1, 0, 1, . . .

(8)
defining the reciprocal space

S = span{eiqr| q satisfies (8)} (9)

for the quantum dot.

In order to efficiently use bulk states for quantum dot computations, we choose
only those k in (6) that satisfy

G + k = q. (10)

As a result,

k = 2π

(

k1

n1a1

e1 +
k2

n2a2

e2 +
k3

n3a3

e3

)

, j{1,2,3} = . . . ,−1, 0, 1, . . . , (11)

and k is in the FBZ.

We then define the bulk band (BB) space

SBB = span{Ψnk|Ψnk from (6), k satisfies (11)}. (12)

With this definition, SBB is a subspace of S (and usually of much smaller
dimension).

The relationship between the different lattices is depicted in Figure 1.
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Fig. 1. Reciprocal space relationship: the sparse G + k-grid compatibly embedded
into the q-grid.

2.2 Low rank spectral approximation of the bulk Hamiltonian

One major goal of the current paper is to use the bulk Hamiltonian HBB as
a model for the quantum dot Hamiltonian and thus its inverse, for which a
good approximation is relatively easy to compute, as a preconditioner for the
quantum dot computation. This is plausible because the quantum dot wave
functions near the band gap are localized inside the quantum dot where the
quantum dot Hamiltonian is exactly HBB.

For purposes of preconditioning, we can represent the relevant part of the bulk
Hamiltonian HBB using its spectral decomposition into eigen energies Enk and
eigenstates Ψnk as given in (6).

If we just wanted to find the smallest eigenvalue of the original Hamiltonian
from (1), we would use

H−1
BB ≈

∑

n,k

ΨnkE
−1
nk ΨH

nk. (13)

In preconditioning the folded spectrum equation (2), we use the analogous

(HBB −ErefI)
−2 ≈

∑

n,k

Ψnk(Enk − Eref)
−2 ΨH

nk. (14)

We make use of a low rank version, considering only a subset of states and
selecting an energy cut-off, i.e. n : nmin ≤ n ≤ nmax, k : |k| < kcut.

5



3 The PCG algorithm

ESCAN uses the Preconditioned Conjugate Gradient (PCG) method [25] with
folded spectrum to compute interior eigenstates. The smallest eigenvalue λ of
the Hermitian matrix A ≡ (H − ErefI)

2 (the one that corresponds to the
eigenvalue of H closest to the reference point Eref) minimizes the Rayleigh
quotient

λ = arg min
x 6=0

ρ(x) ≡ ρ(xj) = (xH
j Axj)/(x

H
j xk). (15)

From a current iterate xj and a descent direction dj = −∇ρ(xj) + βjdj−1 [the
(scaled) gradient being given by ∇ρ(xj) = Axj − xjρ(xj)] the method finds
the angle

θj+1 = arg min
θ
ρ(xj cos θ + dj sin θ) (16)

that is, xj+1 minimizes the energy functional in the two-dimensional subspace
span {xj , dj}. A preconditioner P can be used to influence the choice of the
descent direction via

dj = −P∇ρ(xj) + βjdj−1, (17)

see also [10,23]. After a number of band-by-band iterations, the Rayleigh-Ritz
procedure is invoked to compute the best approximations from the subspace,
see also [15]. The procedure is summarized in Algorithm 1, for a more detailed
discussion see the references in [14] and also [7,8,16]).

4 Accelerating the nonlinear PCG algorithm

In this section, we discuss two complementary strategies to improve the folded
spectrum PCG eigensolver in ESCAN for band gap calculations:

(1) Replace the random start vector by a (modified) bulk state at the gamma
point, see Section 4.1.

(2) Replace the previously used preconditioner by one that better approxi-
mates the inverse of the bulk Hamiltonian, see Section 4.2.

Both approaches are motivated by the previously stated observation of a small

angle between the quantum dot and the bulk system states close to the band
gap.

4.1 Bulk-based starting vectors

While the Rayleigh-Ritz procedure on the complete bulk space SBB is too
expensive, it is still possible to find an inexpensive good initial vector for
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Algorithm 1 The Preconditioned Conjugate Gradient (PCG) algorithm for
finding the nstate smallest eigenvalues of the operator A = (H −ErefI)

2.

Choose random start vectors X(1:nstate)
for i=1,niter do

for m=1,nstate do
Orthonormalize X(m) to X(1:m-1)
y1 = A X(m)
for j=1,nline do

Λ(m) = ρ(X(m)) = X(m)Hyj

if state X(m) not yet converged then
rj+1 = (I − X(m) X(m)H ) yj

β =
rH
j+1

Prj+1

rH
j

Prj

dj+1 = (I − X(m)X(m)H )(−P rj+1 + β dj), γ = ||dj+1||
−1
2

ej+1 = A dj+1

θj+1 = 0.5 | arctan

(

2 γ dH
j+1

yj

Λ(m)−γ2 dH
j+1

ej+1

)

|

X(m) = cos(θj+1) X(m) + sin(θj+1) γ dj+1

yj+1 = cos(θj+1) yj + sin(θj+1) γ ej+1

end if
end for

end for
[X(1 : nstate), Λ(1 : nstate)] = Rayleigh-Ritz on span{X(1 : nstate)}

end for

the PCG iteration. Experimentally, we found that the corresponding bulk
wave function at the gamma point (the center of the first Brillouin zone [1]).
constitutes an excellent starting vector for the PCG iteration.

From physics, it is known that the true solution we are looking for typically is
confined to the interior of the quantum dot, see Figure 2. We use the gamma
point bulk state Ψn0 and restrict it to the interior of the quantum dot in real
space using a mask function and setting it to zero outside the quantum dot.

"graph.plot" using 1
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Fig. 2. Cross section of the charge density for the state at the top of the valence
band (VBM). The wave-function is confined to the interior of the spherical CdSe
quantum dot (which is centered in the middle of the box).
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4.2 The previously used preconditioner

In ESCAN, the preconditioners are designed to approximate (H−ErefI)
−2 in

the case of solving the folded spectrum. The preconditioner that was used up
to now in ESCAN is diagonal. It is applied in the Fourier space as

P = D ≡ (I + (−
1

2
∇2 + Vavg − Eref)/Ek)

2 (18)

where −1
2
∇2 is the Laplacian (diagonal in the Fourier space), Eref is the shift

used in the folded spectrum, Vavg is the average potential and Ek is the average
kinetic energy of a given initial approximation of a wave function ψinit, see [26].

4.3 New BB-type preconditioners

We describe how to improve the old preconditioner from (18). In order to use
the approximation (14) from the bulk as preconditioner for the quantum dot,
we use the L2 projection QH of functions R(r) ∈ S to SBB (q-grid to G-grid),
and Q to prolongate back from SBB to S.

Using (12), we find

QQH ≡
∑

n:nmin≤n≤nmax,k:|k|<kcut

ΨnkΨ
H
nk (19)

when only the states nmin ≤ n ≤ nmax of SBB are considered.

The residual R is decomposed into its SBB and S⊥
BB components, i.e. QQHR

and R−QQHR. The SBB-component is preconditioned with (HBB−ErefI)
−2,

approximated by (14). The S⊥
BB component is preconditioned with the diago-

nal preconditioner D−1 from (18). In summary, the preconditioned residual is
given by

PR ≡ Q(HBB − ErefI)
−2QHR +D−1(R−QQHR). (20)

4.4 Efficient implementation of the new preconditioner

As described in Section 2.1, the bulk wave functions are sparse vectors in the
reciprocal space; the degree of sparsity depends on the supercell size.

The efficient application of the preconditioner in (20) relies on the implemen-
tation of (19), which involves
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• the dot products αnk ≡ ΨH
nkR between distributed vectors, R being dense

and Ψnk being sparse, and
• the sum

∑

αnkΨnk of scalar multiples of distributed sparse vectors.

For each sparse wave function, we use an integer array Q LOCAL to store
the indices of the local Fourier coefficients in compressed form. These are
computed once at the beginning of the program and subsequently used as
indirect addresses; they are the same for the Ψnk of all states n but depend on
the k-point k. The following Algorithm 2 is designed to reuse them as much as
possible and to reduce the amount of global communication. For this reason,
all dot products are performed locally first using a workspace array DOTP
and then a single blocked ALL REDUCE operation is performed to find all
global dot products simultaneously.

Algorithm 2 Implementation of the preconditioning operation P = QQHR.
Compute local dot products with distributed Ψnk for all bulk states.
Set array DOTP=0
for k=1,nk (nk=number of bulk k-points) do

for g=1,ng(k) (ng(k)=local number of g points for this k-point) do
q = Q LOCAL(g)
for n=1,nbulk (nbulk= number of bulk states) do

DOTP (n, k) = DOTP (n, k) + (Ψnk(g)) ∗ R(q)
end for

end for
end for
Perform one blocked ALLREDUCE to sum up all local dot products.
DOTP = GLOBAL SUM(DOTP)
Compute projection P, a scaled sum of sparse vectors.
P = 0
for k=1,nk do

for g=1,ng(k) do
q = Q LOCAL(g)
for n=1,nbulk do

P (q) = P (q) + Ψnk(g)DOTP (n, k)
end for

end for
end for

5 Numerical results

We present two different experimental evaluations of our proposed modifica-
tions in ESCAN. We first validate the preconditioner on bulk systems, see
Section 5.1. We then show, in Section 5.2, the impact of an improved initial
vector and new preconditioner on large CdSe quantum dots. The experiments
were performed on the IBM SP seaborg.nersc.gov.
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5.1 Validation of the preconditioner on a bulk system

For the bulk problems, we start with a randomly generated initial guess and
show the convergence history on two CdSe bulk systems consisting of 64 and
512 atoms, respectively.

The convergence histories for the two test systems are given on Figure 3. We
solve for the 4 lowest eigen-states and the convergence shown is for the 4th.
The required accuracy is residual in L2 norm to be less than 10−10. We get con-
vergence using the new preconditioner in 3 and 4 iterations for correspondingly
the first and second test systems. For test system 2 the new method reduces
the number of iterations by a factor of 4.

 2.91038e-11

 9.31323e-10

 2.98023e-08

 9.53674e-07

 3.05176e-05

 0.000976562

 0.03125

 1

 0  2  4  6  8  10  12  14  16

R
es

id
ua

l N
or

m
s

Number of Iterations

CG Convergence History (64 atoms of bulk Cd48-Se34)

no preconditioning
diagonal preconditioning

BB preconditioning

 2.91038e-11

 9.31323e-10

 2.98023e-08

 9.53674e-07

 3.05176e-05

 0.000976562

 0.03125

 1

 0  5  10  15  20  25  30  35

R
es

id
ua

l N
or

m
s

Number of Iterations

CG Convergence History (512 atoms of bulk Cd48-Se34)

no preconditioning
diagonal preconditioning

BB preconditioning

Fig. 3. Convergence histories for bulk test systems (left: 64 atoms, right: 512 atoms)
as described in Subsection 5.1. Shown are the convergence without preconditioner,
with diagonal preconditioner, and with BB preconditioner.

5.2 CdSe quantum dot problems

We consider two large CdSe quantum dots that are described in Table 1 and
compute the three degenerate states at the top of the valence band using PCG
with folded spectrum.

The results are summarized on Figure 4. We compare three methods, the
old preconditioner with random start vector, and old and new preconditioner
with improved start vector. The combined improvements not only result in
a significant reduction in the number of iterations, they also enable faster
convergence to a small residual norm. The speedup over the old preconditioner
with improved initial vector is at least a factor of two. The speedup is much
larger compared to the old preconditioner with random start vector where the
convergence tends to stagnate at a certain level.

10



Quantum dot grid size system size BB states Angle VBM

size (atoms) (real space) (plane wave) (n,k) to SBB

784 Cd, 739 Se 1283 145K (5,949) 2.3◦

1568 Cd, 1601 Se 1603 282K (5,949) 1.9◦

Table 1
Quantum dot considered in the comparisons in Figure 4 and the dimensions of the
BB subspace SBB . The last column shows the angle between the converged VBM
wave function and its projection on the space SBB .

Note that while the convergence results are displayed as a function of the
number of iterations, the picture is the same for the computing time. Using
the implementation described in Section 4.4, the overhead for using the new
preconditioner is less than 5% compared to the old one.
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Fig. 4. Comparison of diagonal preconditioner (with random and improved initial
vector) and BB preconditioner with improved initial vector. Shown is the conver-
gence for one of the three VBM states with the folded spectrum approach for the
two quantum dots from Table 1. The left and right picture show the convergence
for the Cd784Se739 and Cd1568Se1601 quantum dots, respectively.

6 Conclusions and possible extensions

In this paper, we presented a bulk-based acceleration for computing interior
states close to the band gap of colloidal quantum dots. By the example of
large CdSe quantum dots, we showed a significantly faster and more accurate
computation of the band edge states. An extension to other systems such as
GaAs quantum dots is possible.
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