
Scalable Fault Tolerant Protocol for Parallel
Runtime Environments

Thara Angskun, Graham E. Fagg, George Bosilca, Jelena Pješivac–Grbović,
and Jack J. Dongarra

Dept. of Computer Science, 1122 Volunteer Blvd., Suite 413, The University of
Tennessee, Knoxville, TN 37996-3450, USA

angskun,fagg,bosilca,pjesa,dongarra@cs.utk.edu

Abstract. The number of processors embedded on high performance
computing platforms is growing daily to satisfy users desire for solving
larger and more complex problems. Parallel runtime environments have
to support and adapt to the underlying libraries and hardware which
require a high degree of scalability in dynamic environments. This paper
presents the design of a scalable and fault tolerant protocol for sup-
porting parallel runtime environment communications. The protocol is
designed to support transmission of messages across multiple nodes with
in a self-healing topology to protect against recursive node and pro-
cess failures. A formal protocol verification has validated the protocol
for both the normal and failure cases. We have implemented multiple
routing algorithms for the protocol and concluded that the variant rule-
based routing algorithm yields the best overall results for damaged and
incomplete topologies .

1 Introduction

Recently, several high performance computing platforms have been installed with
more than 10,000 CPUs such as Blue-Gene/L at LLNL, BGW at IBM and
Columbia at NASA [1]. Unfortunately, as the number of components increases,
so does the probability of failure. To satisfy the dynamic requirement of such a
dynamic environment (where the available number of ressources is fluctuating) a
scalable and fault-tolerance framework is needed. Many large-scale applications
are implemented on top of message passing systems for which the de-facto stan-
dard is the Message Passing Interface (MPI) [2]. MPI implementations require
support of parallel runtime environments, which are extensions of the active op-
erating system services, and provide necessary functionalities (such as naming
resolution services) for both the message passing libraries and applications them-
selves. However, currently available parallel runtime environments are either not
scalable or inefficient in dynamic environments. The lack of scalable and fault-
tolerance parallel runtime environments motivates us to design and implement
such a system. A scalable as well as fault-tolerant communication protocol that
can be used as a base for constructing higher level fault-tolerant parallel run-
time environment is described in this paper. The basic ability of the designed

protocol is to transfer messages across multiple (multicast and broadcast rather
than unicast) nodes efficiently, while protecting against recursive node or process
failures.

The structure of this paper is as follows. The next section 2 discusses related
work. Section 3 introduces the scalable and fault-tolerant protocol, while the
section 4 presents the formal protocol verification. Experimental results are given
in section 5, followed by conclusions and future work in section 6.

2 Related Work

Each message passing system has different requirements for parallel runtime
environments. Most MPI implementations require portable, scalable and high
performance parallel runtime environments for heterogeneous tightly coupled
environments. Some MPI implementations such as FT-MPI [3] also require high-
availability in dynamic environments. Parallel runtime environments of Grid
computing (Grid middle-ware) such as Globus [4] and Legion [5] put emphasize
on scalability and security for heterogeneous loosely coupled systems. Distributed
operating systems and single system image systems such as Mosix [6], Bproc [7]
and Dragonfly BSD [8] aim to run efficiently in homogeneous tightly coupled
environments.

Although there are several existing parallel runtime environments for differ-
ent types of systems, they do not meet some of the major requirements for MPI
implementations: scalability, portability and performance. Typically, distributed
OS and single system image systems are not portable while the nature of Grid
middle-wares has performance problems.

The MPICH implementation [9] uses a parallel runtime environment called
Multi-purposed daemon (MPD) [10] for providing scalability and fault-tolerant
through a ring topology for some operations and a tree topology for others.
Runtime environments of other MPI implementations, such as Harness [11] of
FT-MPI [3], Open RTE [12] of Open MPI [13] and LAM of LAM/MPI [14],
do not currently provide both scalable and fault tolerance solutions for their
internal communications.

3 Scalable and Fault-Tolerant Protocol

The protocol in this paper is not implementation aware. It aims to support
parallel the runtime environments of various message passing implementations.
However, currently work is in progress to integrate it in a fault-tolerance imple-
mentation of message passing interface called FT-MPI as well as in the modular
MPI implementation called Open MPI.

The protocol is based on a k-ary sibling tree topology used to develop a self
healing tree topology. The k-ary sibling tree topology is a k-ary tree, where k is
number of fan-out (k ≥ 2), where the nodes on the same level (same depth on
the tree) are linked together using a ring topology. The tree is primary designed
to allow scalability for broadcast and multicast operations that are typically

(a)

Broadcast

Unicast / Multicast

(b)

Fig. 1. (a) Binary sibling tree topology. (b) Message rerouting in case of failure.

required during MPI application startup, input redirection, control signals and
termination. The ring is used to provide a well understood secondary path for
transmission when the tree is damaged during failure conditions (simplest multi-
path extension). In additional, typical k-ary tree only needs a single link or node
failure to become bisectional, while the k-ary sibling tree can tolerate up to k
failures. Fig. 1(a) illustrates an example of the binary (k=2) sibling tree. Each
node needs to know the contact information of at most k+3 neighbors (i.e.
parent, left, right and their children). The number of neighbors is kept to a
minimum to reduce the state management load on each node. Both the tree
and the ring topologies allow for neighbors addressing to be computed locally.
Usually, we expect the k parameter to remain constant for the lifetime of the
topology. The contact information of each node in some cases can be calculated
locally for some tightly coupled systems or may be stored in an external directory
service such as a name service of FT-MPI, a general purpose registry (GPR) of
Open MPI or even a LDAP server for loosely coupled systems. The tree will
automatically repair itself depending on an external recovery policy (i.e. when
and how to repair it) specified by the user. The details of protocol is specified
in Section 3.1. The routing control of the protocol is discussed in Section 3.2

3.1 Protocol Specification

Service Specification: The goal of the protocol is to deliver messages across
multiple nodes while protecting against different types of node and/or process
failures. The protocol currently provides two kinds of message delivery service,
which are broadcast (1 to n) and multicast (1 to m, where m ≤ n 1). The
broadcast service uses the k-ary tree to send messages in normal circumstance.
It will use the neighbor nodes to reroute the messages in the failure cases as
shown in Fig. 1(b). The multicast service treats the k-ary sibling tree as a graph.
It uses the best effort to deliver messages with the shortest path from a source
to destinations in both normal and failure situations.
1 A unicast message is a special case of multicast where m=1

Environment Assumption: The protocol assumes that any failures are Fail-
stop rather than Byzantine i.e. if a process or a node crashes, it should be
unreachable rather than pretend that it is still alive. After each failure and for
each node at least one neighbor should be alive, otherwise the k-ary tree will
become bisectional, and no routing of messages between the two section of the
tree will be possible. This assumption can be removed, if we allow each node to
contact a directory service (considered as a stable ressource) to overcome the
orphan situation. The protocol also assumes that the transmission channel in
which the protocol is executed can detect and recover from transmission errors
(e.g. based on TCP and/or reliable UDP).

Protocol Vocabulary: There are 3 distinct kinds of messages: hello for the
initialize message, which construct the k-ary sibling tree; mcast for the multicast
messages and bcast for the broadcast messages.

Message Format: The general message format of the protocol starts with a
version number followed by a message type (i.e. the control fields hello, mcast
and bcast). The hello message format consists of the above fields followed by
an originator of the message indicated by SrcID. The bcast message format
also contains data with the size DataSz. The mcast message consists of above
mentioned fields followed by #Dest, DestInd, DestList and TranList. The #Dest
is the number of destinations. The DestInd is an index, which points to the
current destination in the DestList. The TranList is a transit list which contains
the list of IDs of all the transit nodes in the tree to prevent looping and for
back-tracking purposes.

Procedure Rules: The procedure rules can be separated into two steps: ini-
tialization and routing.

The initialization step of the procedure rules was described as follows: “Each
node will register itself to the directory service (DS) and get its logical ID. It
builds a logical topology and asks for the contact information of its neighbors
from the DS. Once ready, it will start sending hello packet to its parent and its
left neighbor. If the node is the right most in its level, it will also send hello to
the left most node of the same level”. After exchanging these hello messages,
the communication channel between them will be established.

The procedure rules for routing a packet of the protocol were described as
follows: “A node uses best effort to deliver messages following the shortest pos-
sible path. Sending a message procedure is dependent on the message type. If
the message type is bcast, the node will send the message to all of its children.
If a child died, it will reroute the message to all children of the child. This is
done using an encapsulation technique. The node will encapsulate the broadcast
message into a multicast message and send to its grandchildren. The grandchil-
dren will decapsulate the multicast packet and continue to forward the broadcast
message. However, if the message type is mcast, the next hop is chosen from a
valid neighbor node which has the highest priority (more details are discussed

in Section 3.1). 2 A node is said to be valid if and only if the node is not in the
transit list and it is still alive. If there is no possible next hop, the message will
be sent back to the previous sender (i.e. back-tracking). When a node receives a
message, it will first determine the header. If the message type is hello, it will do
the initialization step. If the message type is bcast, it will forward to its children
and handle node failure as mentioned above. If the message type is mcast and the
node is not one of the destinations, it will add itself to the transit list and send it
on to the next node. If the node is one of the destinations, but not the last one,
it will remove itself from the destination list (DestList), decrease the destination
count (#Dest), choose the next destination and update the destination index
(DestInd), add itself to the transit list and send it to the next node.”

Algorithm 1 Compute estimated cost
Procedure : Compute cost

1: cost ⇐ 0 ; nextHop ⇐ srcID
2: while nextHop 6= destID do
3: if myLevel = destLevel then
4: Choose left or right
5: else if myLevel > destLevel then
6: nextHop ⇐ myParentID
7: else
8: if ChildIDi is an ancestor of destID then
9: nextHop ⇐ ChildIDi

10: else
11: Choose left or right, which one is closer to an ancestor of destID in myLevel
12: end if
13: end if
14: cost ⇐ cost +1
15: end while
16: return cost

Procedure : Choose left or right

1: if (hopLeft ≤ hopRight) ∧ (destID 6= myRightID) then
2: nextHop ⇐ myLeftID
3: else
4: nextHop ⇐ myRightID
5: end if

3.2 Routing algorithm

This section discusses the routing technique used for multicast messages (which is
also used by broadcast routing during failures). The goal of the routing algorithm
2 An implementation of the protocol may use a dynamic programming technique to

improve performance by keeping the priority of neighbors for each destination in a
look-up table.

is to find the shortest possible route in both normal and failure situations with
only local knowledge stored at each node. The next hop is chosen from the
highest priority node of its valid neighbors. The first algorithm (as shown in
Algorithm 1) uses a rule based method to estimate cost from current node to
the destination. The highest priority node is a neighbor which has the lowest cost.
The rule is specified in such a way that message will always go in a direction
toward the destination. The second algorithm is a variant of the first algorithm,
where it allows to go in a direction that is not directly towards the destination
if there is a shorter path to the destination from the current node. For example,
instead of routing from left to right, it could be faster to go up a few levels, then
go right and go down to the destination. The complexity of both algorithms is
O(logk n), where n is number of nodes and k is number of fan-outs. Routing
with the shortest path may not be the best solution in a failure situation. The
direction of the message may be changed too often such that the message is
moving further from the destination. The third algorithm intends to prevent
this situation by using knowledge of previously detected dead nodes from the
header to compute the cost. The third method uses a graph-coloring technique
of breath first search, which explores only alive neighbor nodes. However, this
algorithm requires complexity O(n + (k + 3)), where n is number of nodes and
k is number of fan-outs.

4 Protocol Verification

The main reason for the verification is to ensure that the design of the protocol
did not exhibit any potential problems. The protocol has been modeled with
the PROMELA [15] specification language, which is the input of the SPIN [16]
verification tools. PROMELA (Process Meta Language) is a non-deterministic
language, which provides a method for making abstractions of distributed sys-
tem protocols. It supports dynamic creation of concurrent processes, both syn-
chronous and asynchronous message passing via communication channels, mes-
sage loss and duplicate simulation and several other features. SPIN is a model
checker for asynchronous systems using an automata-theoretical. It checks for
deadlocks, livelock (non-progress cycles) and non-reachable states. It can verify
and simulate several correctness properties. If an error is found, SPIN will pro-
vide a counterexample to show a circumstance that can generate the erroneous
state.

4.1 Specifying the Protocol in PROMELA

Due to the fact that the PROMELA language is based on point to point com-
munication, there must be as many channels as nodes in order to model the
broadcast system. Each node will exclusively receive messages only through this
channel. They will use corresponding channel associated with the node to send
messages. All the nodes will wait in a loop with the do repetition construct. The
root node starts sending the initial messages. If a node gets a message, it will

check the message type and execute portions of code corresponding to procedure
rules in Section. 3.1. For simplicity reason, we use a new feature of SPIN ver-
sion 4 which can include embedded C code fragments (with PROMELA’s c code
construct) to compute node depth, neighbor IDs etc. The link failure is simu-
lated with non-deterministic selection capability of the if selection construct.
The SPIN verifier and simulator will randomly choose the status (up or down)
of links between a node and its neighbors while the node is trying to send a
message on to the next hop. In order to speed up the verification process, we
reduce the size of state space by using an atomic construct to atomically exe-
cute its code section which represents internal computation without interleaved
execution with other processes.

4.2 Verification Results

The results were conducted on a PentiumIII 550MHz, with Spin 4.2.6 on Linux.
The search depth bound was 10,000 and the memory limit was 512 MB. A
deadlock was discovered from the original modeling. However, after closer exam-
ination, it turns out that TCP buffer size of the communication channel in the
modeling was too small. When the deadlock problem was solved, no deadlock,
livelock, invalid end state, unreachable codes and assertion violation were found
during verification.

5 Experimental Results

The protocol performance was evaluated in both normal and failure modes. In
the case of no failure, it is obvious that the average number of hops for multicast
messages decreases when number of fan-outs increases (i.e. closer to a flat tree).
On the other hand, the average number of steps to complete the message transfer
for broadcast increases when number of fan-outs increases (except that 3-ary is
better than 2-ary due to more parallelism).

During the failure mode, the dead nodes (D) are obtained from combinations
of all possible nodes (N) i.e.

(
N
D

)
, where source node 6∈ D. Fig 2(a) illustrates that

both variant rule-based and dead node aware algorithms are scalable with uni-
cast messages (multicast to one destination). The higher values of fan-out yields
the worst performance, especially with the basic rule-based algorithm, because
it has more chances to go in a direction toward a dead node. Fig 2(b) depicts
that a dead node has only a small effect on the performance of a broadcast mes-
sage. The results show that the basic and variant rule-based algorithms produce
performance close to the dead node aware algorithm, but the rule-based algo-
rithms are much simpler to model e.g. a broadcast 3 with a single dead node on
an AMD 2GHz machine, the simulation time of dead node aware is 15 minutes,
while basic and variant rule-based took only about 30 second.

3 16K bcast, we model 16383 different network topologies

 0

 25

 50

 75

 100

 125

 150

 16 32 64 128 256 512 1024

A
ve

ra
ge

 N
um

be
rs

 o
f H

op
s

Numbers of Nodes

Unicast Messages (with a Single Dead Node)

2ary-basic
3ary-basic
4ary-basic
8ary-basic

2ary-variant
3ary-variant
4ary-variant
8ary-variant

2ary-awaredead
3ary-awaredead
4ary-awaredead
8ary-awaredead

(a)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 16 64 256 1024 4096 16384 65536

A
ve

ra
ge

 n
um

be
rs

 o
f S

te
ps

Numbers of Nodes

Broadcast Messages (with a Single Dead Node)

8ary

2ary

4ary

3ary

2ary-basic
3ary-basic
4ary-basic
8ary-basic

2ary-variant
3ary-variant
4ary-variant
8ary-variant

2ary-awaredead
3ary-awaredead
4ary-awaredead
8ary-awaredead

(b)

Fig. 2. Message transmission during failure situations. (a) Unicast (b) Broadcast

6 Conclusions and Future Works

The scalable and fault tolerant protocol for parallel runtime environments was
designed and developed to support runtime environments of MPI implementa-
tions. The design of the protocol has been formally proven to work under both
normal and failure modes. The performance results indicate that the variant rule-
based algorithm is the best choice in terms of the shortest path (and simulation
computation time as well).

There are several improvements that we plan for the near future. Making the
protocol aware about the underlying network topology (in both LAN and WAN
environments) will greatly improve the overall performance for both bcast and
multicast message distribution. This is equivalent to adding a function cost on
each possible path and integrating this function cost to the computation of the
shortest path. A faster and more accurate re-routing algorithm is in development.
At a longer term, we expect this protocol to be the basic message distribution of
the runtime environment within the FT-MPI and Open MPI runtime systems.

Acknowledgement. This material is based upon work supported by Los “Alamos
Computer Science Institute (LACSI)”, funded by Rice University Subcontract
No. R7B127 under Regents of the University Subcontract No. 12783-001-05 49
and “Open MPI Derived Data Type Engine Enhance and Optimization”, funded
by the Regents of the University of California (LANL) Subcontract No. 13877-
001-05 under DoE/NNSA Prime Contract No. W-7405-ENG-36

References

1. Dongarra, J.J., Meuer, H., Strohmaier, E.: TOP500 supercomputer sites. Super-
computer 13 (1997) 89–120

2. Forum, M.P.I.: MPI: A message-passing interface standard. Technical report,
University of Tennessee, Knoxville (1994)

3. Fagg, G.E., Gabriel, E., Bosilca, G., Angskun, T., Chen, Z., Pjesivac-Grbovic, J.,
London, K., Dongarra, J.: Extending the MPI Specification for Process Fault Tol-
erance on High Performance Computing Systems Proceedings of the International
Supercomputer Conference (ICS) 2004

4. Foster, I., Kesselman, C.: Globus: A metacomputing infrastructure toolkit. The
International Journal of Supercomputer Applications and High Performance Com-
puting 11 (1997) 115–128

5. Grimshaw, A.S., Wulf, W.A.: Legion – a view from 50,000 feet. In: Proceed-
ings of the 5th IEEE International Symposium on High Performance Distributed
Computing, Washington DC, USA, IEEE Computer Society (1996) 89

6. Barak, A., Guday, S., Wheeler, R.G.: The Mosix Distributed Operating Sys-
tem: Load Balancing for Unix (Lecture Notes in Computer Science). Volume 672.
Springer-Verlag (1993)

7. Hendriks, E.: Bproc:the beowulf distributed process space. In: Proceedings of the
16th International conference on Supercomputing, New York, USA, ACM Press
(2002) 129–136

8. Hsu, J.M.: The dragonflybsd operating system. In: Proceedings USENIX AsiaB-
SDCon, Taipei, Taiwan (2004)

9. Gropp, W., Lusk, E., Doss, N., Skjellum, A.: A high - performance, portable
implementation of MPI message passing interface standard. Parallel Computing
22 (1996) 789–828

10. Butler, R., Gropp, W., Lusk, E.L.: A scalable processmanagement environment for
parallel program. In: Proceedings of the 7th European PVM/MPI User’s Group
Meeting on Recent Advances in Parallel Virtual Machine and Message Passing,
Interface, London, UK, Springer-Verlag (2000) 168–175

11. Beck, M., Dongarra, J.J., Fagg, G.E., Geist, G.A., Gray, P., Kohl, J., Migliardi, M.,
Moore, K., Moore, T., Papadopoulous, P., Scott, S.L., Sunderam, V.: HARNESS: A
next generation distributed virtual machine. Future Generation Computer Systems
15 (1999) 571–582

12. Castain, R.H., Woodall, T.S., Daniel, D.J., Squyres, J.M., Barrett, B., Fagg, G.E.:
The open run-time environment (openrte): A transparent multi-cluster environ-
ment for high-performance computing. In: Proceedings 12th European PVM/MPI
User’s Group Meeting on Recent Advances in Parallel Virtual Machine and Mes-
sage Passing, Interface, Sorrento(Naples), Italy, Springer-Verlag (2005)

13. Gabriel, E., Fagg, G.E., Bosilca, G., Angskun, T., Dongarra, J.J., Squyres, J.M.,
Sahay, V., Kambadur, P., Barrett, B., Lumsdaine, A., Castain, R.H., Daniel, D.J.,
Graham, R.L., Woodall, T.S.: Open MPI: Goals, concept, and design of a next
generation MPI implementation. In: Proceedings 11th European PVM/MPI User’s
Group Meeting on Recent Advances in Parallel Virtual Machine and Message Pass-
ing, Interface, Budapest, Hungary, Springer-Verlag (2004) 97–104

14. Burns, G., Daoud, R., Vaigl, J.: LAM: An Open Cluster Environment for MPI.
In: Proceedings Supercomputing Symposium. (1994) 379–386

15. Holzmann, G.J.: Design and validation of computer protocols. Prentice Hall (1991)
16. Holzmann, G.J.: The model checker SPIN. IEEE Transactions on Software Engi-

neering 23 (1997) 279–295

