

A Systematic Multi-step Methodology for Performance Analysis of
Communication Traces of Distributed Applications based on Hierarchical

Clustering

Gaby Aguilera 1, Patricia J. Teller 1, Michela Taufer 1, and Felix Wolf 2

1 University of Texas-El Paso
El Paso, TX 79968 USA

{maguilera, pteller, mtaufer}@utep.edu

2 Forschungszentrum Jülich
52425 Jülich, Germany
f.wolf@fz-juelich.de

Abstract

Often parallel scientific applications are instrumented
and traces are collected and analyzed to identify
processes with performance problems or operations that
cause delays in program execution. The execution of
instrumented codes may generate large amounts of
performance data, and the collection, storage, and
analysis of such traces are time and space demanding.
To address this problem, this paper presents an efficient,
systematic, multi-step methodology, based on
hierarchical clustering, for analysis of communication
traces of parallel scientific applications. The
methodology is used to discover potential
communication performance problems of three
applications: TRACE, REMO, and SWEEP3D.

1. Introduction

Today’s most complex scientific applications require
large numbers of calculations to solve problems.
Usually, these problems exhibit some type of inherent
parallelism by either repeating the same calculation on
different data (data parallelism) or performing different
calculations on the same data (functional parallelism).
This parallelism can be exploited to arrive at solutions
faster by developing parallel algorithms and applications
to run on large-scale supercomputers. However,
designing, programming, debugging, and tuning these
applications present challenges, in part due to the level
of complexity added by the number of processes that
need to explicitly communicate, share data, and
synchronize. In addition, it is difficult to track the
execution of a program that is being executed
simultaneously by multiple processes; this makes it

difficult to hand optimize code or to find communication
and synchronization bottlenecks.

In order to identify potential application performance
problems, there exist several tools, e.g., [1, 2, 3], that
provide programmers with the ability to collect pertinent
data about the state of the system and program execution
during runtime. Usually, a user can specify the
computation-, communication-, and synchronization-
related events to monitor and the areas of code to
instrument. With respect to computation-related events,
state-of-the-art processors include a set of on-chip
performance counters that record the occurrence of
events such as floating-point operations, cache misses,
and branch mispredictions. The numbers of events that
can be monitored by architectures vary; some support the
monitoring of over 100. To aid in the collection of this
data, PAPI (Performance Application Programming
Interface) gives users a consistent interface to access the
performance counter hardware found on major
microprocessors [4].

Although instrumentation can facilitate the
identification of performance problems and guide
subsequent performance tuning efforts, it can generate
large amounts of data. For example, even for a program
that runs for a few minutes, hundreds of thousands of
data points can be collected for each execution instance.
Multiplying each instance by the number of events or
metrics collected can result in an unmanageable data set,
e.g., gigabytes of information. When data sets are so
large, the following question arises: How can we
discover where performance problems arise or what
operations caused delays in the execution of a program?
Due to the complexity of parallel programs and the
multidimensionality of the collected performance data, it
is natural to look at multivariate statistical analysis
techniques for data analysis and knowledge discovery.
This paper presents a systematic, multi-step

methodology, based on a simple but effective statistical
technique, i.e., hierarchical clustering of communication
performance data, to discover potential communication
bottlenecks in distributed applications. The methodology
is used to analyze communication-related performance
data collected during the execution of three applications.
Specifically, this paper demonstrates how performance
analysts can use this methodology to identify so called
process pairs of interest, i.e., process pairs that are
characterized by heavy communication, their physical
locations within the distributed system, and potential
performance problems.

The remainder of the paper is organized in five parts.
Section 2 discusses related work. Sections 3 and 4
present the methodology. Section 5 demonstrates the use
of this methodology and, finally, Section 6 concludes the
paper and discusses future work.

2. Related Work

This work was inspired by a paper of Vetter [5] that
explores the use of multivariate statistical analysis
techniques on large sets of performance counter data to
extract relevant performance information and give
insights into application behavior. The techniques
presented in the paper include hierarchical (dendrogram)
and non-hierarchical (k-means) clustering, factor
analysis, and principal component analysis. The paper
shows that when these techniques are applied to
hardware counter data, they can result in valuable
application performance information and the removal of
redundancy in counter data. Identifying redundancy in
the collected data, i.e., identifying events that give
similar results (or are highly correlated), can reduce the
number of events to monitor and, thus, maximize the use
of counters and reduce the dimensions of the data.

Vetter and McCracken also apply statistical analysis
techniques to communication data to accurately identify
communication operations that do not scale well with
application problem size [6, 7]. Analyses of nine
benchmark profiles indicate poorly scaling
communication operations.

This paper extends the work of Vetter and McCracken
by providing a systematic, multi-step methodology,
based on hierarchical clustering, to analyze
communication traces and identify potential
communication performance problems.

3. Collection and Storage of Large-Scale
Performance Data

Parallel applications developed to run on
multiprocessor systems are, by nature, complex and are
expected to run for long periods of time. If these
applications are instrumented to collect performance

data, the longer they run, the larger the size of the
recorded performance data set. For example, if
performance data is collected for a program executed on
thousands of nodes for millions of time steps, and a large
number of metrics is collected, the size of the file that
stores the data can explode — it can be many gigabytes
in size. Accordingly, three important issues arise:
efficient data collection, efficient data storage, and
efficient access and analysis of stored data. This section
briefly describes the various data collection techniques
provided by different tools and the data collection and
storage techniques used in the work presented in this
paper.

3.1. Data Collection

There are a number of tools that collect data to identify
potential performance problems present in parallel
programs. The data to be collected is identified by
manual or automatic instrumentation. The former is
accomplished by manually inserting directives in code
locations of interest [3]. The latter can be accomplished
by modifying a Makefile to enable a tool to
automatically preprocess the code, inserting directives
automatically before compilation [2, 3]. Alternatively,
users can opt for a completely automated and dynamic
process, where the executable does not have to be
recompiled and instrumentation occurs at execution time
[1].

These tools differ not only in the approach adopted for
program instrumentation, but also with respect to the
information they collect and whether or not the user
specifies the types of data to collect. Some tools capture
trace files, possibly with time stamps, that record the
history of events that occur in the system during program
execution. One example of this is a communication trace
file that contains communication event information and,
when supported and specified, hardware performance
counter data [8, 9]. Other tools produce profiles that
record the amount of time spent in each function,
number of times each function is called, and, if available,
other metrics, such as event counts, supplied by
hardware counters [1, 3]. In terms of analysis, a tool can
provide offline or postmortem inspection and analysis of
trace files and/or profiles, or it can provide performance
information as the program executes, In the latter case, it
might even allow the user to stop execution to respecify
the data to be collected or the code sections to be
monitored [1].

This paper utilizes communication traces of parallel
programs. The tool used for data collection is KOJAK
(Kit for Objective Judgment and Knowledge-based
Detection of Performance Bottlenecks), developed by
Mohr and Wolf [2]. KOJAK is an automatic
performance analyzer that can collect and analyze

performance data from MPI, OpenMP, and hybrid
parallel programs. The latter use OpenMP directives for
shared-memory code segments and MPI library calls for
message-passing segments. KOJAK uses OPARI
(OpenMP Pragma And Region Instrumentor), a source-
to-source translation tool, the PMPI library, and TAU
(Tuning and Analysis Utilities) to instrument OpenMP
directives, MPI functions, and user-defined functions,
respectively. Once the source code is instrumented, the
compile and link commands are modified to include all
necessary libraries. If the user links to the PAPI library,
hardware counter performance data also is collected.
While the application is executed, an EPILOG trace file
is generated, which contains information about MPI-
communication, OpenMP, and, if specified, hardware-
counter events. An API (Application Programming
Interface), EARL (Event Analysis and Recognition
Library), can be used to facilitate access to data stored in
EPILOG format trace files.

3.2. Data Storage

The use of the EPILOG trace file format and EARL
result in efficient storage and access of trace files [11,
12]. The binary trace data format is designed to store
performance data associated with the execution of
parallel applications [9]. It guarantees that each event is
mapped to a physical system location defined as a
quadruplet {machine, node, process, thread}. The format
also supports collection of information associated with
source code, such as line numbers and file names, call
sites, and, if available, event counts (from hardware
counters). The trace format defines the structure of the
trace file, which is composed of three sections: header,
definition records, and event records. The header
identifies the byte order and trace file format version,
while the definition and event records comprise all the
performance data. Definition records store information
that describes machines, nodes, processes, threads,
source-code entities, performance metrics, and MPI
communicators. Event records store performance data
that vary with the type of event. Two fundamental pieces
of data are stored in each record: a location identifier and
a time stamp. Location identifiers map occurrences of
events to physical locations, while time stamps map
events to specific points in time during application
execution.

The EARL API facilitates access to all types of event
and definition records described in the EPILOG trace file
format. EARL gives users the flexibility to access events
and manage them as objects so that events have
associated attributes. Most importantly, EARL gives
users the ability to: randomly access events in a trace,
link pairs of related events, such as send/receive

communication event pairs, and access the execution
state at the time of a specific event.

4. Methodology for Analysis of
Communication Data

This section describes a multi-step methodology for
analysis of communication data guided by hierarchical
clustering. The method is used in Section 5 to analyze
the communication traces of three real-world
applications.

4.1. Hierarchical Clustering

Hierarchical clustering consists of partitioning a data
set into subsets or clusters, so that the data in each subset
share a common trait. This is done by using a distance
measure to quantify similarity or proximity in data, in
this case, communication data.

Typical statistical methods, such as maximum,
minimum, and mean, can be used to analyze data,
however, when dealing with large amounts of data, these
methods are not effective alone. To compliment and
increase the effectiveness of these methods, hierarchical
clustering can be used to decrease the size of the data set
to be analyzed. Hierarchical clustering algorithms form
successive clusters using previously formed clusters. In
the case of a communication trace, to be analyzed for
performance problems, hierarchical clustering can be
used to reduce the size of the data to be analyzed by
identifying the data associated with processes that
exhibit heavy communication. Subsequently, the
performance analyst can focus on this data subset,
performing a more in-depth analysis of it to identify code
that may present performance problems.

To effectively use this method of analysis for this
purpose, the question that must be answered is: What
metric should be used to evaluate the similarity or
distance between processes so that meaningful clusters
(of performance data) are formed? A logical metric to
use to identify processes that are heavy communicators
is the number of bytes exchanged between process pairs.
Accordingly, the first attempt at clustering uses this
metric, which is quantified by calculating the aggregate
number of bytes exchanged between processes.
Preliminary results indicate that most process pairs
exchange similar numbers of bytes. This is not surprising
for two reasons. First, since one of the goals of
parallelizing applications is to distribute the workload
among a group of processes, the programmer endeavors
to evenly distribute the data among the processes.
Second, the applications used in this case study have
been highly optimized and, as a result, likely exhibit
good load balancing.

Given that the aggregate number of bytes exchanged
between processes does not differentiate pairs of
processes, the second attempt at clustering uses
communication time as the differentiating metric for two
reasons. First, if two processes communicate frequently,
then their aggregate communication times should reflect
their frequencies of communication. Second, long
communication times between processes that reside in
different nodes should be reflected in aggregate
communication times larger than those associated with
communicating processes in the same node – this
information should be highlighted in the analysis since it
can help the analyst identify communication patterns that
should be modified if possible. Note that in using the
aggregate communication time metric, the overall
outcome is not affected by one long message but is
affected by a series of long messages – this also can help
the analyst decide if communication patterns should be
changed.

To turn this metric into a distance function that can be
used to identify heavily communicating process pairs,
the extracted communication data is processed to attain
the aggregate communication time for each pair of
communicating processes. Because the objective of this
first step in the analysis is to group pairs of processes
that communicate heavily, the inverse of the aggregate
communication time is used as the distance function. As
shown in Figure 1, this results in the distance function,
D(a,b), for process pair (a,b), where T(a b)i is the time
for the ith communication between processes a and b.

Figure 1: Distance function.

After the distance functions are calculated for all
communicating process pairs and stored in a distance
matrix, a hierarchical clustering algorithm is applied to
identify heavily communicating processes based on their
aggregate communication times. The results can guide
the analysis of the communication data. The next section
explains in detail the steps followed to perform this
analysis.

4.2. Multi-Step Methodology

The methodology is based on a sequence of steps,
outlined in Figure 2, implemented by software
components written in C++, Perl, and MATLAB. The
first step, S1, extracts communication information from
an EPILOG format trace file. Trace.C, the code that does
this, is a C++ program that uses the EARL API. The
second step, S2, summarizes in a text file the extracted

communication information (see Table 1 for an
example), i.e., the aggregate number of bytes exchanged
between process pairs and the related aggregate
communication time. Step S3 forms a distance matrix of
size p-by-p, where p is the number of processes in the
multiprocessor system, using the inverse of the aggregate
communication time as the distance function. The
distance matrix is the input to the fourth step, S4. This
step uses the hierarchical clustering utility in MATLAB
to form clusters of the performance data and represent
them graphically to identify heavily communicating
processes (see Figure 3, 4, and 5 for examples). This
information is the input to the final step, S5, comprised
of several components, which can: (1) determine if pairs
of processors reside on the same node; (2) attain call
path information for execution points of interest; and (3)
analyze small versus large messages based on message
summary data.

S1: Extract communication data from trace file

S2: Summarize extracted communication
 information
S3: Create distance matrix using data from
 previous step

S4: Perform hierarchical clustering

S5: Identify process pairs of interest and
 perform a more in-depth analysis

Figure 2: Multi-step methodology for trace
analysis.

5. Use of Methodology

To show the effectiveness of the methodology
described in Section 4, this section analyzes the results
of using the methodology to analyze traces from three
real-world applications, TRACE, REMO, and
SWEEP3D.

5.1. Applications

Three real-world applications were used to generate
trace files: TRACE, REMO, and SWEEP3D. TRACE
[12] was developed at the Research Center in Jülich,
Germany. It simulates the subsurface water flow in
variably saturated porous media. TRACE uses message
passing to communicate. The trace file used in this paper
was generated by executing this application on four SMP
nodes with four processes, one per processor of a node
[13].

REMO [14] is a weather forecast application of the
German climate computer center DKRZ (Deutsches

Klima Rechenzentrum). It implements a hydrostatic
limited area model, which is based on the
German/European weather forecast model of the German
Meteorological Services (Deutscher Wetterdienst or
DWD). REMO is a hybrid MPI/OpenMP application.
The REMO traces used in this paper were taken from an
early experimental MPI/OpenMP (i.e., hybrid) version of
the production code [13]. As for TRACE, the trace file
for REMO was generated by executing the application
on four SMP nodes with four processes, one per
processor of a node [13].

The benchmark code SWEEP3D [15] represents the
core of a real ASCI (Accelerated Strategic Computing
Initiative) application. It solves a 1-group time-
independent discrete ordinates 3D Cartesian geometry
neutron transport problem. SWEEP3D is a hybrid
MPI/OpenMP application. Unlike the others, this
application was executed by 64 processes on a 64-
processor (eight-node) cluster at the High Performance
Computing Center of the University of Houston [16].

5.2. Results of Analysis

The multi-step methodology presented in Section 4.2
allows users to determine physical locations of
processes and threads, i.e., whether they are located on
the same node. Table 1 shows the locations of the
processes and threads on four nodes for the TRACE and
REMO applications, and on seven nodes for SWEEP3D.
This information is generated in Step S2 of the
methodology. Additionally, the aggregate
communication time between any two processes is
computed. This information is used in Step S3 to create a
distance matrix, identify clusters of communicating
process pairs, and help identify processes that may be
associated with communication bottlenecks. The
clustering is generated by using the distance matrix
D(a,b), where a and b are processes, built following the
procedure presented in Section 4.2.

Figure 3 shows the resulting clusters of communicating
process pairs for the TRACE application. Figures 4 and
5 show the same information for the REMO and
SWEEP3D applications, respectively. The dendrograms
in the three figures quantify the closeness of process
pairs, which is directly related to the amount of time two
processes spend communicating: the larger the aggregate
communication time, the smaller the distance and the
more the processes belong in a communication cluster.
The dendrogram in Figure 3 indicates that for the
TRACE application the process pairs of interest are (2,
11) and (0, 8) (see pairs in rectangles). For the REMO
application, note that process pair (3, 7) is the heaviest
communicating pair. For SWEEP3D, the results of the
clustering, pictured in Figure 5, show several process
pairs of interest and two major clusters: processes 50, 56,

57, 59, 60, 61, 62, and 63 form one cluster, while the
other cluster is formed by the remaining processes.

Process pairs of interest, identified through this data
clustering, are those that should be further analyzed to
identify possible reasons for their higher communication
times. This final step of the proposed methodology
allows users to further investigate and visualize: (1)
execution time versus message size, (2) execution time
versus communication time, and (3) message size versus
communication time for process pairs of interest.

TRACE. The plot representation of execution time
versus message size for the process pair of interest (2,
11) in TRACE gives insight into when messages of a
particular size are transmitted. As Figure 6 shows, for
this process pair there are two message sizes: 128 bytes
and 3,456 bytes, which are homogeneously distributed
during the entire execution time. This observation
suggests an analysis to determine if it is possible to
decrease communication time by packaging sets of small
messages into larger ones.

 TRACE REMO SWEEP3D
events 19712210 11063530 3255168
#machines 1 1 1
nodes 4 4 7
#processes 16 4 64
threads 16 16 64 N

ode

Process

T
hread

N
ode

Process

T
hread

N
ode

Process

T
hread

0 0 0
1 1 1

0 0-20 0-20

2 2 2
0

3 3

0 0

3
1 21-32 21-32

4 4 4
5 5 5

2 33-40 33-40

6 6 6
1

7 7

1 1

7
3 41-48 41-48

8 8 8
9 9 9

4 49-56 49-56

10 10 1
0

2

11 11

2 2

1
1

5 57-60 57-60

12 12 1
2

13 13 1
3

14 14 1
4

M
ac

hi
ne

, N
od

e,
 P

ro
ce

ss
, a

nd
 T

hr
ea

d
Id

en
tif

ic
at

io
n

3

15 15

3 3

1
5

6 61-63 61-63

Table 1: Location of nodes, processes, and
threads using the multi-step methodology.

Graphing message size versus communication time
gives a summary of the different communication times
associated with each message size. One would expect
that for a particular process pair the communication time
for a fixed message size would not vary much. Although
only two message sizes are exchanged between
processes 2 and 11, there is a variety of communication
times associated with each message size. This could be
due to contention for system resources or initialization
overhead. For example, as shown in Figure 7, which
plots communication time against message size, the
largest communication time of all the messages
transmitted between processes 2 and 11 is 0.05 seconds,
and this is associated with the first message exchanged
between the two processes.

REMO. Figure 8 depicts the different sizes of
messages exchanged between the pair of interest (3, 7)
during the execution of the REMO application. There are
11 different message sizes exchanged between processes
3 and 7. By inspecting this figure, one can speculate that
the gaps in the graph separate the initialization,
computation, and finalization phases of the program.
Figure 9 shows the different communication times
associated with each message size. From this figure, it
can be concluded that communication time does not
depend on message size. In fact, small and large
messages have similar communication times. For
instance, some 7,040-byte messages take about the same
time as a 164,032-byte message. This graph shows that
the 6,864-byte, 70,400-byte, and 140,800-byte messages
have the most consistent communication times, while the
7,040-byte, 60,352-byte, and 164,032-byte messages
have communication times that fluctuate the most. This
behavior deserves more investigation; program
modifications targeted at reducing these communication
times could enhance performance.

SWEEP3D. The communication trace data associated
with two heavy communicating process pairs, (21, 22)
and (52, 60), is analyzed for SWEEP3D in Figure 10.
This application uses only one message size to exchange
data between processes; therefore, a message size
comparison analysis is not meaningful. However, as
shown below, an analysis of execution time vs.
communication time can provide important insights.

For example, for the process pair of interest (21, 22),
which communicates within the same node, the
execution time versus communication time data allows
the performance analyst to see that large communication
times for this process pair occur during program
execution. In contrast, as shown in Figure 11, for the
process pair (52, 60), which communicates between two
different nodes, communication times are comparatively
short. The hierarchical clustering applied to the
SWEEP3D trace data helps to identify such anomalies,
and the methodology facilitates investigation of these

apparent performance inconsistencies by identifying call
paths that initiated the related communication events and
the sizes of the corresponding messages. This
investigation can help focus tuning efforts on the code
regions that potentially exhibit performance problems.

From these examples, it can be seen that the multi-step
methodology helps users answer questions such as:
Which message sizes should be used when
communicating between process pairs, i.e., should
multiple smaller messages or one large message be
transmitted? Using the methodology, one can figure out
when during a program execution certain message sizes
are used, i.e. in the beginning, middle, or end of the
program.

6. Conclusions

This paper indicates that hierarchical clustering of
communication performance data may be a method that
can facilitate the processing of large amounts of
performance data collected during a parallel program’s
execution; it deserves further investigation. Hierarchical
clustering is a key component of the systematic, multi-
step methodology that was presented and used in this
paper to investigate the communication performance of
three real-world applications, TRACE, REMO, and
SWEEP3D. In particular, the methodology allows users
to identify processes that might experience
communication problems, the physical locations of the
processes, the sizes of communications in which they are
involved, and the associated communication times.

With peta-scale systems looming in the near future,
statistical techniques such as these likely will play an
important role in performance analyses that will help
zero-in on communication and computation performance
problems or bottlenecks. Accordingly, our current and
future research includes further investigation of
statistical techniques, including factor analysis and
principal components analysis, for these purposes.

 Acknowledgements

We wish to thank the Department of Defense, in particular,
the PET program, and IBM, in the form of an IBM SUR grant,
for support of this research. This work was carried out in the
PET Computational Environments functional area under
Department of Defense Contract No. N62306-01-D-7110/0070.

References

[1] B. Miller, et al. The Paradyn parallel performance
measurement tools. IEEE Computer, 28(11) 37–46, Nov.
1995.

[2] B. Mohr and F. Wolf. KOJAK - A tool set for automatic
performance analysis of parallel programs. In Proceedings of
the 2003 Euro-Par Conference, pages 1301–1304.

[3] B. Mohr, D. Brown, and A. Malony. TAU: a portable
parallel program analysis environment for pC++: a portable
data-parallel programming system for scalable parallel
computers. In Proceedings of CONPAR 94 - VAPP VI, Sept.
1994.

[4] M. Maxwell, P. Teller, L. Salayandia, and S. Moore.
Accuracy of performance monitoring hardware. In
Proceedings of the LACSI Symposium, Oct. 2002.

[5] D. Ahn and J. Vetter. Scalable analysis techniques for
microprocessor performance counter metrics. In Proceedings
of SC2002, Nov. 2002.

[6] J. Vetter and M. McCracken. Statistical scalability analysis
of communication operations in distributed applications. In
Proceedings of ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (PPOPP), 2001.

[7] J. Vetter and F. Mueller. Communication characteristics of
large-scale scientific applications for contemporary cluster
architectures. In Proceedings of the International Parallel
and Distributed Processing Symposium (IPDPS), 2002.

[8] F. Wolf and B. Mohr. EPILOG binary trace-data format.
Technical Report FZJZAM-IB-2004-06, Forschungszentrum
Jülich, May 2004.

[9] Structured trace format.
http://www.intel.com/software/products/cluster/tcollector/ove
rview.htm.

[10] F. Wolf. EARL - API documentation. ICL Technical
Report, ICL-UT-04-03, University of Tennessee-Knoxville,
Oct. 2004.

[11] F. Wolf, B. Mohr, J. Dongarra, and S. Moore. Efficient
pattern search in large traces through successive refinement.
In Proceedings of the European Conference on Parallel
Computing (Euro-Par), Aug.-Sept. 2004.

[12] Forschungszentrum Jülich. Solute transport in
heterogeneous soil-aquifer systems. http://www.kfa-
juelich.de/icg/icg4/Groups/Pollutgeosys/trace_e.html.

[13] F. Wolf. Automatic performance analysis on parallel
computers with SMP nodes. Ph.D. dissertation, RWTH
Aachen, Forschungszentrum Jülich, ISBN 3-00-010003-2,
http://www.fz-juelich.de/nic-series/volume17/, Feb. 2003.

[14] E T. Diehl and V. Geulzow. Performance of the
parallelized regional climate model REMO. In Proceedings
of the Eighth ECMWF (European Centre for Medium-Range
Weather Forecasts) Workshop on the Use of Parallel
Processors in Meteorology, Nov. 1998, pages 181–191.

[15] Accelerated Strategic Computing Initiative [ASCI], The
ASCI SWEEP3D benchmark code.
http://www.llnl.gov/asci_benchmarks/asci/limited/sweep3d/a
sci_sweep3d.html.

[16] University of Houston. Galaxy cluster at the University of
Houston. http://www.suncoe.uh.edu/galaxy/.

Figure 3: Clusters of process pairs for TRACE.

Figure 4: Clusters of process pairs for REMO.

Figure 5: Clusters of process pairs for SWEEP3D.

Figure 6: Execution time vs. message size
for process pair (2, 11) in TRACE.

Figure 7: Communication time vs. message size

for process pair (2, 11) in TRACE.

Figure 8: Execution time vs. message size

for process pair (3, 7) in REMO.

Figure 9: Communication time vs. message size

for process pair (3, 7) in REMO.

Figure 10: Communication time vs. execution

time for process pair (21, 22) in SWEEP3D.

Figure 11: Communication time vs. execution time

for process pair (52, 60) in SWEEP3D.

