
Optimization Problem Solving System

using GridRPC

Hisashi Shimosaka, Tomoyuki Hiroyasu,Member, IEEE,

Mitsunori Miki, Member, IEEE,and Jack Dongarra,Member, IEEE,

Abstract

In recent years, the Grid has been standardized with an emphasis on efficient services integration

over the wide area network. We focus on applications integration for solving complex optimization

problems on the Grid. Then, the framework of applications integration using the GridRPC is proposed.

In this framework, each service on the Grid has four basic functions that enable an end-user to invoke

applications and to exchange information among applications. By application holders expressing their

own applications as a service along the framework, end-users are able to design arbitrary applications

integration through the wide area network. In addition, we also propose the Application Programming

Inferfaces (APIs) that enable the service to invoke the designed applications integration. These APIs

support the creation of an optimization problem solving system. Therefore, end-users can solve their

own optimization problems by designing applications integration on the system.

We implement the proposed framework and APIs using the NetSolve system. Through computation

simulation experiments of our implementation of the system, we found that the overhead time is very

short compared to the calculation time of optimization and that the system can be used practically in

the wide area network. Therefore, the proposed framework and APIs can be expected to be efficient in

the system construction for optimization problem solving on the Grid.

Index Terms

Grid, GridRPC, NetSolve, Applications Integration, Optimization Problem Solving.

H. Shimosaka is a Ph.D. Candidate at the Graduate School of Engineering, Doshisha University, Japan. E-mail:

hisashi@mikilab.doshisha.ac.jp

T. Hiroyasu is with the Department of Knowledge Engineering, Doshisha University, Japan. E-mail: tomo@is.doshisha.ac.jp

M. Miki is with the Department of Knowledge Engineering, Doshisha University, Japan. E-mail: mmiki@mail.doshisha.ac.jp

J. Dongarra is with the Computer Science Department, University of Tennessee, USA. E-mail: dongarra@cs.utk.edu

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 1

Optimization Problem Solving System

using GridRPC

I. I NTRODUCTION

In the field of multidisciplinary design op-

timization and analysis such as automobile or

aerospace design, several types of sophisticated

applications are needed for structural analysis,

fluid dynamics, optimization, visualization and

so on. In addition, these applications should

be efficiently integrated while maintaining con-

sistency among applications. In a general sys-

tem used to solve complicated optimization

problems, application holders register existing

applications as a service on the system in

advance. Then, end-users realize their own

problem solving by aggregating applications in-

formation and designing arbitrary applications

integration. On the other hand, because the

private device, database and/or parallel com-

puter may be required in application execution

and computing performance can increase by

performance tuning suited to the computing

environment, the approach of building an op-

timization problem solving system through the

wide area network is often introduced[1], [2].

In the system construction through the wide

area network, it is indispensable to use the

Grid[3], [4], [5], which can seamlessly and

safely integrate disparate calculation and infor-

mation resources from the perspective of devel-

opment cost and system practicality. Many Grid

middleware, which support a Grid-enabled ap-

plication are already developed[6], [7], [8], [9],

[10] and some of them are beginning to be used

in science fields. In recent years, the Service

Oriented Architecture (SOA) has been adopted

as the basic concept of the Grid technolo-

gies and the Open Grid Services Architecture

(OGSA)[5], [11] has been proposed at the

Global Grid Forum (GGF)[12]. The OGSA

has subsequently been standardized with the

emphasis on efficient integration of several

services on the wide area network.

Because of these backgrounds, we especially

focus on applications integration and optimiza-

tion problem solving on the Grid. Then the

framework of applications integration using the

GridRPC[10] is proposed. The GridRPC is one

of the useful programming models on the Grid

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 2

and it has some sophisticated Grid middle-

ware that implement the GridRPC APIs[13],

[14]. As application holders express existing

applications as services along the proposed

framework, end-users are able to design arbi-

trary applications integration through the wide

area network. In addition, we also propose

the APIs that enable services to invoke the

applications integration designed by end-users.

The proposed APIs support to construct an op-

timization problem solving system on the Grid.

Therefore, end-users are also able to solve

their own optimization problems by designing

applications integration.

In the computational simulation examples

detailed in this paper, we constructed the op-

timization problem solving system using the

NetSolve system[13], which is one of the

GridRPC systems. The performance of the sys-

tem was evaluated and is discussed here.

II. GRID AND GRIDRPC

A. Overview of the Grid

In recent years through improvements in

wide area network performance, the Grid has

produced high expectations for its potential

as a next generation cyberinfrastructure. It

is expected that several systems, which were

not able to be realized previously can now

be built easily[3], [4]. Most research on the

Grid involve the development of several types

of Grid middleware that solve various prob-

lems caused by sharing resources through the

wide area network such as user authoriza-

tion/authentication, communication encryption,

job scheduling, fault tolerance, information ser-

vice and programming model. Typical exam-

ples of such middleware include the Globus

Toolkit[6], currently developed by the Globus

Alliance[15]; Legion[7], which provides basic

services and tools; Condor[9] and AppLes[8],

which provide dynamic scheduling function;

and the GridRPC systems whose details are

explained later. Most of the Grid technologies

are standardized at the GGF. Recently, in order

to promote Grid technologies for business, the

SOA has been adopted as the basic concept

of the Grid technologies and the OGSA was

proposed and standardized at the GGF. In

the OGSA, these have been standardized with

an emphasis on safe and efficient integration

among services arranged on the wide area

network using the Grid technologies. Since this

tendency will be increasingly accelerated, it

is also important to develop the optimization

problem solving system on the Grid with the

emphasis on services integration.

B. GridRPC

The GridRPC, which extends a Remote Pro-

cedure Call (RPC) mechanism for the Grid,

is a typical programming model for develop-

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 3

ing Grid-enabled applications. In the GridRPC,

application holders arrange their own applica-

tions on remote servers in advance. Then, end-

users invoke one of them through the wide

area network by using the GridRPC APIs,

which have been standardized at the GGF.

The GridRPC has two advantages. First, it

has excellent usability for end-users. Second,

it enables application holders to arrange and

publish existing applications on the Grid easily

and safely. In addition, some sophisticated sys-

tems that implement the GridRPC APIs such

as NetSolve, Ninf[14] and Ninf-G are already

developed. Therefore, it is expected that the

GridRPC system will be widely used.

C. NetSolve

The NetSolve system is mentioned as one of

the sophisticated GridRPC systems and we il-

lustrate the overview of the NetSolve system in

Fig.1. NetSolve consists of three major compo-

nents; the NetSolve server, the NetSolve agent

and the NetSolve client. The NetSolve server

manages and performs applications prepared

by application holders. The NetSolve agent

unifies a dataset on the information of the Net-

Solve server and mediates a client request. The

NetSolve client requests one of the published

applications on the NetSolve servers through

the NetSolve agent. Of these components, the

most important is the agent. In the NetSolve

system, each server registers its capabilities

such as prepared applications and hardware

performance with the agent in advance. Then,

the NetSolve agent periodically checks the con-

dition of the NetSolve servers. As a result, the

NetSolve client can obtain information about

all the available applications from the NetSolve

agent. In addition, this mechanism enables the

NetSolve client to invoke one of the published

applications on the most appropriate NetSolve

server. When the client requests the applica-

tion through the agent, the agent selects the

most appropriate server based on the server’s

capabilities and returns the information of the

selected server. Then the NetSolve client in-

vokes the application with the input data to the

selected server. After execution of the applica-

tion, the server returns the result data to the

client. After the request to the NetSolve agent

is automatically performed, the set of jobs is

performed without the intervention of the end-

user. These features of the NetSolve system are

suitable for a system construction based on the

SOA. This means that end-users are able to

easily and efficiently use existing applications

published by application holders as a service

through the wide area network.

III. O PTIMIZATION PROBLEM SOLVING

SYSTEM

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 4

Fig. 1. Overview of the NetSolve system

USING THE GRIDRPC

In this paper, we propose the framework

of applications integration using the GridRPC.

In addition, in order to support to construct

an optimization problem solving system on

the Grid, the APIs for invoking applications

integration are also proposed. By application

holders expressing existing applications as the

service using the proposed framework and

APIs, end-users are able to solve their own

optimization problems by designing arbitrary

applications integration through the wide area

network. In this section, we firstly describe

the optimization problem solving system using

the GridRPC, which extends the features of

the NetSolve system. And then, the proposed

framework and APIs are explained with ex-

amples of applications integration for solving

optimization problems.

A. Requirement

Application executions are generally re-

garded as the generation of output files from

input files. In order to minimize the modifi-

cation of the source code of the application

for applications integration, it is more prac-

tical to integrate applications by exchanging

input/output files among applications.

In the general system for solvint optimiza-

tion problems, the optimization system is as-

sumed as shown in Fig.2(a). This system con-

sists of two parts, optimizing service and an-

alyzing service. The optimizing service deter-

mines a next searching point and optimizes de-

sign variables. The analyzing service analyzes

values of an objective function and constraints.

Whenever the analyzed values that correspond

to a search point are required in the optimiz-

ing service, the optimizing service obtains the

values by invoking the analyzing service. The

simplest optimization system is a system that

assigns one application to each service. How-

ever, depending on the kind of optimization

problem, it is often necessary to assign two

or more applications integration and/or another

optimization system to the analyzing service

as shown in Fig.2(b). Therefore, we consider

that the optimization problem solving system

should have the following functions for end-

users to solve their own optimization problems

by arbitrarily integrating applications.

1) A function where an end-user can design

arbitrary applications integration as the

analyzing service.

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 5

Fig. 2. Optimizing service and analyzing service

2) A function where an end-user can specify

the designed applications integration to

the optimizing service and the optimizing

service can invoke it as the analyzing

service.

In applications integration within science

fields, the exchange of input/output files among

services has a tendency to create a bottleneck

because of large sizes. Therefore, the above

functions should be realized by decentralized

administration among services.

B. Overview of the optimization problem solv-

ing system

The overview of the optimization problem

solving system using the GridRPC is shown

in Fig.3. In order to extend the features of

the NetSolve system, this system consists of

three components, client, services and agent

similar to the NetSolve system. The client

designs applications integration and builds an

optimization system to solve an optimization

problem. Each service manages and performs

applications prepared by application holders. In

addition, each service also provides the four

basic functions to realize applications integra-

tion by decentralized administration among ser-

vices. The agent unifies a dataset of the services

information and mediates a client request.

In this system, the client builds the optimiza-

tion system in accordance with the following

steps. First, the client aggregates the informa-

tion of all the available applications from the

agent. Second, the client selects the services

and designs applications integration by decid-

ing the invocation sequence of the functions

provided by each selected service. Finally, the

client requests to perform the functions in a

suitable order through the agent.

In addition, applications integration on the

system is realized by performing applications

on the services and exchanging information

among services. The information exchange is

also realized by sending and receiving in-

put/output files of applications. Therefore, the

four basic functions of each service are pre-

pared for the client to design applications in-

tegration. These functions are implemented by

the GridRPC. Thus, the client calls some of

the GridRPC requests to solve optimization

problems.

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 6

Fig. 3. Overview of the optimization problem solving system

C. Basic functions of each service

In order to realize applications integration,

each service provides the four basic functions

to the client. The outline of these functions

is shown in Fig.4. These functions are imple-

mented by the GridRPC and the details of these

functions are shown below.

1) “Receive Files” is the function to receive

input files of an application from a caller

of the GridRPC.

2) “Run Application” is the function to per-

form an application specified by a caller

of the GridRPC.

3) “Return Files” is the function to send

output files generated by performing an

application to a caller of the GridRPC.

4) “Send Files” is the function to send

output files generated by performing an

application to another service specified

by a caller of the GridRPC.

Fig. 4. Four basic functions provided by each service

In these functions, the Receive Files, Run

Application and Return Files are realized by

one GridRPC request and only Send files is

realized by two requests.

D. Desing of the applications integration

We show an example of applications inte-

gration using the basic functions provided by

each service in Fig.5, which also shows that a

client designs applications integration between

two services. In this example, the client first

aggregates the information of all the available

applications from an agent and selects the Ser-

vice A and B. Then, the client prepares only

the input file of Service A because the input

file of Service B is offered by the output file

of Service A. Finally, the client also prepares

the configuration file describing the following

jobs and integrates the applications by making

the GridRPC requests. These jobs are invoked

through a total of six GridRPC requests, which

consists of three requests from the client to

Service A, one request from Service A to

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 7

Fig. 5. Applications integration example

Service B and two requests from the client to

Service B.

1) Service A receives the input file from the

client (Service A: Receive Files).

2) Service A performs the managing appli-

cation (Service A: Run Application).

3) Service A sends the output file to Service

B (Service A: Send Files).

4) Service B performs the managing appli-

cation (Service B: Run Application).

5) Service B sends the output file to the

client (Service B: Return Files).

We also show the example of the config-

uration file in Fig.6. This configuration file

shows the above applications integration in our

implementation of the system. In the configu-

ration file, an end-user describes the number of

the job requests and the type, the caller/callee,

the number of sent/received files and their file

names of each request. Moreover, in order

to reduce the burden of the client, our im-

plementation provides the user interface tool

Fig. 6. Configuration file example

Fig. 7. User interface tool

shown in Fig.7. This tool enables an end-user

to aggregate the information of applications

from the agent, to easily express the relations

of input/output files among services, and to

automatically generate the configuration file.

E. Application Programming Interface

As described in Sec.III-A, in order to solve

optimization problems by integrating applica-

tions, it is indispensable for an end-user to

specify the designed applications integration to

the optimizing service. In addition, the optimiz-

ing service has to invoke it as the analyzing ser-

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 8

vice. Therefore, we propose some of the APIs

that enable application developers to easily use

it in their own applications. By substituting

parts where require analyzed values that corre-

spond to a searching point with these APIs, the

optimizing service can read the configuration

file generated by an end-user and invoke it as

the analyzing service.

1) Include file: The name of the include file

is defined as “opss.h”. All programs which use

one of the APIs have to include this file.

2) Status code:All of the APIs return the

status code as the return value of a function.

Whenever a function is completed normally, “

OPSSOK ” is returned and whenever an error

occurs, “ OPSSFAILURE ” is returned.

3) Initializing and finalizing functions:The

initializing API initializes variables, the re-

quired modules and the GridRPC middleware.

The finalizing API releases any resources and

finalizes the Grid middleware. The “OPSS”

used in these APIs is one of the structures for

maintaining the status of the system.
¶ ³

int grpc opssinitialize(OPSS *pt, char

*agentname);

int grpc opssfinalize(OPSS *pt);
µ ´

4) Configuration file specification function:

The following API can specify the configura-

tion file used for applications integration. The

purpose of this API is to invoke the specific

applications integration predefined by the ap-

plication developer’s own request.
¶ ³

int grpc opssconfig(OPSS *pt, char *con-

figurationfilename);
µ ´

5) Application integration functions:In or-

der to invoke applications integration, any of

the following two APIs have to be used. The

former API assumes being mainly used in

analyzing applications. Whenever the former

API is used, it is necessary to specify the

configuration file using the latter API. The

latter API assumes being mainly used in opti-

mizing applications. The application developers

of optimizing applications have to substitute

parts that require analyzed values with this API.

Whenever the API is used, it is not necessary

for an application developer to specify the con-

figuration file. The configuration file provided

by an end-user is automatically used instead.
¶ ³

int grpc opssoptimize(OPSS *pt);

int grpc opssanalyze(OPSS *pt);
µ ´

F. Construction of the optimization system

In this section, we show an example of the

structural optimization system. An overview

of this example is illustrated in Fig.8. In this

example, the truss structural application using

the finite element method (femtruss) is used

as the analyzing service and the sequential

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 9

quadratic programming method (sqp) is used

as the optimizing service.

1) Input and output files:The femtruss

requires truss.config and truss.in as the input

files and generates truss.out as the output file.

In the truss.config, the default parameters of

analysis and the basic structure of truss are

defined. In the truss.in, the cross-section areas

of each member are described. These areas

correspond to design variables sent from the

sqp to the femtruss. In the truss.out, analyzed

values such as the weight value of the truss

structure and the stress values of each member

are described. The weight value corresponds

to an objective function and the stress values

correspond to constraints. These values are sent

from the femtruss to the sqp.

On the other hand, the sqp requires

sqp.config and sqp.in as the input file and

generates sqp.out as the output file. In the

sqp.config, the default parameters of optimiza-

tion are described and the initial searching

point is described in the sqp.in. In the sqp.out,

the optimization result is described. In addition,

whenever analyzed values that correspond to

design variables are required in the sqp, the sqp

writes the values of design variables into the

sqp.dv and invokes the applications integration

as the analyzing service. After invoking it, the

sqp reads the values of the objective func-

tion and constraints from the sqp.obj. In order

Fig. 8. Optimization system example

to enable applications integration between the

fem truss and the sqp, it is assumed that the

sqp.dv is described by the same format as the

truss.in and the sqp.obj is also described by the

same format as the truss.out.

2) Design of the optimization system:In or-

der to construct the optimization system shown

in Fig.8, the client should prepare the config-

uration file described by the following jobs in

descending order. These jobs are invoked by

a total of six GridRPC requests that consist of

one request from the client to the femtruss and

five requests from the client to the sqp. In our

implementation of the system, the client needs

to call many requests to the sqp because the

GridRPC request can not transfer multiple files.

1) The client sends the truss.config to the

fem truss. (femtruss: Receive Files)

2) The client sends the sqp.config, sqp.in

and opss.conf to the sqp. (sqp: Receive

Files)

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 10

3) The sqp performs the sqp application.

(sqp: Run Application)

4) The sqp returns the sqp.out to the client.

(sqp: Return Files)

On the other hand, whenever the sqp requires

analyzed values that correspond to design vari-

ables, the sqp should perform the following

jobs in descending order. These jobs are in-

voked by three GridRPC requests from the sqp

to the femtruss and are repeatedly performed

until the optimization is finished.

1) The sqp sends the sqp.dv to the

fem truss. (femtruss: Receive Files)

2) The femtruss performs the femtruss ap-

plication. (femtruss: Run Application)

3) The femtruss returns the truss.out to the

sqp. (femtruss: Return Files)

In order to perform these jobs on the sqp,

the client has to describe another configuration

file and send it to the sqp before performing

the sqp application (sqp: Run Application).

The sqp application reads the configuration file

and invokes the applications integration as the

analyzing service. Therefore, as in Fig.8, the

client sends the “ opss.conf ” to the sqp before

performing the sqp application. On the other

hand, in the sqp application, in order to invoke

the applications integration predefined by the

client, the application developer has to sub-

stitute parts that require analyzed values with

the “grpcopssanalyze” function described in

Sec.III-E.5 in advance.

IV. COMPUTATIONAL SIMULATION

EXPERIMENTS

A. Performance evaluation of the basic func-

tions

1) Overview of the experiment:In this ex-

periment, we evaluated the basic performance

of our implementation of the system using

the applications integration shown in Fig.5.

In order to correctly evaluate the basic per-

formance, both Service A and B manage the

same application which replicates the input file

into the output file. In addition, no content is

described in the input file of Service A. Thus,

the exchanged file size is minimized.

In the experiment, the client first described

the configuration file shown in Fig.6 and saved

it as the file name “ opss.conf ”. The client also

described the client program shown in Fig.9

using the APIs described in Sec.III-E. The

execution time of each API used in Fig.9 was

measured in this experiment. In addition, in the

“grpc opssoptimize” function which invokes

the applications integration, the execution time

of each basic function described in Fig.6 was

also measured.

A cluster environment connected via fast

Ethernet was used for the experiment and each

single node was assigned to the client, the

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 11

Fig. 9. Client program used for the numetical example

agent, and the Services A and B. Moreover,

the NetSolve system (ver.2.0) was used for the

GridRPC middleware of our implementation.

2) Result of the experiment:The average

execution time of each API in 100 trials is

shown in Table.I. We found that the initial-

ization of the system required 1.0 seconds,

the finalization required 4.5 seconds and the

applications integration, which consisted of the

five GridRPC requests from the client, required

6.2 seconds. The average execution time of

each basic function provided by the services

is also shown in Table.II. All of the functions

except the Send Files could be performed in

less than 0.06 seconds. However, the execution

of the Send Files required 6.0 seconds. This

was caused by the implementation of the Send

Files. The Send Files are mainly implemented

by three parts; the initialization of the system,

the Receive Files function invocation of the ser-

vice specified by the client, and the finalization

of the system.

TABLE I

ELAPSED TIME OF EACHAPI ON THE CLUSTER

ENVIRONMENT

API Elapsed Time (s)

grpc opssinitialize 1.009

grpc opssconfig 0.002

grpc opssoptimize 6.169

grpc opssfinalize 4.450

TABLE II

ELAPSED TIME OF EACH SERVICE FUNCTION ON THE

CLUSTER ENVIRONMENT

Function Elapsed Time (s)

Service A: Receive Files 0.058

Service A: Run Application 0.017

Service A: Send files 6.023

Service B: Run Application 0.017

Service B: Return Files 0.054

From these results, we conclude that the

“grpc opssfinalize”, which finalizes the sys-

tem, requires the longest time in the APIs and

the basic functions. This was caused by the

implementation of the NetSolve system. On

the other hand, since the execution time of the

basic functions except the Send Files was less

than 0.06 seconds, we found that the overhead

time of the proposed system was very short.

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 12

B. Performance evaluation of the optimization

system

1) Overview of the experiment:In this ex-

periment, the performance of the optimiza-

tion system as shown in Fig.8 was evaluated.

As with the last experiment, the client firstly

described the configuration file and saved it

as the file name “ opss.conf ”. And then,

the client performed the optimization by us-

ing the client program shown in Fig.9. The

performance of the optimization system was

evaluated by measuring the execution time of

each API and each basic function of the server.

As the experimental environments, the cluster

environment connected via fast Ethernet and

the Grid environment consisted of clusters at

Doshisha University, Japan and the University

of Tennessee, USA. The Grid environment is

summarized in Fig.10. Both directions of the

network performance between the sqp and the

fem truss was 94.1Mbps in the cluster envi-

ronment and 2.2Mbps in the Grid environment

when the TCP stream performance was mea-

sured by sending and receiving 1KB message

using the Netperf benchmark[16].

2) Result of the experiment:The average

execution time of each API in 30 trials is shown

in Table.III. In addition, the average execution

time of each basic function provided by the

sqp and femtruss services is also shown in

Fig. 10. Specification of the Grid environment for the

numerical example

Table.IV. In the execution of the four APIs to

perform the optimization, it was found that the

Grid environment required more time than the

cluster environment. It was also found that the

execution time of the Run Application, which

invokes the sqp application, made up more

than 99% of the total execution time. This was

caused by the difference in the communication

performance of the NetSolve system between

the Grid environment and the cluster environ-

ment when the sqp called the GridRPC requests

to the femtruss.

On the other hand, in the optimization sys-

tem used for this experiment, the optimizing

service (sqp service) invoked the analyzing

service (femtruss service) 246 times. There-

fore, each invocation, which consisted of three

GridRPC requests, required 0.14 seconds in the

cluster environment and 8.14 seconds in the

Grid environment on average. Since the scale

of the target problem used for this experiment

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 13

TABLE III

ELAPSED TIME OF EACHAPI ON THE CLUSER AND THE

GRID ENVIRONMENT

API Cluster (s) Grid (s)

grpc opssinitialize 1.009 1.010

grpc opssconfig 0.002 0.002

grpc opssoptimize 35.723 2005.795

grpc opssfinalize 4.373 5.045

was very small, all of them were regarded

as the overhead time of the system. However,

as the scale of the target problem becomes

larger and the execution time of the analyzing

service is longer, the rate of the overhead time

of the system becomes shorter. If the average

execution time of the analyzing service is 30.0

seconds, the rate of the overhead time of the

system is about 0.5% in the cluster environment

and 21.3% in the Grid environment. Therefore,

in the wide area network where communication

performance is poor, the system can be used

practically.

V. RELATED WORKS

As related work of our optimization prob-

lem solving system using the GridRPC, NEOS

(Network-Enabled Optimization System)[1],

developed at the Argonne National Laboratory,

and the FIPER system[2], developed under the

FIPER Project, are mentioned. NEOS is one

TABLE IV

ELAPSED TIME OF EACH SERVICE FUNCTION ON THE

CLUSER AND THEGRID ENVIRONMENT

Function Cluster (s) Grid (s)

fem truss: Receive Files 0.053 2.689

sqp: Receive Files 0.155 0.154

sqp: Run Application 35.461 2002.893

sqp: Return Files 0.054 0.059

of the systems based on Condor. In NEOS,

an end-user defines an optimization problem

and performs the jobs by selecting an opti-

mization method. In order to solve the de-

fined problem, Condor allocates the jobs to

idle resources on a network. On the other

hand, the FIPER system consists of the ACS

server (Application Control System Server) and

some of the ACS stations, which are based

on the Java 2 Platform, Enterprise Edition.

In order to construct an optimization system

in the FIPER system, an end-user integrates

components of each FIPER station centering

on the ASC server by arbitrarily describing

a workflow and managing inputs/outputs of

components. Either can build an optimization

system by only selecting services on a net-

work without an end-user having optimizing

applications. However, in the NEOS, because

the relation between optimizing application and

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 14

analyzing application is fixed, an end-user can

not arbitrarily integrate applications. In addi-

tion, since the FIPER system is based on web

service technologies and has a central control

mechanism as the ACS server, the proposed

system, which is based on the GridRPC and

does not have a central control mechanism, is

better in safety and scalability.

VI. CONCLUSION AND FUTURE WORKS

In recent years, Grid technologies have been

standardized with the emphasis on efficient ser-

vices integration on the wide area network. We

especially focused on applications integration

for optimization problem solving on the Grid.

Then, the framework of applications integration

using the GridRPC is proposed. By application

holders expressing their own applications as

the service along the framework, end-users are

able to design arbitrary applications integration

through the wide area network. In addition,

we also proposed the APIs that enable the

service to invoke the applications integration

designed by the end-user. The proposed frame-

work and APIs support the construction of the

optimization problem solving system on the

Grid. Therefore, end-users can solve their own

optimization problems by designing applica-

tions integration on the system.

Through the computation simulation exper-

iments of our implementation of the system,

we conclude that the finalization of the system

takes longer compared to other functions be-

cause of the implementation of the NetSolve

system. In addition, we also found that the

overhead time of the system in the cluster

environment is very short. The system can

be also used in the wide area network where

communication performance is poor. In future

work, we will implement the system using

other GridRPC middleware such as the Ninf-G

and compare the performance of the systems.

In addition, the functions to invoke analyzing

services in parallel and to translate the format

of input/output files exchanged among applica-

tions are also necessary.

ACKNOWLEDGMENT

We wish to thank Mr. Keiji Kudo (Engineous

Japan Inc.) who provided much advice about

the FIPER system. We also thank Mr. Yu-

taka Ueshima (Japan Atomic Energy Research

Institute) who provided many ideas for the

application integration system on the wide area

network. Finally, this research was partially

supported by a grant from the Information-

technology Promotion Agency (IPA), Japan un-

der the Mito Software Creation Program.

REFERENCES

[1] J. Czyzyk, M. P. Mesnier, and J. J. Moré, “NEOS:

The Network-Enabled Optimization System,” Mathemat-

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 15

ics and Computer Science Division, Argonne National

Laboratory, 1996.

[2] P. J. Ŕohl, R. M. Kolonay, R. K. Irani, M. Sobolewski,

K. Kao, and M. W. Bailey, “A Federated Intelli-

gent Product EnviRonment,”Proceedings of the 8th

AIAA/USAF/NASA/ISSMO Symposium on Multidisci-

plinary Analysis and Optimization, 2000.

[3] I. Foster and C. Kesseleman,The Grid : Blueprint for

a New Computing Infrastructure. Morgan Kaufmann,

1998.

[4] I. Foster, C. Kesselman, and S. Tuecke, “The Anatomy

of the Grid : Enabling Scalable Virtual Organizations,”

International Journal of Supercomputer Applications,

vol. 15, no. 3, 2001.

[5] I. Foster, C. Kesselman, J. Nick, and S. Tuecke,

“The Physiology of the Grid: An Open Grid Services

Architecture for Distributed Systems Integration,” Globus

Project, 2002. [Online]. Available: http://www.globus.

org/alliance/publications/papers/ogsa.pdf

[6] I. Foster and et.al., “Globus : A metacomputing infras-

tructure toolkit,” International Journal of Supercomputer

Applications, vol. 11, no. 2, 1997.

[7] A. Grimshaw, W. Wulf, and the Legion team, “The

Legion Vision of a Worldwide Virtual Computer,”Com-

munications of the ACM, vol. 40(1), pp. 39–45, 1997.

[8] H. Casanova, G. Obertelli, F. Berman, and R. Wolski,

“The AppLeS Parameter Sweep Templete : the User-

Level Middleware for the Grid,”Proceedings of the

Supercomputing ’00 Conference, 2000.

[9] M. Litzkow, M. Livny, and W. Mutka, “Condor - A

Hunter of Idle Workstations,”Proceedings of the 8th

International Conference on Distributed Computing Sys-

tems, pp. 101–111, 1988.

[10] K. Seymour, H. Nakada, S. Matsuoka, J. Dongarra,

C. Lee, and H. Casanova, “Grid RPC : A Remote

Procedure Call API for Grid Computing,” Innovative

Computing Laboratory, University of Tennessee, 2002.

[11] I. Foster, H. Kishimoto, A. Savva, D. Berry,

A. Djaoui, A. Grimshaw, B. Horn, F. Maciel,

F. Siebenlist, R. Subramaniam, J. Treadwell, and

J. Von Reich, “The Open Grid Services Architecture,

Version 1.0,” Global Grid Forum OGSA-WG,

2005. [Online]. Available: http://www.gridforum.org/

documents/GWD-I-E/GFD-I.030.pdf

[12] “Global Grid Forum.” [Online]. Available: http://www.

gridforum.org/

[13] H. Casanova and J. Dongarra, “NetSolve: A Network

Server for Solving Computational Science Problems,”

Proceedings of the Supercomputing ’96 Conference,

1996.

[14] H. Nakada, M. Sato, and S. Sekiguchi, “Design and

Implementations of Ninf : towards a Global Computing

Infrastructure,”Future Generation Computing Systems,

Meta-computing Issue, 1999.

[15] “Globus Alliance.” [Online]. Available: http://www.

globus.org/

[16] “Netperf benchmark.” [Online]. Available: http://www.

netperf.org/

PLACE

PHOTO

HERE

Hisashi Shimosaka Biography text

here.

PLACE

PHOTO

HERE

Tomoyuki Hitoyasu Biography text

here.

October 8, 2005 DRAFT

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 1, NO. 1, OCTOBER 2005 16

PLACE

PHOTO

HERE

Mitsunori Miki Biography text here.

PLACE

PHOTO

HERE

Jack Dongarra Biography text here.

October 8, 2005 DRAFT

