
Recent Developments in GridSolve

Asim YarKhan Keith Seymour Kiran Sagi Zhiao Shi Jack Dongarra
Department of Computer Science

University of Tennessee, Knoxville
Knoxville, TN 37996

October 3, 2005

Abstract

The purpose of GridSolve is to create the middleware necessary to provide a seamless bridge
between the simple, standard programming interfaces and desktop systems that dominate the
work of computational scientists and the rich supply of services supported by the emerging
Grid architecture, so that the users of the former can easilyaccess and reap the benefits (shared
processing, storage, software, data resources, etc.) of using the latter. In addition to supporting
a diverse set of hardware, such as desktop computers, clusters, and massively parallel comput-
ers, Grid middleware may need to interact with the software managing those systems, such as
Condor, LFC (LAPACK for Clusters), and batch queues. Furthermore, user requests may be
characterized in different ways (parameter sweep, task graph, etc.), each with different require-
ments. This diversity has led us to implement scheduling in different layers of GridSolve with
the understanding that a strategy for scheduling and resource allocation is an essential part of
realizing the vision of transparent Grid computing. In thispaper we will discuss some of these
scheduling mechanisms and some of the possible interactions with external systems such as
LFC and Condor.

1 Introduction

The emergence of Grid computing as the proto-
type of a next generation cyber infrastructure for
science has generated high expectations for its
potential as an accelerator of discovery. How-
ever, it has also raised questions about whether
and how the broad population of research pro-
fessionals, who must be the foundation of such
productivity, can be motivated to adopt this new
and more complex infrastructure. The rise of
the new era of scientific modeling and simulation
has, after all, been precipitous, and many science
and engineering professionals have only recently
become comfortable with the relatively simple
world of the uniprocessor workstations and desk-
top scientific computing tools. In that world,
software packages such as Matlab and Mathe-

matica represent general-purpose scientific com-
puting environments that enable users - totaling
more than a million worldwide - to solve a wide
variety of problems through flexible user inter-
faces that can model in a natural way the math-
ematical aspects of many different problem do-
mains. Moreover, the ongoing, exponential in-
crease in the computing resources supplied by
the typical workstation makes these scientific
computing environments more and more pow-
erful, and thereby tends to reduce the need for
the kind of resource sharing that represents a
major strength of Grid computing. Certainly
there are various forces now urging collabora-
tion across disciplines and distances, and the
burgeoning Grid community, which aims to fa-
cilitate such collaboration, has made significant
progress in mitigating the well-known complex-

1

ities of building, operating, and using distributed
computing environments. But it is unrealistic to
expect the transition of research professionals to
the Grid to be anything but halting and slow if it
means abandoning the scientific computing en-
vironments that they rightfully view as a major
source of their productivity.

The GridSolve project addresses this diffi-
cult problem directly: The purpose of GridSolve
is to create the middleware necessary to pro-
vide a seamless bridge between the simple, stan-
dard programming interfaces and desktop sys-
tems that dominate the work of computational
scientists and the rich supply of services sup-
ported by the emerging Grid architecture, so that
the users of the former can easily access and reap
the benefits (shared processing, storage, soft-
ware, data resources, etc.) of using the latter.
This vision of the broad community of scientists,
engineers, research professionals and students,
working with the powerful and flexible tool set
provided by their familiar desktop computing en-
vironment, and yet able to easily draw on the
vast, shared resources of the Grid for unique or
exceptional resource needs, or to collaborate in-
tensively with colleagues in other organizations
and locations, is the vision that GridSolve is de-
signed to realize.

To that end, GridSolve employs NetSolve
[1] as one of its primary enabling technologies.
NetSolve is a client-agent-server system which
provides remote access to hardware and software
resources through a variety of client interfaces.

A NetSolve system consists of three entities,
as illustrated in Figure 1.

• The Client, which needs to execute some
remote procedure call. In addition to C
and Fortran programs, the NetSolve client
may be an interactive problem solving en-
vironment such as Matlab or Mathemat-
ica.

• The Server executes functions on behalf
of the clients. The server hardware can
range in complexity from a uniprocessor
to a MPP system and the functions exe-

cuted by the server can be arbitrarily com-
plex. Server administrators can straight-
forwardly add their own function services
without affecting the rest of the NetSolve
system.

• The Agent is the focal point of the Net-
Solve system. It maintains a list of all
available servers and performs resource
selection for client requests as well as en-
suring load balancing of the servers.

In practice, from the user’s perspective the
mechanisms employed by NetSolve make the re-
mote procedure call fairly transparent. However,
behind the scenes, a typical call to NetSolve in-
volves several steps, as follows:

1. The client queries the agent for an appro-
priate server that can execute the desired
function.

2. The agent returns a list of available
servers, ranked in order of suitability.

3. The client attempts to contact a server
from the list, starting with the first and
moving down through the list. The client
then sends the input data to the server.

4. Finally the server executes the function on
behalf of the client and returns the results.

In addition to providing the middleware nec-
essary to perform the brokered remote procedure
call, GridSolve aims to provide mechanisms to
interface with other existing Grid services. This
can be done by having a client that knows how
to communicate with various Grid services or by
having servers that act as proxies to those Grid
services. NetSolve provides some support for
the proxy server approach, while the client-side
approach would be supported by the emerging
GridRPC standard API [2]. We briefly discuss
these two approaches here.

Normally the GridSolve server executes the
actual service request itself, but in some cases
it can act as a proxy to other services such as
Condor. The primary benefit is that the client-
to-server communication protocol is identical so

2

Figure 1: Overview of NetSolve

the client does not need to be aware of every
possible back-end service. A server proxy also
allows aggregation and scheduling of resources,
such as the machines in a cluster, on one Grid-
Solve server. We will discuss this in more detail
in Section 2.4.

The GridRPC API represents ongoing work
to standardize and implement a portable and sim-
ple remote procedure call (RPC) mechanism for
Grid computing. This standardization effort is
being pursued through the Global Grid Forum
Research Group on Programming Models [3].
The initial work on GridRPC reported in [2]
shows that client access to existing Grid comput-
ing systems such as NetSolve and Ninf [4] can be
unified via a common API, a task that has proven
to be problematic in the past. In its current
form, the C API provided by GridRPC allows
the source code of client programs to be compat-
ible with different Grid services, provided that
service implements a GridRPC API.

The combination of these technologies will
allow GridSolve to provide seamless client ac-
cess to a diverse set of Grid services. Since Grid-
Solve encompasses NetSolve and to avoid con-

fusion, we will hereafter only use the term Grid-
Solve.

2 Scheduling in GridSolve

In this section we discuss several approaches to
scheduling that have been implemented in the
GridSolve 2.0 distribution.

2.1 Agent Based Scheduling

In agent based scheduling, the agent uses knowl-
edge of the requested service, information about
the parameters of the service request from the
client, and the current state of the resources to
score the possible servers and return the servers
in sorted order.

When a service is started, the server in-
forms the agent about services that it provides
and the computational complexity of those ser-
vices. This complexity is expressed using two
integer constantsa andb and is evaluated asaNb,
whereN is the size of the problem. At startup,
the server notifies the agent about its computa-
tional speed (approximate MFlops from a simple

3

for all servers Si that can provide the desired service
T1(Si) = estimated amount of time for computation on Si

T2(Si) = estimated time for communicating input and output data
T (Si) = T1(Si)+ T2(Si) estimated total time using Si

select the server Sm which has the minimum time, where T (Sm) = min T (Si)∀i

Figure 2: Minimum Completion Time algorithm

benchmark) and it continually updates the agent
with information about its workload. The band-
width and latency of communication between
the server and the agent are also monitored, and
are used as an estimate of the communication ca-
pacity between the client and server. When an
agent receives a request for a service with a par-
ticular problem size, it uses the problem com-
plexity and the server status information to esti-
mate the time to completion on each server pro-
viding that service. It orders the servers in terms
of time to completion, and then returns the list
of servers to the client. The client then sends the
service request to the fastest server. If that fails
for some reason, the client can submit the service
request to the next fastest service, thus provid-
ing a basic level of fault tolerance. This schedul-
ing heuristic, summarized in Figure 2, is known
asMinimum Completion Time and it works well
in many practical cases. Each service request
should be assigned to the server that would com-
plete the service in the minimum time, assuming
that the currently known loads on the servers will
remain constant during the execution.

To evaluate the effectiveness of this form
of load balancing, we submit 16DGEMM (matrix
multiply) requests to a GridSolve Grid with a
varying number of active servers. The servers
run on a cluster of dual processor 933MHz Pen-
tium 3 machines and the agent and client run
elsewhere on the network. As Figure 3 illus-
trates, when more servers are present the Grid-
Solve agent can balance the load among the
available servers resulting in lower overall exe-
cution time. The scalability is not perfect since
adding servers only reduces the total computa-
tional cost, not the communication cost.

However, the Minimum Completion Time
heuristic does not try to maximize the throughput
when servers are allowed to run multiple services
and there are many more requested services than
available servers. Since an estimate of the execu-
tion time for currently executing service is avail-
able, this knowledge could be used to schedule
new service requests more intelligently. Some
explorations of alternative scheduling heuristics
using historical execution trace information in
are described in [5].

2.2 Request Sequencing

As the size of data sets increases, the ability to
specify the flow of data becomes more impor-
tant. It would be inefficient to force intermediate
results to be transmitted back and forth between
the client and servers when those results will not
be used again on the client and are needed at
the server during the future steps of the compu-
tation. Our aim inrequest sequencing is to de-
crease network traffic between client and server
components in order to decrease overall request
response time. Our design ensures that (i) no un-
necessary data is transmitted and (ii) all neces-
sary data is transferred. This is accomplished
by performing a data flow analysis of the in-
put and output parameters of every request in
the sequence to produce a directed acyclic graph
(DAG) that represents the tasks and their execu-
tion dependences. This DAG is then sent to a
server in the system where it is scheduled for ex-
ecution.

In the current version of request sequencing,
the GridSolve agent assigns the entire sequence
to a single server. The server is selected based

4

40

60

80

100

120

140

160

180

200

220

1 2 3 4 5 6 7 8

T
ot

al
 ti

m
e

(s
ec

)

Number of Machines in the Grid

NetSolve Load Balancing -- 16 DGEMM Submissions (n=700)

Figure 3: GridSolve Load Balancing with Agent-based Scheduling

on the sum of the predicted run times of all the
tasks. We execute a node if all its inputs are
available and there are no conflicts with its out-
put parameters. Because the only mode of ex-
ecution we currently support is using a single
GridSolve server, GridSolve is prevented from
exploiting any parallelism inherent in the task
graph. However, distributing independent tasks
to different machines makes the scheduling and
data management more important (and compli-
cated) than in the single server scenario. This
limitation would also be a problem when no sin-
gle server has all the software required to execute
the entire sequence. Therefore, we will need to
extend the GridSolve scheduling and execution
infrastructure to make more efficient use of the
available resources when executing a sequenced
request.

As a simple demonstration to show the ef-
fectiveness of request sequencing, we submit a
sequence of three GridSolve requests, each de-
pendent on the results of the previous request:
DGEMM ⇒ DLACPY ⇒ DGEMM. DGEMM is a ma-

trix multiply routine andDLACPY copies a ma-
trix. Because of the sequential nature of this
task graph, even when multiple servers are avail-
able, the tasks cannot execute in parallel. Us-
ing the same machines as in the previous ex-
periment, submitting this sequence as three in-
dividual requests took 4.43 seconds on average,
while submitting it as one sequence only took
3.07 seconds. Of course, if the task graph con-
tained some inherent parallelism, using a non-
sequenced series of requests would allow us to
execute on multiple machines, possibly closing
the performance gap. However, the difference
in performance depends on the amount of par-
allelism that we could exploit and the commu-
nication overhead that we would avoid by using
request sequencing.

2.3 Task Farming in GridSolve

Task Farming represents an important class of
distributed computing applications, where mul-
tiple independent tasks are executed to solve a
particular problem. Many algorithms fit into

5

this framework, for example, parameter-space
searches, Monte-Carlo simulations and genome
sequence matching. This class of applications
is highly suited to Grid computing, however,
scheduling task farming applications efficiently
can be difficult since the resources in a Grid may
be highly variable and the tasks may take differ-
ent amounts of time.

Without using a special task farming API, a
naive algorithm could be implemented by using
the standard GridSolve interface and letting the
GridSolve agent handle the scheduling. A user
would make a series of non-blocking requests,
probe to see if the requests have completed, and
then wait to retrieve the results from completed
requests. However this leads to problems with
regard to scheduling, especially if the number of
tasks is much larger than the number of servers.
Alternatively, the user could try to handle the de-
tails of scheduling, but this solution requires a
knowledge of the system that is not easily avail-
able to the user, and it ignores the GridSolve goal
of ease-of-use.

In order to provide an efficient and easy to
use interface to task farming, GridSolve imple-
ments a special API. In the farming interface,
the user converts the parameters for requests into
an arrays of parameters, indexed by an iterator
string. Figure 4 shows an example of the task
farming interface. The task farming API only
adds 4 calls to GridSolve, namely 3 calls for con-
structing arrays of different data types, and 1 call
for the actual farming. More details about the
API can be found in the Users Guide to Grid-
Solve [1].

One problem with the current task farming
API is that it only returns when the all the tasks
have been completed. That is, it does not allow
the user to get results when a subset of the tasks
have been completed, so the user cannot visual-
ize, guide or cancel during the execution. These
are things that we are working to address in the
current development version of GridSolve.

2.4 Server Based Scheduling

Part of the GridSolve philosophy is to provide
easy and transparent interfaces to access and
reuse existing software solutions. In line with
this, GridSolve provides mechanisms to provide
interfaces to alternative scheduling and execu-
tion systems.

In the server based approach to scheduling,
GridSolve creates server-proxies to delegate the
scheduling to specialized scheduling and execu-
tion services such as batch systems, Condor or
LFC (LAPACK for Clusters). The GridSolve
agent sees the server-proxy as a single server en-
tity, even though the server-proxy can represent
a large number of actual resources, and so the
proxy handles the scheduling for these resources,
rather than the GridSolve agent.

The GridSolve agent can decide to send the
service request to a server-proxy based on sev-
eral factors (e.g., the proxy can register itself
with the agent as a virtual server with a large
amount of processing power). The server-proxy
will delegate the request to the specialized ser-
vice (e.g. Condor), which schedules and exe-
cutes the request. The server-proxy then returns
the results back to the client.

2.4.1 LAPACK for Clusters

The integration of LAPACK For Clusters (LFC)
[6] into the GridSolve system gives the Grid-
Solve system the ability to access clusters more
efficiently. It allows the GridSolve user to ac-
cess LFC software, which attempts to optimally
use the resources of the cluster, via C and Matlab
programming interfaces.

The LFC software developed at the Uni-
versity of Tennessee, Knoxville, exposes a se-
rial, single processor user interface, but deliv-
ers computing power achievable by running the
same problem in parallel on a set of resources
of a cluster. It allows the user to call LFC rou-
tines from a serial environment, addresses com-
putational time and space complexity issues and
maps the problem into a parallel environment if
it is possible to execute the problem in less time

6

Using standard non-blocking GridSolve API
requests1 = netslnb(’iqsort()’,size1, ptr1,sort1);
requests2 = netslnb(’iqsort()’,size2, ptr2,sort2);
...
requests200 = netslnb(’iqsort()’,size200, ptr200,sorted200);
for each request probe for completion with netslpr()
for each request wait for results using netslwt()

Using task farming API
int sizearray[200];
void *ptrarray[200];
void *sortedarray[200];
sizearray[0] = size1;
ptrarray[0] = ptr1;
sortedarray[0] = sorted1;
...
statusarray = netsl farm("i=0,199","iqsort()",
ns int array(sizearray,"$i"), ns ptr array(ptrarray,"$i"),
ns ptr array(sortedarray,"$i"));

Figure 4: Task Farming Example: A integer quicksort routineis implemented using standard non-
blocking calls (top) and then converted to using the task farming interface (bottom).

Figure 5: GridSolve with LFC (LAPACK For Clusters)

7

in parallel.

Figure 5 illustrates how the GridSolve sys-
tem utilizes cluster resources through LFC. One
of the machines in the cluster is chosen to be the
specialized GridSolve-LFC server-proxy. When
this specialized server is started, it runs a bench-
mark on the cluster and reports the computa-
tional power and workload information to the
GridSolve agent. At present we use the sum of
KFlops of all the machines of the cluster to rep-
resent the computational power of the cluster, but
this can be refined to make the GridSolve sched-
uler more intelligent. The LFC server-proxy
also updates the GridSolve agent with changes in
workload and communication costs on the clus-
ter at regular intervals.

The GridSolve user, who wants to solve a
problem, prepares the input data and uploads the
data into a remote network storage using the In-
ternet Backplane Protocol (IBP) [7] API. IBP is
middleware for managing and using remote stor-
age. Handles for accessing the uploaded data
are returned from IBP to the user. The Grid-
Solve user then submits the problem to the Grid-
Solve system. The GridSolve agent uses the
problem size and complexity of the problem to
determine the computational cost of the prob-
lem. It chooses the best available server for solv-
ing the problem based on the available servers.
and their computational power, workload and
communication costs. If the problem request is
sent to the GridSolve-LFC specialized server, it
makes a LFC routine call to schedule the prob-
lem on the best subset of resources of the clus-
ter. The details of parallelizing the user’s prob-
lem, selecting the parallel algorithm to be used,
resource discovery, selection, allocation, down-
loading the data from the IBP depot using the
IBP handles, mapping the data onto the work-
ing cluster of processors are handled by the LFC
software. LFC executes the desired service and
writes the solution into the IBP network storage
depot. The user downloads the solution from the
network storage using IBP handles.

GridSolve users can use C and Matlab pro-
gramming interfaces to submit problems to the

GridSolve-LFC specialized server. In future,
these interfaces will be extended to include For-
tran, Mathematica and Octave.

2.4.2 Condor and Condor-G

Condor [8] provides a high throughput envi-
ronment for running compute-intensive jobs.
Condor includes a job queueing mechanism,
scheduling policy, priority scheme, resource
monitoring, and resource management. Condor-
G [9] is an implementation of Condor which is
interoperable with resources in a Globus [10] en-
vironment.

A server-proxy has been developed to enable
a GridSolve client to send a service request to
a resource pool that is managed by Condor or
Condor-G. The server-proxy must be part of the
Condor pool itself. The server-proxy takes the
service-request, creates files containing the input
parameters, and creates a Condor command file
which will execute the desired service. The com-
mand file is submitted to the Condor job man-
ager, which handles the details of scheduling and
executing the service-request on the appropri-
ate set of resources in the Condor pool. In the
case of Condor-G, a Globus job manager must
be specified by the proxy.

Figure 6 shows the interaction between
GridSolve and Condor-G. In the figure, a Grid-
Solve server-proxy, which is part of the Condor
pool, makes all the services on that server avail-
able as remote Grid services. The GridSolve
client user does not need to have Globus certifi-
cates to access those services. However, the ser-
vice provider needs to enable the server-proxy
to execute service requests on the Globus re-
sources by providing the server-proxy with valid
Globus credentials (e.g. the service provide can
issue a grid-proxy-init for the proxy-server). The
server-proxy can grant or deny client access by
using standard GridSolve access control mech-
anisms that use Kerberos. When a job is sub-
mitted to Condor-G server, a temporary submit
description file similar to the following will be
prepared by the server as shown in Figure 7.

Theglobusscheduler command is depen-

8

��������������

��	
���

��	
���

����
���

������
���

�����
���

�����
���

��������

���������������

����������������

���������

��
���

��������������������

����������������

�������������������

������������������

Figure 6: GridSolve with Condor-G

executable = homes/user/GridSolve/bin/i686pc linux gnu/service-lapacksubset
globusscheduler = machine03.cs.utk.edu/jobmanager
universe = globus
output = condor.out
error = condor.error
arguments = 0 /homes/user/GridSolve/bin/i686pc linux gnu
queue

Figure 7: GridSolve’s Condor-G submit file

dent on the scheduling software available on re-
mote resource. This required command should
be changed based on the Grid resource intended
for execution of the job. The Condor-G job
is then submitted to the Globus universe. The
GridSolve server issuescondor_submit to sub-
mit the job for execution on Globus resources.
After the job is finished on remote machines,
the server-proxy will collect the results and send
them back to the client.

Similar to GridSolve’s request sequencing,
Condor [8] has a meta-scheduler called DAG-
Man (Directed Acyclic Graph Manager) [11],
which can be used to facilitate data flow between
requests . The user creates a DAGMan input file
which describes the dependencies and other in-
formation about the requests and submits it to

Condor for scheduling. While GridSolve has
the capability to submit single jobs to Condor, it
would be useful to extend this capability to allow
submitting sequenced requests. Since GridSolve
already builds a DAG internally (in its own for-
mat) it should be feasible for GridSolve to cre-
ate a DAGMan input file and submit the entire
sequence. This would provide the various Grid-
Solve clients an easy way to submit sequenced
requests to resources managed by Condor.

3 Extensions to GridSolve

Over time, many enhancements have been made
to GridSolve to extend its functionality or to
address various limitations including task farm-

9

ing, request sequencing, and security. How-
ever, some desirable enhancements cannot be
easily implemented within the current GridSolve
framework. Thus, our ongoing work on Grid-
Solve involves redesigning the framework from
the ground up to address some of these new re-
quirements.

Based on our experience developing Grid-
Solve, we have identified several requirements
that are not adequately addressed in the current
GridSolve system. These new requirements -
coupled with the requirements for the original
GridSolve system - will form the basis for the
next generation of GridSolve.

The overall goal is to address three general
problems: ease of use, interoperability, and scal-
ability. Improving ease of use primarily refers to
improving the process of integrating user code
and libraries into a GridSolve server. Interop-
erability encompasses several facets, including
better handling of different network topologies,
better support for parallel libraries and parallel
architectures, and better interaction with other
Grid computing systems such as Globus [10] and
Ninf [4]. Scalability in the context used here
means that system performance does not degrade
as a result of adding components or increasing
the number of requested services in the Grid-
Solve system.

This section describes some of the spe-
cific solutions to the general problems discussed
above.

3.1 Network Address Translators

As the rapid growth of the Internet began deplet-
ing the supply of IP addresses, it became evi-
dent that some immediate action would be re-
quired to avoid complete IP address depletion.
The IP Network Address Translator [12] is a
short-term solution to this problem. Network
Address Translation presents the same external
IP address for all machines within a private sub-
net, allowing reuse of the same IP addresses on
different subnets, thus reducing the overall need
for unique IP addresses.

As beneficial as NATs may be in alleviat-
ing the demand for IP addresses, they pose many
significant problems to developers of distributed
applications such as GridSolve [13]. Some of
the problems as they pertain to GridSolve are:
IP addresses may not be unique, IP address-to-
host bindings may not be stable, hosts behind the
NAT may not be contactable from outside, and
NATs may increase network failures.

To address these issues we have developed a
new communications framework for GridSolve.
To avoid problems related to potential duplica-
tion of IP addresses, the GridSolve components
will be identified by a globally unique identifier
specified by the user or generated randomly. In a
sense, the component identifier is a network ad-
dress that is layered on top of the real network
address such that a component identifier is suf-
ficient to uniquely identify and locate any Grid-
Solve component, even if the real network ad-
dresses are not unique. This is somewhat similar
to a machine having an IP address layered on top
of its MAC address in that the protocol to obtain
the MAC address corresponding to a given IP ad-
dress is abstracted in a lower layer. Since NATs
may introduce more frequent network failures,
we have implemented a mechanism that allows a
client to submit a problem, break the connection,
and reconnect later at a more convenient time to
retrieve the results.

An important aspect to making this new
communications model work is theproxy, which
is a component that allows servers to exist be-
hind a NAT. Since a server cannot accept unso-
licited connections from outside the private net-
work, it must first register with a proxy. The
proxy acts on behalf of the component behind
the NAT by establishing connections with other
components or by accepting incoming connec-
tions. The component behind the NAT keeps
the connection with the proxy open as long as
possible since it can only be contacted by other
components while it has a control connection es-
tablished with the proxy. To maintain good per-
formance, the proxy only examines the header
of the connections that it forwards and it uses a

10

simple table-based lookup to determine where to
forward each connection. Furthermore, to pre-
vent the proxy from being abused, authentication
may be required.

3.2 Scheduling Enhancements

The next generation of GridSolve will retain the
familiar agent-based and server-based schedul-
ing of resources, but in many cases the client
has the most accurate knowledge about how to
select the best resource. Therefore we are im-
plementing an infrastructure that allows filtering
and scheduling to be optionally performed by the
client.

In the current GridSolve system, the only
user-provided filter that affects the selection of
resources is the problem name. Given the prob-
lem name, the GridSolve agent filters to select
the servers that can solve that problem, then
chooses the “best” server. However, the notion
of which server is best is entirely determined by
the agent. In the next generation of GridSolve,
we are extending this behavior. We allow the
user to provide constraints on the filtering and se-
lection process. These selection constraints im-
ply that the user has some knowledge of which
characteristics will lead to a better solution to the
problem (most likely in terms of speed), for ex-
ample, a minimum memory requirement. Also
we will allow the user to have access to the com-
plete list of resources and their characteristics
so that the client can implement comprehensive
scheduling algorithms in addition to simple fil-
tering.

To make this functionality useful, the Grid-
Solve servers should provide as much informa-
tion as possible to the agent, in turn providing
a flexible environment to the client for its re-
quest. To make the best selection for the client,
the agent uses this information stored in the form
of resource attributes and performs the filtering
on behalf of the client. Furthermore, we allow
the service providers (that is, those organizations
that provide GridSolve servers) to specify con-
straints on the clients that can access that ser-
vice. For example, an organization may want to

restrict access to a certain group of collaborators.
This information is also specified in the resource
attributes of the service.

Since the GridSolve agent currently main-
tains information about all resources in the en-
tire system, it can be viewed as the main perfor-
mance bottleneck as more resources are added.
The natural approach to this problem is to use
multiple agents such that the load on each agent
is reduced. However, this distributed approach
leads to some interesting scheduling issues since
each agent might only store information about
its local domain. While each agent may prefer to
schedule jobs within its domain, it may actually
be more efficient to send the job to another agent
if the computational and network communica-
tion requirements warrant. Thus, some agent-to-
agent communication will certainly be required
when using multiple agents.

3.3 IDL Improvements

One of the original design goals of GridSolve
was to eliminate the need for client-side stubs
for each procedure in a remote procedure call
(RPC) environment. However, this design deci-
sion tends to push the complexity to the servers.
Integrating new software into GridSolve requires
writing a complex server side interface defini-
tion (Problem Description File), which specifies
the parameters, data types, and calling sequence.
Despite several attempts to create a user-friendly
tool to generate the Problem Description Files, it
can still be a difficult and error-prone process.

Therefore, we have implemented a simple
technique for adding additional services to a run-
ning server. The interface definition format itself
has been greatly simplified and the services are
compiled as external executables with interfaces
to the server described in a standard format. The
server re-examines its own configuration and in-
stalled services periodically or when it receives
the appropriate signal. In this way it becomes
aware of any additional services that are installed
without re-compilation or restarting.

Integrating parallel software has been dif-
ficult in some cases because the Problem De-

11

scription File format does not support it in a
general way. Additionally, some parallel soft-
ware has required using a customized GridSolve
server. Making parallel software easier to inte-
grate into GridSolve hinges on two issues: the
server should support it in a general way and the
interface definition language should be extended
to allow specifying additional parameters, such
as the number of processors to be used. We are
continuing to work on these issues.

4 Related Work

Several Network Enabled Servers (NES) provide
mechanisms for transparent access to remote re-
sources and software. Ninf-G [14] is a reference
implementation of the GridRPC API [2] built on
top of the Globus Toolkit. Ninf-G provides an
interface definition language that allows services
to be easily added, and client binding are avail-
able in C and Java. Security, scheduling and re-
source management are left up to Globus.

The DIET (Distributed Interactive Engineer-
ing Toolbox) project [15] is a client-agent-server
RPC architecture which uses the GridRPC API
as its primary interface. A CORBA Naming
Service handles the resource registration and
lookup, and a hierarchy of agents handles the
scheduling of services on the resources. An API
is provided for generating service profiles and
adding new services, and a C client API exists.

NEOS [16] is a network-enabled problem-
solving environment designed as a generic appli-
cation service provider (ASP). Any application
that can be changed to read its inputs from files,
and write its output to a single file can be inte-
grated into NEOS. The NEOS Server acts as an
intermediary for all communication. The client
data files go to the NEOS server, which sends
the data to the solver resources, collects the re-
sults and then returns the results to the client.
Clients can use email, web, sockets based tools
and CORBA interfaces.

Other projects are related to various aspects
of GridSolve. For example, task farming style
computation is provided by the Apples Param-

eter Sweep Template (APST) project [17], the
Condor Master Worker (MW) project [18], and
the Nimrod-G project [19]. Request sequencing
is handled by projects like Condor DAGman [9].

However, GridSolve provides a complete so-
lution for easy access to remote resources and
software. It differs from the other NES imple-
mentation by including a tight, simple integra-
tion with a variety of client PSEs (Matlab, Math-
ematica, Octave). Interface descriptions for a
variety of standard mathematical libraries is dis-
tributed with GridSolve, and it is easy for addi-
tional services to be added. The ability to use
server-proxies to make it easy to leverage addi-
tional resource management and scheduling en-
vironments also adds to GridSolve’s strengths.

5 Conclusion

One of the most important aspects of the mid-
dleware we have presented here is the schedul-
ing that maps user requests to the most ap-
propriate resource. Scheduling requests in a
Grid environment is not trivial and we find that
different forms of scheduling are useful under
different circumstances. The traditional agent
based scheduling provides a coarse load balanc-
ing among all the available resources. Server
based scheduling is useful for scheduling tasks
on specialized or aggregate resources (such as
clusters and Condor pools) while providing a
consistent interface to the various clients. Re-
quest sequencing schedules an entire task graph
on one server, which is appropriate when there is
a lot of intermediate data that we want to avoid
transferring between the client and server. Task
farming is useful for parameter sweep applica-
tions where a large number of independent, si-
multaneous requests are to be scheduled. It is
worth noting that these forms of scheduling are
not exclusive and we typically employ a combi-
nation of these approaches within one Grid.

Ongoing work on scheduling in GridSolve
involves client-based scheduling, which includes
filtering based on client-specified resource selec-
tion criteria as well as providing information to

12

the client to allow full fledged scheduling. We
are also planning to extend task sequencing to
allow tasks in the DAG to be scheduled on differ-
ent servers if there is any parallelism that can be
exploited. This would involve not only schedul-
ing of computational resources, but could in-
volve scheduling of data storage and transfer as
well.

References

[1] D. Arnold, S. Agrawal, S. Blackford,
J. Dongarra, M. Miller, K. Seymour,
K. Sagi, Z. Shi, and S. Vadhiyar. Users’
Guide to NetSolve V1.4.1. Innovative
Computing Laboratory. Technical Report
ICL-UT-02-05, University of Tennessee,
Knoxville, TN, June 2002.

[2] K. Seymour, N. Hakada, S. Matsuoka,
J. Dongarra, C. Lee, and H. Casanova.
Overview of GridRPC: A Remote Proce-
dure Call API for Grid Computing. In
M. Parashar, editor,GRID 2002, pages
274–278, 2002.

[3] Global Grid Forum Research Group on
Programming Models. http://www.
gridforum.org/7_APM/APS.htm.

[4] Hidemoto Nakada, Mitsuhisa Sato, and
Satoshi Sekiguchi. Design and Implemen-
tations of Ninf: towards a Global Comput-
ing Infrastructure. InFuture Generation
Computing Systems, Metacomputing Issue,
volume 15, pages 649–658, 1999.

[5] Yves Caniou and Emmanuel Jeannot. Ex-
perimental study of multi-criteria schedul-
ing heuristics for GridRPC systems. In
ACM-IFIP Euro-Par 2004, Pisa, Italy, Sept
2004.

[6] Z. Chen, J. Dongarra, P. Luszczek, and
K. Roche. Self Adapting Software for
Numerical Linear Algebra and LAPACK
For Clusters. InParallel Computing, vol-
ume 29, pages 1723–1743, 2003.

[7] A. Bassi, M. Beck, T. Moore, J. Plank,
M. Swany, R. Wolski, and G. Fagg. The
Internet Backplane Protocol: A Study in
Resource Sharing. InFuture Genera-
tion Computing Systems, volume 19, pages
551–561.

[8] Douglas Thain and Miron Livny. Build-
ing reliable clients and servers. In Ian Fos-
ter and Carl Kesselman, editors,The Grid:
Blueprint for a New Computing Infrastruc-
ture. Morgan Kaufmann, 2003.

[9] James Frey, Todd Tannenbaum, Ian Foster,
Miron Livny, and Steve Tuecke. Condor-
G: A computation management agent for
multi-institutional grids. Cluster Comput-
ing, 5:237–246, 2002.

[10] Ian Foster and Carl Kesselman. Globus: A
Metacomputing Infrastructure Toolkit.In-
ternational Journal of Supercomputer Ap-
plications, 1997.

[11] Condor DAGMan. http://www.cs.
wisc.edu/condor/dagman.

[12] K. Egevang and P. Francis. The IP Network
Address Translator (NAT). RFC 1631, May
1994.

[13] K. Moore. Recommendations for the De-
sign and Implementation of NAT-Tolerant
Applications. Internet-draft, February
2002. Work in Progress.

[14] Y. Tanaka, H. Nakada, S. Sekiguchi, Suzu-
mura Suzumura, and S. Matsuoka. Ninf-
G: A reference implementation of RPC-
based programming middleware for Grid
computing. Journal of Grid Computing,
1(1):41–51, 2003.

[15] E. Caron, F. Desprez, F. Lombard, J.-
M. Nicod, L. Philippe, M. Quinson, and
F. Suter. A scalable approach to network
enabled servers (research note).Lecture
Notes in Computer Science, 2400, 2002.

13

[16] E. Dolan, R. Fourer, J. J. Moré, and Mun-
son Munson. The NEOS server for opti-
mization: Version 4 and beyond. Techni-
cal Report ANL/MCS-P947-0202, Mathe-
matics and Computer Science Division, Ar-
gonne National Laboratory, Argonne, IL,
February 2002.

[17] Henri Casanova, Graziano Obertelli,
Berman Berman, and Rich Wolski.
The appleS parameter sweep template:
User-level middleware for the grid. In
Proceedings of Supercomputing’2000
(CD-ROM), Dallas, TX, Nov 2000. IEEE
and ACM SIGARCH.

[18] Jeff Linderoth, Sanjeev Kulkarni, Jean-
Pierre Goux, and Michael Yoder. An en-
abling framework for master-worker appli-
cations on the computational grid. InPro-
ceedings of the Ninth IEEE Symposium on
High Performance Distributed Computing
(HPDC9), pages 43–50, Pittsburgh, PA,
August 2000.

[19] David Abramson, Rajkumar Buyya, and
Jonathan Giddy. A computational econ-
omy for Grid Computing and its imple-
mentation in the Nimrod-G resource bro-
ker. Future Generation Computer Systems,
18(8):1061–1074, October 2002.

14

