
Proposal of MPI operation level checkpoint/rollback and one implementation

Yuan Tang
Innovative Computing Laboratory
Department of Computer Science

University of Tennessee, Knoxville, USA
superTangcc@yahoo.com

Graham E. Fagg
Innovative Computing Laboratory
Department of Computer Science

University of Tennessee, Knoxville, USA
fagg@cs.utk.edu

Jack J. Dongarra
Innovative Computing Laboratory
Department of Computer Science

University of Tennessee, Knoxville, USA
dongarra@cs.utk.edu

Abstract

With the increasing number of processors in modern
HPC(High Performance Computing) systems, there are two
emergent problems to solve. One is scalability, the other
is fault tolerance. In our previous work, we extended the
MPI specification on handling fault tolerance by specifying
a systematic framework for the recovery methods, commu-
nicator, message modes etc. that define the behavior of MPI
in case an error occurs. These extensions not only specify
how the implementation of the MPI library and RTE (Run
Time Environment) handle failures at the system level, but
provide the normal HPC application developers with vari-
ous recovery choices with varying performance and cost. In
this paper, we continue the work on extending the MPI’s ca-
pability in this direction. Firstly, we are proposing an MPI
operation level checkpoint/rollback library to recover the
user’s data. More importantly, we argue that the future gen-
eration programming model of a fault tolerant MPI applica-
tion should be recover-and-continue against the more tradi-
tional stop-and-restart model. Recover-and-continue means
that in case an error occurs, we just re-spawn the failed
processes. All the remaining living processes stay in their
original processors mapping on memory. The main benefits
of recover-and-continue are much less cost for system re-
covery and the opportunity of employing in-memory check-
point/rollback techniques. Compared with stable or local
disk techniques, which are the only choices for stop-and-
restart, doubtlessly, the in-memory approach significantly
reduces the performance penalty in checkpoint/rollback.
Additionally, it makes it possible to establish a concurrent
multiple level checkpoint/ rollback framework. With the
progress of our work, a picture of the hierarchy of future

generation fault tolerant HPC system will be gradually un-
veiled.

1 Background

The main goal of HPC is pursuing high performance.
Confined by the performance that could be possibily
achieved on single processor, HPC systems have progressed
from single to multiple processor, and this trend will con-
tinue [10] [11]. Today’s number 1 in the top500 list, the
IBM BlueGene/L, is composed of 65536 processors. And
100K processor systems are in development [2]. With this
trend of increasing the number of processors in one system
, there are two emergent problems. One is scalability, i.e.
whether the performance of HPC system could increase at
the same pace as the increasing number processors. The
other is fault tolerance. Concluding from the current expe-
riences on top-end machines, a 100, 000 processor machine
will experience multiple process failures every hour.

The current MPI Specification 1.2, the most popular par-
allel programming model, especially for large scale HPC
systems, has not specified an efficient and standard way to
process failures. Currently, MPI gives the user the choice
between two possibilities of how to handle failures. The
first one, which is also the default mode of MPI, is to im-
mediately abort the application. The second possibility is
just return the control back to the user application without
requiring that subsequent operations succeed, nor that they
fail. In short, according to the current MPI specification, an
MPI program is not supposed to continue in case of error.
While most systems currently are much more robust, even

though partial node failure/unavailability are much more
frequent, in most cases they will be recovered and brought
back to the whole system quickly. So, there is a mismatch
between hardware and the (non fault tolerant) programming
model of MPI. There is a requirement for the programming
model of MPI to include the handling of partial processes
failure/unavailability.

In our previous work [5], we extended the MPI specifica-
tion in this direction by specifying a systematic framework
for the recovery procedures, communicator modes, message
modes etc., i.e.

1. Define the behavior of MPI in case an error occurs.
That is, FT-MPI, will recover the MPI objects and the
execution context of the user application (NOT user
data) in case a failure occurs.

2. Give the application the possibility to recover from a
process failure. In addition to the standard ABORT,
FT-MPI provides three more recovery/communicator
modes.

• REBUILD: re-spawn processes to the number be-
fore failures;

• BLANK: just leave the failed/unavailable pro-
cesses as holes in the system;

• SHRINK: re-arrange the ranks of still living pro-
cesses and pack them into a more compact re-
built MPI COMM WORLD.

3. base it on MPI 1.2 (plus some MPI 2 features) with a
fault tolerant model similar to what was done in PVM.
That is, FT-MPI, working with the underlying HAR-
NESS system [3], provides the failure detection and
failure notification. Based on the user’s choices, FT-
MPI decides what are the necessary steps and options
to start the recovery procedure and therefore change
the state of the processes back to no failure

These extensions not only specify how the imple-
mentations of MPI library handles failures at system
level, but provide the normal MPI application de-
velopers various recovery choices in between perfor-
mance and cost. Also, an implementation of this ex-
tension, which is named FT-MPI [4], is available at
http://icl.cs.utk.edu/ftmpi.

The main difference between FT-MPI’s approach and a
lot of other fault tolerant parallel systems is that FT-MPI
adopts a programming model of recover-and-continue other
than stop-and-restart, which is the tradition in lots of other
fault tolerant parallel systems [1] [15] [7] [9] [16].

The main points of recover-and-continue are, when
some processes are found failed/unavailable, the other still
alive processes neither exit nor migrate. Instead, they stay

in their original processor/memory mappings and will try
re-spawning failed processes and re-building the communi-
cator. From the system point of view, this approach sig-
nificantly reduces the cost of RTE recovery (see [6] and
Table 1). Also, it provides the opportunity to employ in-
memory checkpoint/rollback techniques. More importantly,
we could establish a framework of concurrent multiple level
checkpoint/rollback on recover-and-continue.

But this previous work did not cover the users’ data. In
order to fully utilize the fault tolerant features of FT-MPI,
user should write their own checkpoints and be responsible
for rolling them back after the failure recovery of RTE (Run
Time Environment).

2 Introduction

In this paper, we are continuing our efforts in extending
the fault tolerant capability of MPI.

We are proposing an MPI operation level check-
point/rollback standard, which, in our opinion, is a trade-
off approach in between traditional system level automatic
checkpointing and user level manual checkpointing.

The main rationals for MPI operation level check-
point/rollback are:

• Portability: the user fault tolerant application writ-
ten by this interface could be guaranteed to run cor-
rectly across different platforms without any changes
to their source code. This is the main drawback of tra-
ditional user level manual checkpointing because not
all the checkpoint/rollback techniques are available on
all platforms.

• Software re-use: the implementor of the MPI library
could integrate various checkpoint/rollback techniques
in the library for all the applications to share. This is
also the main drawback of traditional user level manual
checkpointing, which requres every application to re-
implement the checkpoint/rollback techniques repeat-
edly.

• High performance: the user specifies which data to
checkpoint and which data could be computed from
the data to checkpoint. The total size of the checkpoint
is significantly reduced, which will doubtlessly outper-
form any system level automatic approach.

• Software hierarchy: All the future changes in process-
ing checkpoint/rollback will be limited to the MPI li-
brary and the end user could focus solely on their spe-
cial problem area.

Also, we argue that the programming model of the fault
tolerant MPI application should be recover-and-continue.

In recover-and-continue, when some failure occurs, only
the failed processes will be re-spawned and might be mi-
grated to other processors. Other still alive processes nei-
ther exit nor migrate. Instead, they stay in their original pro-
cessor/memory mappings . From the point view of check-
pointing, this model provides the opportunity of employing
in-memory (diskless [14]) checkpoint/rollback techniques,
more importantly, the opportunity for establishing a frame-
work of concurrent multiple level [17] checkpoint/rollback.

In summary:

1. The specification proposal is based on MPI. The im-
plementation is currently based on FT-MPI [5];

2. It provides a standardized method and uniformed in-
terface for end users to write their fault tolerant MPI
applications.

3. The implementation is Two-level [17]. It employs the
imem-m-rep algorithm (subsection 5.2) preparing for
at most m, wherem ≤ (n−1) number of simultaneous
failures. We use a much longer periodic stable-disk al-
gorithm to prepare for multiple copies of checkpoint
as well as the rare, but fatal n total process failures.
The implementation allows the user to specify the ra-
tio of the percentage of checkpoints taken in-memory
and the percentage stored on stable disk, while the ac-
tual switch between these two levels are dynamic and
transparent to the user.

4. It supports all MPI data types.

5. Since FT-MPI is responsible for recovering the RTE,
MPI objects, and internal message queues, this MPI
operation level checkpoint/ rollback library covers
only the users application data.

6. With the current implementation based on FT-MPI, we
have performed some performance tests, which pro-
vide a good and quantified reference for writing fault
tolerant applications.

3 MPI operation level checkpoint and roll-
back

Before starting the detailed description of our efforts, we
will define and clarify the exact meaning of some frequently
used terms in the rest of this paper.

• n: is the total number of processes in system, including
both dead and alive processes.

• m: is the number of failures we are going to tolerate
simultaneously, ie. within the period of one round of
recovery. Additionally, we assume the condition m ≤
n − 1 always holds.

• nof : number of failures, equals m.

• imem-m-rep: The algorithm of ”in memory m replica-
tion”, which will be discussed in subsection 5.2.

• stable-disk: The checkpoint/rollback algorithm of
writing to and reading back from a stable disk system.

• old process: The process which has experienced at
least one round of recovery and is still currently alive.

• new process: The newly re-spawned process.

• RTE: Run Time Environment.

3.1 Specification Proposal

In order to provide a standard method and uniformed
interface for an MPI application developer to write check-
points and roll back , the FT library should provide:

1. MPI Ckpt open(MPI Ckpt options * options): Initial-
ize the necessary data structure and do some prepara-
tion work for checkpoint and rollback. And this func-
tion should be called after MPI Init().

• The idea here is to make checkpoint and roll-
back as easy and standard as reading or writ-
ing a normal UNIX file. Also, the separation of
MPI Ckpt
open() from MPI init() is to give the user a choice
of not to introduce the checkpoint and rollback
interface and cost into their applications.

• The data structure MPI Ckpt options allows the
library implementor some freedom for providing
implementation specific options and choices. For
example, which algorithm or level they prefer,
how many failures he plans for the system to tol-
erate simultaneously, the ratio for two (2)-level
switching, etc. In order to maintain consistency,
the options specified in MPI Ckpt options should
have global effect. That is, if the user speci-
fies one particular checkpoint algorithm, this al-
gorithm will work on all the data to be check-
pointed; if the user specifies the ratio of 2 levels,
the ratio will remain a global constant until it is
explicitly changed by another function call, etc.

2. MPI Ckpt close(): Counterpart of MPI Ckpt open().

3. MPI Ckpt(void * data needs ckpt, long length, MPI
Datatype datatype, int tag): This is a registration func-
tion. The user could use it to mark which data to
checkpoint and separating it from the data could be
easily computed from the data to checkpoint. Thus
the size of the checkpoint could be controlled. Also,

the checkpoint and rollback library should support any
MPI data types.

4. MPI Ckpt here(): This function is the one which will
do the actual work. Users call this function at some
synchronized points in their program to checkpoint all
the data previously registered by MPI Ckpt(...). The
idea is to let the user make the decision where to check-
point :

• We have the general rule: the user knows his ap-
plication the best. This is also the foundation of
lots of user manual fault tolerant algorithms.

• The operation or algorithm (e.g. like
Chandy / Lamport) to get a global synchronous
status is very expensive.

• Due to the fact that an MPI application might do
no synchronous work after its call to MPI Init(),
the global synchronous status from the system
point of view might still be different from the
user application’s point of view.

5. MPI Rollback(void * data rollback, long length, MPI
Datatype datatype, int tag): Users call this function
after RTE recovery to rollback the data from the latest
complete checkpoint copy. Also, he has the freedom
to rollback those data in random order.

6. MPI Remove ckpt(int tag): If some data are no longer
in use , the user could call this function to prevent them
from future checkpointing and save the performance.

7. MPI Ckpt ctrl(MPI Ckpt options * options): If neces-
sary, user could call this function to change the global
checkpoint and rollback options. The idea here is to
make the checkpoint and rollback component as easy
to control as the UNIX file or I/O system.

4 Sample Pattern

In this section, we are providing a sample pattern (see
Figure. 1) to show how to write a fault tolerant application
on top of FT-MPI with the hope it can provide a standard
and uniformed way of integrating checkpoint and rollback
features into normal MPI applications.

5 Current Implementation of FT-MPI check-
point and rollback library

Based on the above specification proposal and current
implementation of FT-MPI, we implemented the MPI oper-
ation level checkpoint/rollback library.

void error handler(MPI Comm * pcomm, int * prc, ...){
recover comm(pcomm);
MPI Error string(*prc, errstr, &len);
longjmp(here, 1); /* escape from hell */

}
void main(){

struct data type data needs ckpt[];
struct data type data could comp[];

MPI Init();
MPI Ckpt open(MPI Ckpt options)
MPI Errhandler create();
setjmp(here); /* after recovery, longjmp here */
/* Set the error handler to the comm world */
MPI Errhandler set();

if (after recovery)
MPI Rollback(data needs ckpt,length,datatype,tag);

else/* normal startup */
MPI Ckpt(data needs ckpt,length,datatype,tag);

for(;;){
Compute(data needs ckpt);
Compute(data could comp,data needs ckpt);
MPI Ckpt here(); /* Sync point */
/* if necessary, change the ctrl options */
MPI Ckpt ctrl(MPI Ckpt options);
}
MPI Ckpt close();
MPI Finalize();
return;

}

Figure 1. Sample Pattern of integrating the
feature of checkpoint and rollback into MPI
programs

5.1 Possible optimizations

From [14] [12] [13] [8] and other checkpoint and roll-
back related papers, we analyzed the main performance bot-
tleneck of checkpointing and provide some possible opti-
mization methods.

1. Size of checkpoint. With MPI operation level check-
pointing, users could specify which data to checkpoint.
The size of checkpoint might be significantly reduced.

2. The internal collective communication introduced by
checkpointing. In FT-MPI, we use dynamic switch-
ing techniques to select from several known and imple-
mented collective algorithms according to the message
size, communicator mode, number of process involved
in communication, etc. So the collective, especially
the Reduce, Bcast, Allgather algorithms used in get-
ting the checkpoint, global status, and rollback have
been optimized.

3. The storage media user to store the checkpoints.

• According to the availability of local memory, re-
mote nodes, and external stable disk, the priority
of the data to checkpoint, the number of failures
to tolerate simultaneouly, the checkpoint routine
dynamically switches from storage media to me-
dia to find a tradeoff in between performance and
robustness (see Figure 4).

• Utilize the local memory or the memory of re-
mote nodes to prepare for the more frequent and
less fatal errors, and use a longer periodic write-
to-stable-disk strategy preparing for the worst
case, i.e. all processes down or an error occurs
in the middle of checkpointing. That is, an im-
plementation of the Two-Level Recovery Scheme
[17]. So a deliberate selection of the ratio of 2
level becomes very important in getting the trade-
off between costs, performance and robustness.

4. By default, there are one in-memory copy and two on-
stable-disk copies of checkpoint (all these 3 copies of
checkpoint are of different time step) co-existing in the
system for robustness.

5.2 The imem-m-rep algorithm

We implement an in-memory-m-replication algorithm to
store one copy of checkpoint in local redundant memory
on each node. This algorithm is designed to tolerate any
m, wherem ≤ n− 1 number of process failure/unavailable
simultaneously. Figure 2 demonstrates when the nof equals
2, i.e. m == 2, how the checkpoint process of imem-m-rep
works.

Figure 2. How imem-m-rep-ckpt works – As-
sume m equals 2

Figure 3. How imem-m-rep-rollback works –
Assume the Process on Node 3 is newly re-
spawned

1. When the MPI Ckpt here() routine starts, every pro-
cess (assume its rank is i) first makes a copy of the
data needs ckpt into local data copy

2. Every process i signals the background checkpoint
thread to run. Then the main thread will return the
control flow back to user

3. The background checkpoint thread of process i sends
the data from local data copy to the ckpt buf of pro-
cess (i + 1)%n

4. If m > 1, every process i will continuously send the
data received from its PREVIOUS (process (i − 1 +
n)%n) to its NEXT (process (i + 1)%n).

5. The send/receive pipeline continues until the number
of loops equals m.

6. When the number of loops equals m, the checkpoint
thread stop working and write one bit in correspond-
ing data structure to signal the main thread that current
round of checkpoint is completed.

With this checkpoint algorithm, the rollback algorithm is
straight forward. When any up to m of the processes failed
and re-spawned,

1. All the processes step into a stage of global status
gather by MPI Allgather(). Every process, old or new,
will then know how many processes died in the last
round of failure and who is new, as well as whether

the last round of imem-m-rep checkpointing has com-
pleted in all the processes.

2. If the last round imem-m-rep checkpoint process has
completed in all the old processes and the number of
process failed is less than or equal to the previously set
nof,

every newly re-spawned process i will calculate who
is its NEXT old neighbour and could get its
checkpoint back. Then it post a receive request
to it.

all the old processes will employ the same calculation
algorithm to know who should be responsible for
its nearest PREVIOUS new process. Then the re-
sponsible one will post a send to the new ones.

3. Else

it will call the stable-disk rollback algorithm

4. Only every new MPI process’ nearest NEXT will
send one copy of corresponding checkpoint data in its
ckpt buf to the new ones.

5. All the other processes just rollback from its lo-
cal data copy without any communication.

The rollback procedure is illustrated in Figure 3.
Obviously, this imem-m-rep algorithm could tolerate any

m; m ≤ n − 1 number of process failures simultaneously.
The main advantage of this algorithm is the low cost dur-

ing rollback: only every newly re-spawned process and its
nearest NEXT are involved in communication. All the other
old processes could rollback by a simple memcpy() , which
is very fast. The quantified rollback differences of these
three types of process could be observed in Table 2.

The main disadvantage of this algorithm is the memory
consumption problem. Memory is very precious in large
scale scientific computing. So we employ one more algo-
rithm of writing to and reading back from stable disk.

5.3 The stable disk algorithm

The stable disk algorithm

1. Make multiple copies of checkpoint. To save mem-
ory, the imem-m-rep algorithm only has one copy of
checkpoint. So in case an error occurs in the middle of
processing the checkpoint, we should utilize the stable
disk.

2. The stable disk algorithm has two copies of checkpoint
(each copy is of different time step) for robustness.
When the rollback procedure of the stable disk is in-
voked, it will rollback from the latest coherent copy.

Figure 4. How MPI Ckpt() works

3. It makes our checkpoint/rollback system two (2) level.
The imem-m-rep algorithm is prepared for more fre-
quent and less fatal m; m ≤ n − 1 number of process
failure, while the stable-disk algorithm is always ready
for the worst.

4. Due to the much higher overhead of the stable disk
algorithm (which could be observed in Table 1
and Table 2 of section 6) by default, in our current
MPI Ckpt here() version, the ratio of stable disk al-
gorithm to imem-m-rep algorithm is set to 1 : 1000.
That is, we invoke the stable disk checkpoint rou-
tine every 1000 times of imem-m-rep. Of course, the
user has been granted the right to change this ratio
by changing the input parameter MPI Ckpt options of
MPI Ckpt open() or MPI Ckpt ctrl() functions.

5.4 How MPI Ckpt() works

Figure 4 illustrates how our MPI Ckpt() dynamically
switches between different levels of checkpoint algorithms
and implmentations depending on the user’s input parame-
ters and the available resources in system. For example, is
there enough memory to tolerate nof number of simultane-
ous failures in imem-m-rep algorithm, etc.

6 A Preview of Testing Data

Due to page limit restrictions, we only attach some
typical and interesting test results of the FT-MPI check-
point/rollback library here.

6.1 Testing Platform – TORC

Our testing platform (TORC) is a collaborative effort be-
tween the University of Tennessee’s Innovative Computer
Laboratory in the Computer Science Department and Oak

Ridge National Laboratory. It is comprised primarily of
commodity hardware and software.

• Hardware:

– Myrinet 8-port switches, and PCI LANI 4.1 cards
– 2× 16-port Fast Ethernet Switch (Bay Networks

350T)
– Compute nodes:

∗ Dual 933MHz Pentium III (256KB cache)
∗ Dell WS400 machines, using the PCI

82440FX (Natoma) chipset
∗ 512 MB RAM
∗ 3Com Fast Etherlink 905TX 10/100 BaseT

Network Interface Card (integrated)

• Software:

– Red Hat Linux (2.4.22 multiprocessing kernel)
– Gnu C/C++ (g++ 3.3.2)

6.2 Sample Testing Data

Here, we provide some explanation of Table 1 and Ta-
ble 2:

• The Sender, Recver and Normal row in Table 2 stands
for the overhead of the old process who would send
one copy of its checkpoint data to its PREVIOUS new
process, the new process who would receive one copy
of checkpoint from its nearest NEXT neighbour, and all
the other old processes who would rollback from local
”ckpt buf” without any communication, respectively.
The details of this rollback procedure could be found
in subsection 5.3. The rollback overhead of these three
types of processes varies, so they are listed separately.

• Due to the set of full buffer mode on the stable disk
file, the rollback overhead of old processes and newly
re-spawned processes differ, so only the rollback over-
head of the new processes are listed.

• In imem-m-rep algorithm, the data shown is for nof =
1.

• All the testing results in Table 1 and Table 2 are those
for four processes on four different nodes.

• The 400B, 40KB, and4MB in the most left column
of both Tables mean the corresponding row of test-
ing results are received from checkpoint size 400Bytes,
40KBytes and 4MBytes data, respectively.

Comparison between the Table 1 and Table 2, we could
conclude:

T recover T stable T ckpt T stable T rollback
loop ckpt total rollback total

400B 0.6684 0.0151 0.0185 0.0033 0.0051
OLD
400B - - - 0.0040 0.0094
NEW
40KB 0.6434 0.0295 0.0356 0.0033 0.0047
OLD

40KB - - - 0.04767 0.06037
NEW
4MB - 3.0704 3.2319 0.0380 0.0453
OLD
4MB - - - 1.5401 1.5781
NEW

Table 1. Checkpoint and rollback overhead of
stable disk algorithm

T imem T ckpt T imem T rollback
ckpt total rollback total

400B 0.0026 0.0062 0.000151 0.0016
Sender
400B - - 0.000151 0.0015

Recver
400B - - 0.000004 0.0046

Normal
40KB 0.0261 0.0269 0.000893 0.002584
Sender
40KB - - 0.001431 0.037701
Recver
40KB - - 0.000143 0.035958

Normal
4MB 0.6907 1.0701 0.353990 0.391026

Sender
4MB - - 0.344040 0.381836

Recver
4MB - - 0.022379 0.059456

Normal

Table 2. Checkpoint and rollback overhead of
imem-m-rep algorithm

Figure 5. Hierarchy of future generation fault
tolerant parallel system

1. Both overheads of the stable-disk algorithm and imem-
m-rep increases significantly as the size of checkpoint
increases.

2. When the checkpoint size is very small, such as the
400Byte row, the overhead of the stable disk algorithm
is more than ten times higher.

3. The performance of the stable disk checkpoint and
rollback algorithm is restricted by the bus or efficiency
of Parallel I/O. The power of the imem-m-rep algo-
rithm is limited by memory and network.

7 Hierarchy

With the progress of our work, a picture of the hierarchy
of future generation, fault tolerant parallel systems becomes
more and more clear as Figure 5 illustrates.

From the bottom level HARNESS [3], which is responsi-
ble for the failure detection and notification; upper level FT-
MPI, which takes a systematic procedure/steps to recover
the MPI objects, run time environment and user application
context; For upper level applications, FT-MPI provides the
MPI Ckpt/Rollback() routines. Eventually, the most upper
level user application and fault tolerant numerical library
(e.g.FT-LAPACK) will be built upon all these underlying
facilities and benefit from them.

References

[1] G. Burns, R. Daoud, and J. Vaigl. LAM: An Open Cluster
Environment for MPI. In Proceedings of Supercomputing
Symposium, pages 379–386, 1994.

[2] J. Dongarra. An overview of high performance computers,
clusters, and grid computing. 2nd Teraflop Workbench Work-
shop, March 2005.

[3] G. E. Fagg, A. Bukovsky, and J. J. Dongarra. Harness and
fault tolerant mpi. Parallel Computing, 27(11):1479–1495,
2001.

[4] G. E. Fagg and J. Dongarra. Ft-mpi: Fault tolerant mpi,
supporting dynamic applications in a dynamic world. In
Proceedings of the 7th European PVM/MPI Users’ Group
Meeting on Recent Advances in Parallel Virtual Machine
and Message Passing Interface, pages 346–353, London,
UK, 2000. Springer-Verlag.

[5] G. E. Fagg, E. Gabriel, G. Bosilca, and et al. Extending
the mpi specification for process fault tolerance on high per-
formance computing systems. Proceedings of the ISC2004,
June 2004.

[6] G. E. Fagg, E. Gabriel, Z. Chen, T. Angskun, G. Bosilca,
J. Pjesiva-Grbovic, and J. J. Dongarra. Process fault tol-
erance: semantics, design and applications for high perfor-
mance computing. The International Journal of High Per-
formance Computing Applications, 19(4):465–477, 2005.

[7] E. Godard, S. Setia, and E. L. White. Dyrect: Software
support for adaptive parallelism on nows. In IPDPS ’00:
Proceedings of the 15 IPDPS 2000 Workshops on Paral-
lel and Distributed Processing, pages 1168–1175, London,
UK, 2000. Springer-Verlag.

[8] K. Li, J. F. Naughton, and J. S. Plank. Low-latency, con-
current checkpointing for parallel programs. IEEE Trans.
Parallel Distrib. Syst., 5(8):874–879, 1994.

[9] V. K. Naik, S. P. Midkiff, and J. E. Moreira. A check-
pointing strategy for scalable recovery on distributed par-
allel systems. In Supercomputing ’97: Proceedings of the
1997 ACM/IEEE conference on Supercomputing (CDROM),
pages 1–19, New York, NY, USA, 1997. ACM Press.

[10] T. Organization. System processor
counts/systems in top500 list nov. 2004.
http://www.top500.org/lists/2004/11/charts.php?c=12,
November 2004.

[11] T. Organization. System processor
counts/systems in top500 list june 2005.
http://www.top500.org/lists/2005/06/charts.php?c=12,
June 2005.

[12] J. S. Plank. A tutorial on reed-solomon coding for
fault-tolerance in raid-like systems. Softw. Pract. Exper.,
27(9):995–1012, 1997.

[13] J. S. Plank and Y. Ding. Note: Correction to the 1997 tutorial
on reed-solomon coding. Softw., Pract. Exper., 35(2):189–
194, 2005.

[14] J. S. Plank, K. Li, and M. A. Puening. Diskless checkpoint-
ing. IEEE Transactions on Parallel and Distributed Systems,
9(10):972–??, 1998.

[15] J. M. Squyres and A. Lumsdaine. A Component Archi-
tecture for LAM/MPI. In Proceedings, 10th European
PVM/MPI Users’ Group Meeting, number 2840 in Lecture
Notes in Computer Science, pages 379–387, Venice, Italy,
September / October 2003. Springer-Verlag.

[16] S. S. Vadhiyar and J. Dongarra. Srs: A framework for de-
veloping malleable and migratable parallel applications for
distributed systems. Parallel Processing Letters, 13(2):291–
312, 2003.

[17] N. H. Vaidya. A case for two-level recovery schemes. IEEE
Trans. Comput., 47(6):656–666, 1998.

