
MPI Collective Algorithm Selection and

Quadtree Encoding

Jelena Pješivac–Grbović a,∗, George Bosilca a,
Graham E. Fagg a, Thara Angskun a, Jack J. Dongarra a,b,c

a Innovative Computing Laboratory,
University of Tennessee Computer Science Department
1122 Volunteer Blvd., Knoxville, TN 37996-3450, USA

b Oak Ridge National Laboratory
Computer Science and Mathematics Division

c University of Manchester

Abstract

We explore the applicability of the quadtree encoding method to the run-time MPI
collective algorithm selection problem. Measured algorithm performance data was
used to construct quadtrees with different properties. The quality and performance
of generated decision functions and in-memory decision systems were evaluated.
Experimental data shows that in some cases, a decision function based on a quadtree
structure with a mean depth of three, incurs on average as little as a 5% performance
penalty. In all cases examined, experimental data can be fully represented with a
quadtree containing a maximum of six levels. Our results indicate that quadtrees
may be a feasible choice for both processing of the performance data and automatic
decision function generation.

Key words: MPI collective operations; Performance optimization; Algorithm
selection problem; Quadtree encoding; Performance evaluation

1 Introduction

The performance of MPI collective operations is crucial for good performance
of MPI applications that use them [1]. Significant efforts have been spent on

∗ Corresponding author. Tel.: +1-865-974-6722
Email address: pjesa@cs.utk.edu (Jelena Pješivac–Grbović).

Preprint submitted to Parallel Computing 9 September 2007



designing and implementing efficient collective algorithms both for homoge-
neous and heterogeneous cluster environments [2–9]. The performance of these
algorithms depends on the total number of nodes involved in communication,
system and network characteristics, size of the data being transferred, the cur-
rent load on the network and, if applicable, the operation that is being per-
formed as well as the segment size that is used for operation pipelining. Thus,
selecting the best possible algorithm and segment size combination (method)
for every utilized instance of a collective operation is important.

To ensure good performance of MPI applications, collective operations can
be tuned for a particular system. The tuning process often involves detailed
profiling of the system, possibly combined with communication modeling, ana-
lyzing the collected data, and generating a decision function. During run-time,
the decision function selects a close-to-optimal method for a particular collec-
tive instance. This approach relies on the ability of the decision function to
accurately predict the algorithm and segment size to be used for a particular
collective instance. Alternatively, one could construct an in-memory decision
system that could be queried/searched at run-time to provide the optimal
method information. In order for either of these approaches to be feasible, the
memory footprint and the computation time required to make the decision
need to be minimal.

This paper studies the applicability of the quadtree encoding method as a stor-
age and optimization technique within the run-time MPI collective algorithm
selection process. We assume that the system of interest has been benchmarked
and that detailed performance information exists for each of the available col-
lective communication algorithms. With this information, we focus our effort
on investigating whether the quadtree encoding is a feasible approach to gen-
erate static decision functions as well as to represent the decision function in
memory.

We developed a prototype quadtree implementation and the programs to ana-
lyze the experimental performance data, construct the quadtree decision func-
tions, and determine their performance penalty in comparison to the exact
decision function. We collected detailed profiles for two MPI collective algo-
rithms (broadcast and reduce) on two clusters and analyzed the quality of
the quadtree-based decisions functions built using this data under different
constraints.

The paper proceeds as follows: Section 2 discusses existing approaches to the
decision making/algorithm selection problem; Section 3 describes the quadtree
construction and analysis of quadtree decision function in more detail; Section
4 presents experimental results; Section 5 concludes the paper with discussion
of the results and future work.

2



2 Related work

The MPI collective algorithm selection problem has been addressed in many
MPI implementations. In FT-MPI [10], the decision function is generated man-
ually using a visual inspection method augmented with Matlab scripts used
for analysis of the experimentally collected performance data. This approach
results in precise, albeit complex, decision functions. In MPICH-2[11], the al-
gorithm selection is based on bandwidth and latency requirements of an algo-
rithm, and the switching points are predetermined by the implementers [7]. In
the tuned collective module of Open MPI [12], the algorithm selection can be
performed via either a compiled decision function or user-specified parameters
[13].

In addition, some of the high-performance networks support hardware or
hardware-software hybrid collectives [14,15]. In such cases, the performance
gain by using hardware based collectives can be orders of magnitude higher
than using the most advanced software implementations based on point-to-
point communication. The limitations of hardware-based collectives are that
they often implement only a small subset of MPI collectives (such as Broad-
cast, Reduce, and Barrier) and are sometimes limited in their applicability
(e.g., they can be used only on full partition of the system). In these cases, to
achieve good performance one still needs to properly select either software- or
hardware-based implementation when applicable.

Data mining techniques can also be applied to the algorithm selection prob-
lem. The problem is to classify the collective parameters (collective operation,
communicator size, message size) into a correct category, a method in our
case, to be used at run-time. The major benefit of this approach is that the
decision making process is a well studied topic in engineering and machine
learning fields. Decision trees are extensively used in pattern recognitions,
CAD design, signal processing, medicine, biology, and search engines. Sta-
tistical learning methods have been applied to algorithm selection problems
for matrix-matrix multiplication in a number of projects[16,17]. C4.5 decision
trees have been applied to the MPI collective operation problem in [18].

Alternatively, one can interpret the information about the optimal collective
implementation on a system, i.e., a decision map, as an image and apply a
standard compression algorithms to it. Figure 1 (a) illustrates a decision map
for the reduce operation on the Frodo cluster at the University of Tennessee,
Knoxville. The encoded structure can be used to generate either a decision
function code or an in-memory decision structure that can be queried at run-
time. To the best of our knowledge, we are the only group that has approached
the MPI collective tuning process in this way.

3



Comm
size

Msg
size

Algorithm
Seg
size

Method
index

3 1 Linear none 15

3 2 Linear none 15

... ... ... ... ...

50 1MB Pipeline 8KB 24

... ... ... ... ...

(a) (b)

Fig. 1. (a) Reduce decision map from Frodo cluster. Different colors correspond to
different method indexes. (b) An example of decision map in tabular form.

3 Quadtrees and MPI collective operations

We use the collective algorithm performance information on a particular sys-
tem to extract the information about the optimal methods and construct a
decision map for the collective on that particular system. An example of a
decision map is displayed in Figure 1 (b). The decision map that will be used
to initialize the quadtree must be complete and a square matrix with a power
of two dimension size (2k × 2k). A complete decision map means that tests
must cover all message and communicator sizes of interest. Neither of these
requirements are real limitations, as the missing data can be interpolated, and
the size of the map can be adjusted by replicating some of the entries. The
replication process does not affect the quadtree decisions, but may affect the
efficiency of the encoding (both in positive and negative manner).

3.1 Quadtree decision structure and its properties

Once a decision map is available, we initialize the quadtree from it using the
user specified constraints, such as accuracy threshold and maximum allowed
depth of the tree. The accuracy threshold is the minimum percentage of points
in a block with the same “color,” such that the whole block is “colored” in
that “color.” The quadtree with no maximum depth set and threshold of
100% is an exact tree. The exact tree truthfully represents the measured data.
A quadtree with either a threshold or a maximum depth limit allows us to
reduce the size of the tree at the cost of prediction accuracy, as it is no longer
an exact copy of the original data. Limiting the absolute tree depth limits the
maximum number of tests we may need to execute in order to determine the
method index for the specified communicator and message size. Setting the
accuracy threshold helps smooth the experimental data, thus possibly making
the decision function more resistant to anomalies in measurements. Applying
the maximum depth and/or the accuracy thresholds is equivalent to applying

4



low-pass filters to the original data set.

Each of the internal nodes in a decision tree corresponds to an attribute test,
and the links to children nodes correspond to the particular attribute values.
In our encoding scheme, every non-leaf node in the quadtree corresponds to a
test that matches both communicator and message size values. The leaf nodes
contain information about the optimal method for the particular communica-
tor and message size ranges. Thus, leaves represent the regions into which the
decision map is divided, and the internal nodes represent the rules of the cor-
responding decision function. As a consequence, quadtrees allow us to perform
a recursive binary search in a two-dimensional space.

3.2 Generating decision function source code

We provide the functionality to generate decision function source code from
the constructed quadtree. Recursively, for every internal node in the quadtree
we generate the following code segment:
if (NW) {...} else if (NE) {...} else if (SW) {...} else if (SE) {...} else {error}
where NW, NE, SW, and SE correspond to north-west, north-east, south-west,
and south-east quadrants of the region, respectively.

The current implementation is functional but lacks some possible optimiza-
tions, such as the ability to merge conditions with the same color. The condi-
tions for boundary points (minimum and maximum communicator and mes-
sage sizes) are expanded to fully cover that region. For example, the decision
for minimum communicator size will be applied to all communicator sizes
smaller than minimum.

3.3 In-memory quadtree decision structure

An alternative to generating the decision function source code is maintaining
an in-memory quadtree decision structure, which can be queried at run-time.

An optimized quadtree structure contains four pointers and one method field,
which could probably be a single byte or an integer value. Thus, the size of
a node of the tree would be around 36 bytes on 64-bit architectures. 1 In
addition, the system needs to maintain an in-memory mapping of (algorithm,
segment size) pairs to method indexes, as well as, the communicator and
message sizes used to construct the quadtree.

1 In this analysis, we ignore data alignment issues which could lead to even larger
size of the structure.

5



The maximum depth decision quadtree we encountered in our tests had six
levels. This means that in the worst case, the 6-level decision quadtree could
take up to 47−1

4−1
= 5461 nodes, which would occupy around 192KB of memory.

However, our results indicate that the quadtrees with three levels can still
produce reasonably good decisions. A 3-level quadtree would occupy at most
3060 bytes and as such could fit into one 4KB page of main memory. As the
decision function will be called occasionally (i.e., once for each tuple (collective,
message size)), the in-memory quadtree will not be cached. Therefore, each
invocation of the decision function is expected to generate a large number of
cache misses.

Our prototype implementation provides tools for managing the in-memory
decision functions - however the internal node structure occupies 48 bytes
instead of the minimal 36 bytes. The associated structure for method mapping
requires 6B per method, and the communicator and the message sizes are
represented using integer arrays (2B per element). Querying the structure
involves determining the indexes of specified communicator and message sizes.
We believe that a fully-optimized version should achieve better performance
than this prototype version.

4 Experimental results and analysis

In order to determine whether quadtrees are a feasible choice for encoding
the automatic method selection process for MPI collective operations, we an-
alyzed the accuracy and the performance of quadtrees built from the same
experimental data but using different constraints.

Under the assumption that the collective operation’s parameters are uniformly
distributed across communicator size and message size space, the mean depth
of the quadtree corresponds to the mean number of conditions that need to
be evaluated before we can determine which method to use. In the worst case,
we will follow the longest path in the tree to make the decision, and in the
best case, the shortest.

The performance data for broadcast and reduce collective algorithms was col-
lected on the Frodo and Grig clusters located at the University of Tennessee,
Knoxville. The Frodo cluster has 64 node, dual AMD OpteronTMprocessors
at 1.4GHz with 2GB RAM and supports Fast Ethernet and Myrinet 2G in-
terconnects. Measurements on Frodo in this paper were obtained using the
MX library. The Grig cluster has 64 node, quad Intel R©XeonTMprocessors at
3.20GHz with 4GB RAM and supports Fast Ethernet and Myrinet 2G inter-
connects. On Grig, the Fast Ethernet network was used for reported measure-
ments.

6



The measurements on the Frodo cluster were collected using the Open MPI
version 1.3 release candidate and the SKaMPI[19] benchmark, while the re-
sults from Grig were collected using MPICH-2 version 1.0.3 and the OCC [20]
benchmark. 2

4.1 Broadcast decision maps

Figure 2 shows three different quadtree decision maps for a broadcast collective
on the Frodo and Grig clusters, respectively. Different colors in the figures cor-
respond to different method indexes. Both figures use the same color scheme.
The trees were generated by limiting the maximum tree depth. The x-axis
scale is logarithmic. The crossover line in these figures is not in the middle
due to the “fill-in” points used to adjust the original size of the decision map
from 49× 38 and 25× 48, respectively, to 64× 64 form.

We considered five different broadcast algorithms (Linear, Binary, Binomial,
Split-Binary, and Pipeline), 3 and seven different segment sizes (no segmen-
tation, 1KB, 8KB, 16KB, 32KB, 64KB, and 128KB). The measurements on
the Frodo cluster, Figure 2a, covered all communicator sizes between two and
50 processes and message sizes in the 4B to 2MB range. On Grig, Figure 2b,
results cover communicator sizes two to 28 and message sizes in the 1B to
384KB range.

The exact decision maps for the Frodo and Grig clusters in Figure 2 are quite
different. Using the Myrinet interconnect (Figure 2a), benchmarks achieve
best performance using binomial tree and larger segment sizes, while over
Fast Ethernet (Figure 2b), a combination of a linear algorithm and methods
with 1KB segments is a better choice. Exact decisions exhibit trends, however
in both cases, there are regions with a high information density. Limiting the
maximum tree depth smoothes the decision map and subsequently decreases
the size of the quadtree. Tables 1 and 2 show the mean tree depth and related
statistics for these decision maps.

4.2 Performance penalty of decision quadtrees

One possible metric of merit is the performance penalty one would incur by
using a restricted quadtree instead of the exact one. To compute the penalty
for a particular communicator and message size tuple, one can compare the

2 The high-resultion version of Figures in this Section can be found either at http:
//www.cs.utk.edu/~pjesa/Papers/pcse_2007.html or by contacting the authors.
3 For more details on these algorithms, refer to [21].

7



(a)

(b)

Fig. 2. Maximum-depth limited broadcast decision maps from the (a) Frodo and
(b) Grig clusters. In these Figures, “LIN” stands for “Linear”, “BM” for “Bino-
mial”, “BIN” for “Binary”, “SBIN” for “Split-Binary”, and “PIPE” for “Pipeline”
algorithm, while “none”, “1KB”, “8KB”, and “32KB” are corresponding segment
sizes.

performance of the method suggested by the restricted tree with the perfor-
mance of the method suggested by the exact tree.

The reproducibility of the measured results is not within the scope of this
paper, but both of the benchmarks we utilized follow the guidelines from [22]
to ensure good quality measurements. Even so, the “exact” decision function
corresponds to a particular data set, and the performance penalty of other
decision functions was evaluated against the data that was used to generate
them in the first place.

Figure 3 shows the relative performance penalty of the decision quadtrees
from Figure 2. The colorbar represents the relative performance penalty in
percentage: white means less than 5%, yellow is between 10% and 25%, red
is 50% and above. Tables 1 and 2 summarize the properties and performance
penalties for the same data.

The results on Grig (Figures 2b, 3b, and Table 2) show that a 3-level quadtree
would have less than a 6% mean performance penalty. On Frodo (Figures 2a,

8



(a)

(b)

Fig. 3. Performance penalty of maximum-depth limited broadcast decision function
from (a) Frodo and (b) Grig (Figure 2).

Tree Depth Performance Penalty [%] Number of

Max Min Mean Min Max Mean Median Leaves Nodes

1 1 1.00 0.00 560.42 74.62 2.88 4 5

2 1 1.92 0.00 743.16 12.56 0.00 13 17

3 1 2.50 0.00 743.15 12.43 0.00 22 29

4 2 3.63 0.00 743.15 12.01 0.00 91 121

5 2 4.61 0.00 31.14 0.67 0.00 328 437

6 2 5.65 0.00 0.00 00.00 0.00 1153 1537

Table 1
Complete statistics for maximum-depth limited broadcast decision quadtrees on
Frodo (Figure 2a).

3a, and Table 1) 2-, 3-, and 4-level quadtrees have very similar performance
penalty statistics, primarily due to the high performance penalty for a 1448B
message on all communicator sizes greater than three. For this message size,
the restricted trees use the Split-Binary algorithm with 1KB segments, instead
of Binomial with no segmentation. The experimental data reveals a spike for
the Split-Binary with 1KB segments for 1448B message size on all commu-
nicator sizes: measured time jumped to 300+ µs in comparison to 64+ µs
for 1024B and 65+ µs for 2048B message. Moreover, all points with more
than 40% performance penalty on 2-, 3-, and 4-level quadtrees were the ones

9



Tree Depth Performance Penalty [%] Number of

Max Min Mean Min Max Mean Median Leaves Nodes

1 1 1.00 0.00 337.43 37.10 0.00 4 5

2 2 2.00 0.00 391.53 18.54 0.00 16 21

3 2 2.76 0.00 247.20 05.75 0.00 37 49

4 2 3.75 0.00 247.20 03.25 0.00 106 141

5 2 4.61 0.00 225.30 01.29 0.00 227 369

6 2 5.70 0.00 0.00 00.00 0.00 1024 1365

Table 2
Complete statistics for maximum-depth limited broadcast decision quadtrees on
Grig (Figure 2b).

for 1448B message. If we remove 1448B data points, the mean performance
penalty for a 3-level tree on Frodo drops to 1.7%.

4.3 Quadtree accuracy threshold

In Section 3.2 we mentioned that an alternative way to limit the size of a
quadtree is to specify the tree accuracy threshold. Figure 4 shows accuracy-
threshold limited, broadcast decision maps on the Frodo and Grig clusters.
The data in these figures corresponds to the data in Figure 2.

Figure 5 shows the effect of varying the accuracy threshold on the mean
quadtree depth and mean performance penalty of broadcast and reduce quadtree
decision functions on the Frodo and Grig clusters. In all cases, the mean
quadtree depth flattens out once a high enough accuracy threshold is achieved
(from 45% for Reduce on Frodo to almost 70% for Reduce on Grig). Based
on the mean performance penalty data, the trees generated with accuracy-
threshold values higher than this limit are very similar to the exact tree.

4.4 Accuracy-threshold vs. Maximum-depth constrained trees

One of the objectives of this study is to determine which of the two methods
for restricting the quadtree size gives higher-quality decision functions. Figure
6 shows the mean performance penalty of broadcast and reduce decisions as
a function of the mean depth of the accuracy-threshold and maximum-depth
constrained trees.

The results indicate that maximum-depth limited quadtrees achieve a lower
mean performance penalty than similar accuracy-threshold limited trees. More-
over, for results with experimental data, which did not exhibit unexpected
spikes (both collectives on Grig, and reduce on Frodo), maximum-depth lim-
ited trees improve their accuracy with each additional level. This is not the
case for accuracy-threshold limited trees: we can see a range of mean quadtree
depths corresponding to the same mean performance penalty.

10



(a)

(b)

Fig. 4. Accuracy-threshold limited broadcast decision maps from the (a) Frodo and
(b) Grig clusters. In these images, the abbreviations are identical to the ones in
Figure 2.

Fig. 5. Effect of the accuracy threshold on mean quadtree depth and performance
penalty.

4.5 In-memory quadtree-based decision system

Table 3 contains the performance results for an in-memory quadtree-based
decision system for reduce collective on the Grig cluster. The reported decision
time value is the average time it took for the quadtree to make decisions for
a random communicator and message size from the 2 − 64 and 1 − 16MB
ranges, respectively. All measurements were taken with the same seed value.
The measurements were taken on an AMD AthlonTM64 Processor 3500+ at

11



Fig. 6. Accuracy-threshold vs. maximum-depth quadtree construction for broadcast
and reduce collectives on Frodo and Grig cluster. Corresponds to data in Figures 2,
3, 4, 5, and Tables 1, 2.

2.2GHz with 512KB cache and 1GB RAM.

Mean tree
depth

Mean
performance
penalty

In-memory quadtree Decision function

Memory
size
[Bytes]

Decision
time [ns]

Decision time
per level [ns]

Size Decision
time [ns]

1.00 81.10 712 35.61 17.81 4 11.68

1.80 11.58 1096 36.78 13.14 12 10.70

2.92 5.63 3784 54.53 13.91 68 13.68

3.62 1.39 7048 54.70 11.84 136 13.87

4.31 0.97 13192 55.02 10.36 264 13.88

5.50 0.00 42952 71.54 11.01 884 16.47

Table 3
Performance of the prototype implementation of an in-memory, quadtree-based de-
cision system, and the corresponding decision function for the reduce collective on
Grig. Time per level was computed as decision time

mean depth+1 . Memory size includes size of the
quadtree, space for communicator and message sizes, and method map. Function
size is the total number of if and else if statements in the decision function source
code.

In all cases, mean-time to decision of an in-memory 3-level quadtree decision
system was between 50ns and 75ns. The decision time for the corresponding
compiled decision function was between 13ns and 19ns.

In comparison, Open MPI broadcast and reduce decision functions took 18.90ns
and 21.14ns, respectively. The computed mean performance penalty of the
Open MPI decision functions computed against the data collected on the Frodo
cluster was below 20%, with a median value around 5%. This is similar to or
higher than the mean performance penalty of the 3-level quadtree decision
function on both systems.

5 Discussion and future work

In this paper, we studied the applicability of a modified quadtree encoding
method to the algorithm selection problem for the MPI collective function op-
timization. We analyzed the properties and performance of quadtree decision

12



functions constructed by either limiting the maximum tree depth or specifying
the accuracy threshold at the construction time.

Our experimental results for broadcast and reduce collectives show that, in
some cases, the decision function based on a quadtree structure with a mean
depth of three, incurs less than a 5% performance penalty on the average.
In other cases, deeper trees (five or six levels) were necessary to achieve the
same performance. However, in all considered cases, a 3-level quadtree would
incur at most 12% performance penalty on average. Our results indicate that
quadtrees may be a feasible choice for processing the performance data and
decision function generation.

Our analysis of the performance of the in-memory quadtree decision systems
was based on a prototype quadtree implementation and as such should be
interpreted as a worst case scenario. The results with this system show that
in less than 75ns on average, we can get the optimal decision based on the
experimental data. Not surprisingly, the fixed decision function in Open MPI
outperformed the in-memory system in terms of time-to-decision performance.
However, the compiled version of the 3-level quadtree decision function had
comparable performance and higher accuracy than the default Open MPI
decision function.

One of the limitations of the quadtree encoding method is that since the
decision is based on a 2D-region in communicator size - message size space, it
will not be able to capture decisions that are optimal for single communicator
values, e.g. communicator sizes that are power of two. The same problem
is exacerbated if the performance measurement data used to construct trees
is too sparse. The sparse data set and single line rules are high-frequency
information and applying low-pass filters to it can cause loss of important
information.

In addition, quadtree encoding can only capture 2-D performance data. While
octrees can be used to increase the number of parameters to three, extend-
ing this approach further is not necessarily feasible. However, as most current
MPI implementations do not make additional run-time information (such as
processor load or network utilization) globally available, limiting the input
parameter space to two or possibly three dimensions may not be a real re-
striction.

The decision map reshaping process to convert measured data from n × m
shape to 2k × 2k affects encoding efficiency of the quadtree. In our current
study, we did not address this issue, but in future work we plan to further
improve the efficiency of the encoding regardless of initial data space.

Finally, if one is interested in an application level optimization, assumptions
based on the premise that the communication parameters are uniformly dis-

13



tributed across the communicator and message size space are probably opti-
mistic. Thus, it is possible that it would make sense to refine the trees for
frequently used message and communicator sizes while the rest of the domain
is more sparse. Quadtrees may or may not be the right structure for this type
of approach, but we plan to investigate this approach in the near future.

Acknowledgement

This work was supported by Los Alamos Computer Science Institute (LACSI),
funded by Rice University Subcontract #R7B127 under Regents of the Uni-
versity Subcontract #12783-001-05 49.

References

[1] R. Rabenseifner, Automatic MPI counter profiling of all users: First results
on a CRAY T3E 900-512, in: Proceedings of the Message Passing Interface
Developer’s and User’s Conference, 1999, pp. 77–85.

[2] J. Worringen, Pipelining and overlapping for MPI collective operations, in:
IEEE Conference on Local Computer Network, IEEE Computer Society,
Boon/Königswinter, Germany, 2003, pp. 548–557.

[3] L. P. Huse, Collective communication on dedicated clusters of workstations, in:
Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Springer-Verlag, 1999, pp. 469–476.

[4] R. Rabenseifner, J. L. Träff, More efficient reduction algorithms for non-power-
of-two number of processors in message-passing parallel systems, in: Recent
Advances in Parallel Virtual Machine and Message Passing Interface, no. 3241
in LNCS, Springer-Verlag, 2004.

[5] S. Juhász, F. Kovács, Asynchronous distributed broadcasting in cluster
environment., in: Recent Advances in Parallel Virtual Machine and Message
Passing Interface, no. 3241 in LNCS, 2004, pp. 164–172.

[6] E. W. Chan, M. F. Heimlich, A. Purkayastha, R. M. van de Geijn, On optimizing
of collective communication, in: Cluster, 2004.

[7] R. Thakur, W. Gropp, Improving the performance of collective operations in
MPICH, in: Recent Advances in Parallel Virtual Machine and Message Passing
Interface, no. 2840 in LNCS, Springer Verlag, 2003, pp. 257–267.

[8] T. Kielmann, R. F. H. Hofman, H. E. Bal, A. Plaat, R. A. F. Bhoedjang,
MagPIe: MPI’s collective communication operations for clustered wide area
systems, in: Proceedings of ACM SIGPLAN Symposium, ACM Press, 1999,
pp. 131–140.

14



[9] M. Bernaschi, G. Iannello, M. Lauria, Efficient implementation of reduce-scatter
in MPI, Journal of Systems Architecture 49 (3) (2003) 89–108.

[10] G. E. Fagg, E. Gabriel, G. Bosilca, T. Angskun, Z. Chen, J. Pješivac-Grbović,
K. London, J. Dongarra, Extending the MPI specification for process fault
tolerance on high performance computing systems, in: Proceedings of the
International Supercomputer Conference (ISC), Primeur, 2004.

[11] MPICH - A portable implementation of MPI,
http://www-unix.mcs.anl.gov/mpi/mpich2/.

[12] E. Gabriel, G. E. Fagg, G. Bosilca, T. Angskun, J. J. Dongarra, J. M. Squyres,
V. Sahay, P. Kambadur, B. Barrett, A. Lumsdaine, R. H. Castain, D. J. Daniel,
R. L. Graham, T. S. Woodall, Open MPI: Goals, concept, and design of a
next generation MPI implementation, in: Recent Advances in Parallel Virtual
Machine and Message Passing Interface, Budapest, Hungary, 2004, pp. 97–104.

[13] G. Fagg, G. Bosilca, J. Pješivac-Grbović, T. Angskun, J. Dongarra, Tuned:
A flexible high performance collective communication component developed for
open mpi, in: Proceedings of Austrian-Hungarian Workshop on Distributed and
Parallel Systems (DAPSYS), Innsbruck, Austria, 2006.

[14] G. Almasi, C. Archer, J. Castanos, J. Gunnels, C. Erway, P. Heidelberger,
X. Martorell, J. Moreira, K. Pinnow, J. Ratterman, Design and implementation
of message-passing services for the Blue Gene/L supercomputer, IBM Journal
of Research and Development 49 (2) (2005) 393–406.

[15] F. Petrini, S. Coll, E. Frachtenberg, A. Hoisie, Hardware- and software-
based collective communication on the quadrics network, IEEE International
Symposium on Network Computing and Applications (2001) 00–24.

[16] V. Eijkhout, E. Fuentes, T. Edison, J. J. Dongarra, The component structure
of a self-adapting numerical software system, International Journal of Parallel
Programming 33 (2).

[17] R. Vuduc, J. W. Demmel, J. A. Bilmes, Statistical Models for Empirical
Search-Based Performance Tuning, International Journal of High Performance
Computing Applications 18 (1) (2004) 65–94.

[18] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, J. J. Dongarra,
Decision trees and MPI collective algorithm selection problem, Tech. Rep.
UT-CS-06-586, The University of Tennessee at Knoxville, Computer Science
Department, http://www.cs.utk.edu/~library/2006.html (2006).

[19] SKaMPI: Special Karlsruher MPI Benchmark,
http://liinwww.ira.uka.de/~skampi/.

[20] OCC - Optimized Collective Communication Library,
http://www.cs.utk.edu/~pjesa/projects/occ/.

[21] J. Pješivac-Grbović, T. Angskun, G. Bosilca, G. E. Fagg, E. Gabriel, J. J.
Dongarra, Performance analysis of MPI collective operations, in: Proceedings of

15



IEEE International Parallel and Distributed Processing Symposium (IPDPS’05)
- Workshop 15, IEEE Computer Society, Washington, DC, USA, 2005, p. 272.1.

[22] W. Gropp, E. L. Lusk, Reproducible measurements of MPI performance
characteristics, in: Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Springer-Verlag, 1999, pp. 11–18.

16


