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Abstract 

Often parallel scientific applications are instrumented 
and traces are collected and analyzed to identify 
processes with performance problems or operations that 
cause delays in program execution. The execution of 
instrumented codes may generate large amounts of 
performance data, and the collection, storage, and 
analysis of such traces are time and space demanding. 
To address this problem, this paper presents an efficient, 
systematic, multi-step methodology, based on 
hierarchical clustering, for analysis of communication 
traces of parallel scientific applications. The 
methodology is used to discover potential 
communication performance problems of three 
applications: TRACE, REMO, and SWEEP3D. 

 

 

1. Introduction 

Today’s most complex scientific applications require 
large numbers of calculations to solve problems. 
Usually, these problems exhibit some type of inherent 
parallelism by either repeating the same calculation on 
different data (data parallelism) or performing different 
calculations on the same data (functional parallelism). 
This parallelism can be exploited to arrive at solutions 
faster by developing parallel algorithms and applications 
to run on large-scale supercomputers. However, 
designing, programming, debugging, and tuning these 
applications present  challenges, in part due to the level 
of complexity added by the number of processes that 
need to explicitly communicate, share data, and 
synchronize. In addition, it is difficult to track the 
execution of a program that is being executed 
simultaneously by multiple processes; this makes it 

difficult to hand optimize code or to find communication 
and synchronization bottlenecks.  

In order to identify potential application performance 
problems, there exist several tools, e.g., [1, 2, 3], that 
provide programmers with the ability to collect pertinent 
data about the state of the system and program execution 
during runtime. Usually, a user can specify the 
computation-, communication-, and synchronization-
related events to monitor and the areas of code to 
instrument. With respect to computation-related events, 
state-of-the-art processors include a set of on-chip 
performance counters that record the occurrence of 
events such as floating-point operations, cache misses, 
and branch mispredictions. The numbers of events that 
can be monitored by architectures vary; some support the 
monitoring of over 100. To aid in the collection of this 
data, PAPI (Performance Application Programming 
Interface) gives users a consistent interface to access the 
performance counter hardware found on major 
microprocessors [4].  

Although instrumentation can facilitate the 
identification of performance problems and guide 
subsequent performance tuning efforts, it can generate 
large amounts of data. For example, even for a program 
that runs for a few minutes, hundreds of thousands of 
data points can be collected for each execution instance. 
Multiplying each instance by the number of events or 
metrics collected can result in an unmanageable data set, 
e.g., gigabytes of information. When data sets are so 
large, the following question arises: How can we 
discover where performance problems arise or what 
operations caused delays in the execution of a program? 
Due to the complexity of parallel programs and the 
multidimensionality of the collected performance data, it 
is natural to look at multivariate statistical analysis 
techniques for data analysis and knowledge discovery. 
This paper presents a systematic, multi-step 



 

methodology, based on a simple but effective statistical 
technique, i.e., hierarchical clustering of communication 
performance data, to discover potential communication 
bottlenecks in distributed applications. The methodology 
is used to analyze communication-related performance 
data collected during the execution of three applications. 
Specifically, this paper demonstrates how performance 
analysts can use this methodology to identify so called 
process pairs of interest, i.e., process pairs that are 
characterized by heavy communication, their physical 
locations within the distributed system, and potential 
performance problems. 

The remainder of the paper is organized in five parts. 
Section 2 discusses related work. Sections 3 and 4 
present the methodology. Section 5 demonstrates  the use 
of this methodology and, finally, Section 6 concludes the 
paper and discusses future work. 

2. Related Work 

This work was inspired by a paper of Vetter [5] that 
explores the use of multivariate statistical analysis 
techniques on large sets of performance counter data to 
extract relevant performance information and give 
insights into application behavior. The techniques 
presented in the paper include hierarchical (dendrogram) 
and non-hierarchical (k-means) clustering, factor 
analysis, and principal component analysis. The paper 
shows that when these techniques are applied to 
hardware counter data, they can result in valuable 
application performance information and the removal of 
redundancy in counter data. Identifying redundancy in 
the collected data, i.e., identifying events that give 
similar results (or are highly correlated), can reduce the 
number of events to monitor and, thus, maximize the use 
of counters and reduce the dimensions of the data. 

Vetter and McCracken also apply statistical analysis 
techniques to communication data to accurately identify 
communication operations that do not scale well with 
application problem size [6, 7]. Analyses of nine 
benchmark profiles indicate poorly scaling 
communication operations.  

This paper extends the work of Vetter and McCracken 
by providing a systematic, multi-step methodology, 
based on hierarchical clustering, to analyze 
communication traces and identify potential 
communication performance problems.  

3. Collection and Storage of Large-Scale 
Performance Data 

Parallel applications developed to run on  
multiprocessor systems are, by nature, complex and are 
expected to run for long periods of time. If these 
applications are instrumented to collect performance 

data, the longer they run, the larger the size of the 
recorded performance data set. For example, if 
performance data is collected for a program executed on 
thousands of nodes for millions of time steps, and a large 
number of metrics is collected, the size of the file that 
stores the data can explode — it can be many gigabytes 
in size. Accordingly, three important issues arise: 
efficient data collection, efficient data storage, and 
efficient access and analysis of stored data. This section 
briefly describes the various data collection techniques 
provided by different tools and the data collection and 
storage techniques used in the work presented in this 
paper. 

3.1. Data Collection 

There are a number of tools that collect data to identify 
potential performance problems present in parallel 
programs. The data to be collected is identified by 
manual or automatic instrumentation. The former is 
accomplished by manually inserting directives in code 
locations of interest [3]. The latter can be accomplished 
by modifying a Makefile to enable a tool to 
automatically preprocess the code, inserting directives 
automatically before compilation [2, 3]. Alternatively, 
users can opt for a completely automated and dynamic 
process, where the executable does not have to be 
recompiled and instrumentation occurs at execution time 
[1].  

These tools differ not only in the approach adopted for 
program instrumentation, but also with respect to the 
information they collect and whether or not the user 
specifies the types of data to collect. Some tools capture 
trace files, possibly with time stamps, that record the 
history of events that occur in the system during program 
execution. One example of this is a communication trace 
file that contains communication event information and, 
when supported and specified, hardware performance 
counter data [8, 9]. Other tools produce profiles that 
record the amount of time spent in each function, 
number of times each function is called, and, if available, 
other metrics, such as event counts, supplied by 
hardware counters [1, 3]. In terms of analysis, a tool can 
provide offline or postmortem inspection and analysis of 
trace files and/or profiles, or it can provide performance 
information as the program executes, In the latter case, it 
might even allow the user to stop execution to respecify 
the data to be collected or the code sections to be 
monitored [1]. 

This paper utilizes communication traces of parallel 
programs. The tool used for data collection is KOJAK 
(Kit for Objective Judgment and Knowledge-based 
Detection of Performance Bottlenecks), developed by 
Mohr and Wolf [2]. KOJAK is an automatic 
performance analyzer that can collect and analyze 



 

performance data from MPI, OpenMP, and hybrid 
parallel programs. The latter use OpenMP directives for 
shared-memory code segments and MPI library calls for 
message-passing segments. KOJAK uses OPARI 
(OpenMP Pragma And Region Instrumentor), a source-
to-source translation tool, the PMPI library, and TAU 
(Tuning and Analysis Utilities) to instrument OpenMP 
directives, MPI functions, and user-defined functions, 
respectively. Once the source code is instrumented, the 
compile and link commands are modified to include all 
necessary libraries. If the user links to the PAPI library, 
hardware counter performance data also is collected. 
While the application is executed, an EPILOG trace file 
is generated, which contains information about MPI-
communication, OpenMP, and, if specified, hardware-
counter events. An API (Application Programming 
Interface), EARL (Event Analysis and Recognition 
Library), can be used to facilitate access to data stored in 
EPILOG format trace files.  

3.2. Data Storage 

The use of the EPILOG trace file format and EARL 
result in efficient storage and access of trace files [11, 
12]. The binary trace data format is designed to store 
performance data associated with the execution of 
parallel applications [9]. It guarantees that each event is 
mapped to a physical system location defined as a 
quadruplet {machine, node, process, thread}. The format 
also supports collection of information associated with 
source code, such as line numbers and file names, call 
sites, and, if available, event counts (from hardware 
counters). The trace format defines the structure of the 
trace file, which is composed of three sections: header, 
definition records, and event records.  The header 
identifies the byte order and trace file format version, 
while the definition and event records comprise all the 
performance data. Definition records store information 
that describes machines, nodes, processes, threads, 
source-code entities, performance metrics, and MPI 
communicators. Event records store performance data 
that vary with the type of event. Two fundamental pieces 
of data are stored in each record: a location identifier and 
a time stamp. Location identifiers map occurrences of 
events to physical locations, while time stamps map 
events to specific points in time during application 
execution.  

The EARL API facilitates access to all types of event 
and definition records described in the EPILOG trace file 
format. EARL gives users the flexibility to access events 
and manage them as objects so that events have 
associated attributes. Most importantly, EARL gives 
users the ability to: randomly access events in a trace, 
link pairs of related events, such as send/receive 

communication event pairs, and access the execution 
state at the time of a specific event.  

4. Methodology for Analysis of 
Communication Data  

This section describes a multi-step methodology for 
analysis of communication data guided by hierarchical 
clustering. The method is used in Section 5 to analyze 
the communication traces of three real-world 
applications. 

4.1. Hierarchical Clustering  

Hierarchical clustering consists of partitioning a data 
set into subsets or clusters, so that the data in each subset 
share a common trait. This is done by using a distance 
measure to quantify similarity or proximity in data, in 
this case, communication data. 

Typical statistical methods, such as maximum, 
minimum, and mean, can be used to analyze data, 
however, when dealing with large amounts of data, these 
methods are not effective alone. To compliment and 
increase the effectiveness of these methods, hierarchical 
clustering can be used to decrease the size of the data set 
to be analyzed. Hierarchical clustering algorithms form 
successive clusters using previously formed clusters.  In 
the case of a communication trace, to be analyzed for 
performance problems, hierarchical clustering can be 
used to reduce the size of the data to be analyzed by 
identifying the data associated with processes that 
exhibit heavy communication. Subsequently, the 
performance analyst can focus on this data subset, 
performing a more in-depth analysis of it to identify code 
that may present performance problems. 

To effectively use this method of analysis for this 
purpose, the question that must be answered is: What 
metric should be used to evaluate the similarity or 
distance between processes so that meaningful clusters 
(of performance data) are formed? A logical metric to 
use to identify processes that are heavy communicators 
is the number of bytes exchanged between process pairs. 
Accordingly, the first attempt at clustering uses this 
metric, which is quantified by calculating the aggregate 
number of bytes exchanged between processes. 
Preliminary results indicate that most process pairs 
exchange similar numbers of bytes. This is not surprising 
for two reasons. First, since one of the goals of 
parallelizing applications is to distribute the workload 
among a group of processes, the programmer endeavors 
to evenly distribute the data among the processes. 
Second, the applications used in this case study have 
been highly optimized and, as a result, likely exhibit 
good load balancing. 



 

Given that the aggregate number of bytes exchanged 
between processes does not differentiate pairs of 
processes, the second attempt at clustering uses 
communication time as the differentiating metric for two 
reasons. First, if two processes communicate frequently, 
then their aggregate communication times should reflect 
their frequencies of communication. Second, long 
communication times between processes that reside in 
different nodes should be reflected in aggregate 
communication times larger than those associated with 
communicating processes in the same node – this 
information should be highlighted in the analysis since it 
can help the analyst identify communication patterns that 
should be modified if possible. Note that in using the 
aggregate communication time metric, the overall 
outcome is not affected by one long message but is 
affected by a series of long messages – this also can help 
the analyst decide if communication patterns should be 
changed. 

To turn this metric into a distance function that can be 
used to identify heavily communicating process pairs, 
the extracted communication data is processed to attain 
the aggregate communication time for each pair of 
communicating processes. Because the objective of this 
first step in the analysis is to group pairs of processes 
that communicate heavily, the inverse of the aggregate 
communication time is used as the distance function. As 
shown in Figure 1, this results in the distance function,  
D(a,b),  for process pair (a,b),  where T(a b)i is the time 
for the ith communication between processes a and b.  

 
Figure 1: Distance function. 

After the distance functions are calculated for all 
communicating process pairs and stored in a distance 
matrix, a hierarchical clustering algorithm is applied to 
identify heavily communicating processes based on their 
aggregate communication times. The results can guide 
the analysis of the communication data. The next section 
explains in detail the steps followed to perform this 
analysis.  

4.2. Multi-Step Methodology 

The methodology is based on a sequence of steps, 
outlined in Figure 2, implemented by software 
components written in C++, Perl, and MATLAB. The 
first step, S1, extracts communication information from 
an EPILOG format trace file. Trace.C, the code that does 
this, is a C++ program that uses the EARL API. The 
second step, S2, summarizes in a text file the extracted 

communication information (see Table 1 for an 
example), i.e., the aggregate number of bytes exchanged 
between process pairs and the related aggregate 
communication time. Step S3 forms a distance matrix of 
size p-by-p, where p is the number of processes in the 
multiprocessor system, using the inverse of the aggregate 
communication time as the distance function. The 
distance matrix is the input to the fourth step, S4. This 
step uses the hierarchical clustering utility in MATLAB 
to form clusters of the performance data and represent 
them graphically to identify heavily communicating 
processes (see Figure 3, 4, and 5 for examples). This 
information is the input to the final step, S5, comprised 
of several components, which can: (1) determine if pairs 
of processors reside on the same node; (2) attain call 
path information for execution points of interest; and (3) 
analyze small versus large messages based on message 
summary data. 

S1: Extract communication data from trace file 

S2: Summarize extracted communication  
       information 
S3: Create distance matrix using data from    
       previous step 

S4: Perform hierarchical clustering 

S5: Identify process pairs of interest and     
       perform a more in-depth analysis 

Figure 2: Multi-step methodology for trace 
analysis. 

5. Use of Methodology 

To show the effectiveness of the methodology 
described in Section 4, this section analyzes the results 
of using the methodology to analyze traces from three 
real-world applications, TRACE, REMO, and 
SWEEP3D. 

5.1. Applications  

Three real-world applications were used to generate 
trace files: TRACE, REMO, and SWEEP3D. TRACE 
[12] was developed at the Research Center in Jülich, 
Germany. It simulates the subsurface water flow in 
variably saturated porous media. TRACE uses message 
passing to communicate. The trace file used in this paper 
was generated by executing this application on four SMP 
nodes with four processes, one per processor of a node 
[13]. 

REMO [14] is a weather forecast application of the 
German climate computer center DKRZ (Deutsches 



 

Klima Rechenzentrum). It implements a hydrostatic 
limited area model, which is based on the 
German/European weather forecast model of the German 
Meteorological Services (Deutscher Wetterdienst or 
DWD). REMO is a hybrid MPI/OpenMP application.  
The REMO traces used in this paper were taken from an 
early experimental MPI/OpenMP (i.e., hybrid) version of 
the production code [13]. As for TRACE, the trace file 
for REMO was generated by executing the application 
on four SMP nodes with four processes, one per 
processor of a node [13]. 

The benchmark code SWEEP3D [15] represents the 
core of a real ASCI (Accelerated Strategic Computing 
Initiative) application. It solves a 1-group time-
independent discrete ordinates 3D Cartesian geometry 
neutron transport problem. SWEEP3D is a hybrid 
MPI/OpenMP application. Unlike the others, this 
application was executed by 64 processes on a 64-
processor (eight-node) cluster at the High Performance 
Computing Center of the University of Houston [16]. 

5.2. Results of Analysis 

The multi-step methodology presented in Section 4.2 
allows users to determine physical locations of 
processes and threads, i.e., whether they are located on 
the same node. Table 1 shows the locations of the 
processes and threads on four nodes for the TRACE and 
REMO applications, and on seven nodes for SWEEP3D. 
This information is generated in Step S2 of the 
methodology. Additionally, the aggregate 
communication time between any two processes is 
computed. This information is used in Step S3 to create a 
distance matrix, identify clusters of communicating 
process pairs, and help identify processes that may be 
associated with communication bottlenecks. The 
clustering is generated by using the distance matrix 
D(a,b), where a and b are processes, built following the 
procedure presented in Section 4.2.  

Figure 3 shows the resulting clusters of communicating 
process pairs for the TRACE application. Figures 4 and 
5 show the same information for the REMO and 
SWEEP3D applications, respectively. The dendrograms 
in the three figures quantify the closeness of process 
pairs, which is directly related to the amount of time two 
processes spend communicating: the larger the aggregate 
communication time, the smaller the distance and the 
more the processes belong in a communication cluster. 
The dendrogram in Figure 3 indicates that for the 
TRACE application the process pairs of interest are (2, 
11) and (0, 8) (see pairs in rectangles). For the REMO 
application, note that process pair (3, 7) is the heaviest 
communicating pair. For SWEEP3D, the results of the 
clustering, pictured in Figure 5, show several process 
pairs of interest and two major clusters: processes 50, 56, 

57, 59, 60, 61, 62, and 63 form one cluster, while the 
other cluster is formed by the remaining processes. 

Process pairs of interest, identified through this data 
clustering, are those that should be further analyzed to 
identify possible reasons for their higher communication 
times. This final step of the proposed methodology 
allows users to further investigate and visualize: (1) 
execution time versus message size, (2) execution time 
versus communication time, and (3) message size versus 
communication time for process pairs of interest. 

TRACE. The plot representation of execution time 
versus message size for the process pair of interest (2, 
11) in TRACE gives insight into when messages of a 
particular size are transmitted. As Figure 6 shows, for 
this process pair there are two message sizes: 128 bytes 
and 3,456 bytes, which are homogeneously distributed 
during the entire execution time. This observation 
suggests an analysis to determine if it is possible to 
decrease communication time by packaging sets of small 
messages into larger ones. 

 

 TRACE REMO SWEEP3D 
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Table 1: Location of nodes, processes, and 
threads using the multi-step methodology. 

 



 

Graphing message size versus communication time 
gives a summary of the different communication times 
associated with each message size. One would expect 
that for a particular process pair the communication time 
for a fixed message size would not vary much. Although 
only two message sizes are exchanged between 
processes 2 and 11, there is a variety of communication 
times associated with each message size. This could be 
due to contention for system resources or initialization 
overhead. For example, as shown in Figure 7, which 
plots communication time against message size, the 
largest communication time of all the messages 
transmitted between processes 2 and 11 is 0.05 seconds, 
and this is associated with the first message exchanged 
between the two processes. 

REMO. Figure 8 depicts the different sizes of 
messages exchanged between the pair of interest (3, 7) 
during the execution of the REMO application. There are 
11 different message sizes exchanged between processes 
3 and 7. By inspecting this figure, one can speculate that 
the gaps in the graph separate the initialization, 
computation, and finalization phases of the program. 
Figure 9 shows the different communication times 
associated with each message size. From this figure, it 
can be concluded that communication time does not 
depend on message size. In fact, small and large 
messages have similar communication times. For 
instance, some 7,040-byte messages take about the same 
time as a 164,032-byte message. This graph shows that 
the 6,864-byte, 70,400-byte, and 140,800-byte messages 
have the most consistent communication times, while the 
7,040-byte, 60,352-byte, and 164,032-byte messages 
have communication times that fluctuate the most. This 
behavior deserves more investigation; program 
modifications targeted at reducing these communication 
times could enhance performance. 

SWEEP3D. The communication trace data associated 
with two heavy communicating process pairs, (21, 22) 
and (52, 60), is analyzed for SWEEP3D in Figure 10. 
This application uses only one message size to exchange 
data between processes; therefore, a message size 
comparison analysis is not meaningful. However, as 
shown below, an analysis of execution time vs. 
communication time can provide important insights. 

For example, for the process pair of interest (21, 22), 
which communicates within the same node, the 
execution time versus communication time data allows 
the performance analyst to see that large communication 
times for this process pair occur during program 
execution. In contrast, as shown in Figure 11, for the 
process pair (52, 60), which communicates between two 
different nodes, communication times are comparatively 
short. The hierarchical clustering applied to the 
SWEEP3D trace data helps to identify such anomalies, 
and the methodology facilitates investigation of these 

apparent performance inconsistencies by identifying call 
paths that initiated the related communication events and 
the sizes of the corresponding messages. This 
investigation can help focus tuning efforts on the code 
regions that potentially exhibit performance problems. 

From these examples, it can be seen that the multi-step 
methodology helps users answer questions such as: 
Which message sizes should be used when 
communicating between process pairs, i.e., should 
multiple smaller messages or one large message be 
transmitted?  Using the methodology, one can figure out 
when during a program execution certain message sizes 
are used, i.e. in the beginning, middle, or end of the 
program.  

6. Conclusions  

This paper indicates that hierarchical clustering of 
communication performance data may be a method that 
can facilitate the processing of large amounts of 
performance data collected during a parallel program’s 
execution; it deserves further investigation. Hierarchical 
clustering is a key component of the systematic, multi-
step methodology that was presented and used in this 
paper to investigate the communication performance of 
three real-world applications, TRACE, REMO, and 
SWEEP3D. In particular, the methodology allows users 
to identify processes that might experience 
communication problems, the physical locations of the 
processes, the sizes of communications in which they are 
involved, and the associated communication times.  

With peta-scale systems looming in the near future, 
statistical techniques such as these likely will play an 
important role in performance analyses that will help 
zero-in on communication and computation performance 
problems or bottlenecks. Accordingly, our current and 
future research includes further investigation of 
statistical techniques, including factor analysis and 
principal components analysis, for these purposes. 
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Figure 3: Clusters of process pairs for TRACE. 

 
Figure 4: Clusters of process pairs for REMO. 

 
Figure 5: Clusters of process pairs for SWEEP3D.  

 



 

Figure 6: Execution time vs. message size  
for process pair (2, 11) in TRACE. 

 
Figure 7: Communication time vs. message size  

for process pair (2, 11) in TRACE. 
 

 
Figure 8: Execution time vs. message size  

for process pair (3, 7) in REMO. 

 
Figure 9: Communication time vs. message size  

for process pair (3, 7) in REMO. 
 

 
Figure 10: Communication time vs. execution 

time for process pair (21, 22) in SWEEP3D. 

 
Figure 11: Communication time vs. execution time 

for process pair (52, 60) in SWEEP3D. 

 


