
MITRESlide-1
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

HPC Challenge v1.x Benchmark
Suite

SC|05 Tutorial — S13
Dr. Piotr Luszczek (luszczek@cs.utk.edu)
Dr. David Koester (dkoester@mitre.org)

13 November 2005
Afternoon Session

Slide-2
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Acknowledgements

• This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA), the Department of
Defense, the National Science Foundation (NSF), and the
Department of Energy (DOE) through the DARPA High
Productivity Computing Systems (HPCS) program under
grant FA8750-04-1-0219 and under Army Contract W15P7T-
05-C-D001

• Opinions, interpretations, conclusions, and
recommendations are those of the authors
and are not necessarily endorsed by the United States
Government

Slide-3
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

People

• ICL Team
– Jack Dongarra

dongarra@cs.utk.edu University
Distinguished Professor

• Collaborators
– David Bailey (Lawrence

Berkeley National Laboratory)
– David Koester (MITRE)
– John McCalpin (IBM)
– Rolf Rabenseifner (The High

Performance Computing Center
Stuttgart)

– R. Clint Whaley (University of
Texas San Antonio)

– Piotr Luszczek
luszczek@cs.utk.edu
Research Scientist

– Jeremy Kepner (MIT LL)
– Bob Lucas (USC/ISI)
– Antoine Petitet (Sun

Microsystems)
– Daisuke Takahashi

daisuke@is.tsukuba.ac.jp
University of Tsukuba

Slide-4
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization

• Component Kernels
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions

Slide-5
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Benchmark Suite
http://icl.cs.utk.edu/hpcc/

Slide-6
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Introduction (1 of 6)

• HPCS has developed a spectrum of benchmarks to provide
different views of system

– ~40 Kernel Benchmarks
– HPCS Spanning Set of Kernels
– HPC Challenge Benchmark Suite

• HPC Challenge Benchmark Suite
– To examine the performance of HPC architectures using

kernels with more challenging memory access patterns than
HPL

– To augment the Top500 list
– To provide benchmarks that bound the performance of many

real applications as a function of memory access
characteristics ― e.g., spatial and temporal locality

– To outlive HPCS
• HPCchallenge pushes spatial and temporal boundaries and

defines performance bounds

Available for download http://icl.cs.utk.edu/hpcc/

Slide-7
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Introduction (2 of 6)

1. HPL — High Performance
LINPACK

2. DGEMM — matrix x matrix
multiply

3. STREAM
– Copy
– Scale
– Add
– Triad

4. PTRANS — parallel matrix
transpose

5. FFT
6. RandomAccess
7. Communications Bandwidth

and Latency

• Scalable framework — Unified
Benchmark Framework
– By design, the HPC Challenge

Benchmarks are scalable with
the size of data sets being a
function of the largest HPL
matrix for the tested system

• Scalable framework — Unified
Benchmark Framework
– By design, the HPC Challenge

Benchmarks are scalable with
the size of data sets being a
function of the largest HPL
matrix for the tested system

Slide-8
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Introduction (3 of 6)

Local and Embarrassingly Parallel
1. EP-DGEMM (matrix x matrix

multiply)
2. STREAM

– Copy
– Scale
– Add
– Triad

3. EP-RandomAccess
4. EP-1DFFT

Global
1. High Performance LINPACK

(HPL)
2. PTRANS — parallel matrix

transpose
3. G-RandomAccess
4. G-1DFFT
5. Communications Bandwidth &

Latency

1. HPL — High Performance
LINPACK

2. DGEMM — matrix x matrix
multiply

3. STREAM
– Copy
– Scale
– Add
– Triad

4. PTRANS — parallel matrix
transpose

5. FFT (EP & G)
6. RandomAccess (EP & G)
7. Communications Bandwidth

and Latency

Slide-9
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Introduction (4 of 6)

• Many of the component benchmarks were widely used
before the HPC Challenge suite of Benchmarks was
assembled

– HPC Challenge has been more than a packaging effort
– Almost all component benchmarks were augmented from

their original form to provide consistent verification and
reporting

• We stress the importance of running these benchmarks on
a single machine — with a single configuration and options

– The benchmarks were useful separately for the HPC
community, meanwhile

– The unified HPC Challenge framework creates an
unprecedented view of performance characterization of a
system

A comprehensive view with data captured the under the same
conditions allows for a variety of analyses depending on end user
needs

Slide-10
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Introduction (5 of 6)

• To characterize a system architecture — consider three
testing scenarios:

1. Local – only a single processor is performing computations
2. Embarrassingly Parallel – each processor in the entire

system is performing computations but they do not
communicate with each other explicitly

3. Global – all processors in the system are performing
computations and they explicitly communicate with each
other.

• All benchmarks operate on either matrices (of size n2) or
vectors (of size m)

– n2 ≤ m ≤ Available Memory
– i.e., the matrices or vectors are large enough to fill almost all

available memory.

Slide-11
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Introduction (6 of 6)

• HPC Challenge encourages users to develop optimized benchmark codes
that use architecture specific optimizations to demonstrate the best
system performance

• Meanwhile, we are interested in both
– The base run with the provided reference implementation
– An optimized run

• The base run represents behavior of legacy code because
– It is conservatively written using only widely available programming languages

and libraries
– It reflects a commonly used approach to parallel processing sometimes

referred to as hierarchical parallelism that combines
Message Passing Interface (MPI)
OpenMP Threading

– We recognize the limitations of the base run and hence we encourage
optimized runs

• Optimizations may include alternative implementations in different
programming languages using parallel environments available specifically
on the tested system

• We require that the information about the changes made to the original
code be submitted together with the benchmark results

– We understand that full disclosure of optimization techniques may sometimes
be impossible

– We request at a minimum some guidance for the users that would like to use
similar optimizations in their applications

Slide-12
HPCS Benchmarking

Working Group

MITRE ISI

HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization

• Component Kernels
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions

Slide-13
HPCS Benchmarking

Working Group

MITRE ISI

High Productivity Computing Systems
(HPCS)

Goal:
Provide a new generation of economically viable high productivity computing
systems for the national security and industrial user community (2010)

Impact:
Performance (time-to-solution): speedup critical national
security applications by a factor of 10X to 40X
Programmability (idea-to-first-solution): reduce cost and
time of developing application solutions
Portability (transparency): insulate research and
operational application software from system
Robustness (reliability): apply all known techniques to
protect against outside attacks, hardware faults, &
programming errors

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Applications:
Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant
modeling and biotechnology

HPCS Program Focus Areas

Analysis &

Analysis &

Assessment

Assessment

Performance
Characterization

& Prediction

System
Architecture

Software
Technology

Hardware
Technology

Programming
Models

Industry R&D

Industry R&D

Slide-14
HPCS Benchmarking

Working Group

MITRE ISI

(Funded Three)
Phase II

R&D

02 05 06 07 08 09 1003

Phase III
Prototype Development

System
Design
ReviewIndustry

Milestones

Productivity
Assessment
(MIT LL, DOE,

DoD, NASA, NSF)

MP Peta-Scale
Procurements

Year (CY)

Concept
Review PDR

Early
Demo

Technology
Assessment

Review

(Funded Five)
Phase I
Industry
Concept

Study

Program Reviews

Critical Milestones

Program Procurements

CDR
DRR

1 2 4 5 6 7

04

3

Mission
Partners

Mission Partner
Peta-Scale

Application Dev

11

Final
Demo

SW
Rel 1

SCR

SW
Rel 2

SW
Rel 3

SW
Dev Unit

Deliver UnitsMission Partner
Dev Commitment

Mission Partner
System Commitment

HPLS
Plan

MP Language Dev

HPCS Program Phases I -III

Slide-15
HPCS Benchmarking

Working Group

MITRE ISI

Phase II Program Goals

• Phase II Overall Productivity Goals
– Execution (sustained performance) – 1 Petaflop/sec (scalable to greater

than 4 Petaflop/sec). Reference: Workflow 3
– Development – 10X over today’s systems. Reference: Workflows 1,2,4,5

• Productivity Framework
– Establish experimental baseline
– Evaluate emerging vendor execution and development productivity

concepts
– Provide a solid reference for evaluation of vendor’s Phase III designs
– Early adoption or phase in of execution and development metrics by

mission partners
• Subsystem Performance Indicators (Vendor Specified Goals)

– 3.2 PB/sec bisection bandwidth;
– 64,000 GUPS;
– 6.5 PB/sec data streams bandwidth;
– 2+ PF/s Linpack

10 to 10K times Delta
from Business as Usual
10 to 10K times Delta

from Business as Usual

Documented and Validated Through Simulations,
Experiments, Prototypes, and Analysis

Slide-16
HPCS Benchmarking

Working Group

MITRE ISI

HPCS I/O Challenges

An Envelope on HPCS Mission
Partner Requirements HPCS as part of a

Mission Partner’s Enterprise Architecture
• 1 Trillion files in a single file

system
– 32K file creates per second

• 10K metadata operations per
second

– Needed for
Checkpoint/Restart files

• Streaming I/O at 30 GB/sec
full duplex

– Needed for data capture
• Support for 30K nodes

– Future file system need low
latency communication

Networks

InformationData

Sys 1Sys 1 Sys NSys NSys NHPCS
High Performance

Storage

HPCS Sys 1Sys 1

Storage Networks

Sys NSys NSys N

Storage SystemStorage SystemHigh Performance
Storage System

High Performance
Storage System

Tier 1 Storage Tier 2 Storage

Agency Enterprise System

Slide-17
HPCS Benchmarking

Working Group

MITRE ISI

HPCS Productivity Team

Productivity Team Lead
MIT Lincoln
Laboratory

Jeremy Kepner

September 2003 — July 2005
(Phase II Years 1 and 2)

Development Experiments
Existing Code Analysis

Workflows, Models, Metrics
Benchmarks

High Productivity Language Systems
Execution Time Models
Test & Specifications

July 2005 — ??
(Phase II Year 3 and Early Phase III)

Development Experiments
Workflows, Models, Metrics

High Productivity Language Systems
Execution Time Models

Test & Spec Specifications

Slide-18
HPCS Benchmarking

Working Group

MITRE ISI

HPCS Benchmark Working Group
Goals

• Provide the HPCS Vendors and HPCS Productivity Team
the Benchmarks and Applications for

– Scoping requirements for designing systems
– Productivity Testing

Execution Time Testing
Development Time Testing

Reliability

Portability Dev Time
Experiments

Exe Time
Experiments

Productivity
Metrics

System Parameters
(Examples)

BW bytes/flop (Balance)
Memory latency

Memory size
……..

Productivity

Processor flop/cycle
Processor integer op/cycle

Bisection BW
………

Size (ft3)
Power/rack

Facility operation
……….

Code size
Restart time (Reliability)
Code Optimization time

………

Benchmarks

Actual
System

or
Model

Work
Flows (Utility/Cost)

Ψ≡
U
C
=

U(T)
CS +CO +CM

Productivity = Utility/Cost

U

T

Production

T

Production

U

T

Constant

T

Constant

Utility → U(T)

Slide-19
HPCS Benchmarking

Working Group

MITRE ISI

HPCS Benchmark Working Group
Goals

Reliability

Portability Dev Time
Experiments

Exe Time
Experiments

Productivity
Metrics

System Parameters
(Examples)

BW bytes/flop (Balance)
Memory latency

Memory size
……..

Productivity

Processor flop/cycle
Processor integer op/cycle

Bisection BW
………

Size (ft3)
Power/rack

Facility operation
……….

Code size
Restart time (Reliability)
Code Optimization time

………

Benchmarks

Actual
System

or
Model

Work
Flows (Utility/Cost)

Ψ≡
U
C
=

U(T)
CS +CO +CM

Productivity = Utility/Cost

U

T

Production

T

Production

U

T

Constant

T

Constant

Utility → U(T)

Benchmarks and Workflows are non-linear functions
representing HPCS Mission Partner requirements

that will enable the measurement of the productivity
terms utility and cost for systems represented

by traditional parameter sets

Slide-20
HPCS Benchmarking

Working Group

MITRE ISI

HPCS Benchmark Spectrum

8 HPCchallenge
Benchmarks

(~40) Micro & Kernel
Benchmarks

Local
DGEMM
STREAM

RandomAccess
1D FFT

Global
Linpack
PTRANS

RandomAccess
1D FFT

Ex
is

tin
g

A
pp

lic
at

io
ns

Em
er

gi
ng

 A
pp

lic
at

io
ns

Fu
tu

re
 A

pp
lic

at
io

ns

Execution
Bounds

Execution
Indicators

Execution and
Development

Indicators

(~10) Compact
Applications

Spectrum of benchmarks provide different views of system
• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds
• Applications drive system issues; set legacy code performance bounds
• Kernels and Compact Apps for deeper analysis of execution and development time

Spectrum of benchmarks provide different views of system
• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds
• Applications drive system issues; set legacy code performance bounds
• Kernels and Compact Apps for deeper analysis of execution and development time

R
ec

on
na

is
sa

nc
e

 S
im

ul
at

io
n

In

te
lli

ge
nc

e

9 Simulation
Applications

System Bounds

Discrete
Math

…
Graph

Analysis
…

Linear
Solvers

…
Signal

Processing
…

Simulation
…

I/O

HPCS
Spanning Set

of Kernels

3 Scalable
Compact Apps

Pattern Matching
Graph Analysis

Signal Processing

3 Petascale/s
Simulation
(Compact)

Applications

Others
Classroom
Experiment

Codes

Slide-21
HPCS Benchmarking

Working Group

MITRE ISI

HPC Challenge v1.x Benchmark Suite
Introduction (1 of 2)

(~40) Micro & Kernel
Benchmarks

Ex
is

tin
g

A
pp

lic
at

io
ns

Em
er

gi
ng

 A
pp

lic
at

io
ns

Fu
tu

re
 A

pp
lic

at
io

ns

Execution
Indicators

Execution and
Development

Indicators

(~10) Compact
Applications

R
ec

on
na

is
sa

nc
e

 S
im

ul
at

io
n

In

te
lli

ge
nc

e

9 Simulation
Applications

System Bounds

Discrete
Math

…
Graph

Analysis
…

Linear
Solvers

…
Signal

Processing
…

Simulation
…

I/O

HPCS
Spanning Set

of Kernels

3 Scalable
Compact Apps

Pattern Matching
Graph Analysis

Signal Processing

3 Petascale/s
Simulation
(Compact)

Applications

Others
Classroom
Experiment

Codes

• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds
• Available for download http://icl.cs.utk.edu/hpcc/
• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds
• Available for download http://icl.cs.utk.edu/hpcc/

HPCchallenge Benchmarks
http://icl.cs.utk.edu/hpcc/

• To examine the performance of
HPC architectures using kernels
with more challenging memory
access patterns than HPL

• To augment the Top500 list
• To provide benchmarks that bound

the performance of many real
applications as a function of
memory access characteristics ―
e.g., spatial and temporal locality

• To outlive HPCS

8 HPCchallenge
Benchmarks

Local
DGEMM
STREAM

RandomAccess
1D FFT

Global
Linpack
PTRANS

RandomAccess
1D FFT

Execution
Bounds

Slide-22
HPCS Benchmarking

Working Group

MITRE ISI

Government HPC (HPCS)
Benchmark Spectrum

(~40) Micro & Kernel
Benchmarks

Ex
is

tin
g

A
pp

lic
at

io
ns

Em
er

gi
ng

 A
pp

lic
at

io
ns

Fu
tu

re
 A

pp
lic

at
io

ns

Execution
Indicators

Execution and
Development

Indicators

(~10) Compact
Applications

Current
UM2000

GAMESS
OVERFLOW
LBMHD/GTC

RFCTH
HYCOM

Near-Future
NWChem
ALEGRA

CCSM

R
ec

on
na

is
sa

nc
e

 S
im

ul
at

io
n

In

te
lli

ge
nc

e

9 Simulation
Applications

System Bounds

Discrete
Math

…
Graph

Analysis
…

Linear
Solvers

…
Signal

Processing
…

Simulation
…

I/O

HPCS
Spanning Set

of Kernels

3 Scalable
Compact Apps

Pattern Matching
Graph Analysis

Signal Processing

3 Petascale/s
Simulation
(Compact)

Applications

Others
Classroom
Experiment

Codes

HPCchallenge Benchmarks
http://icl.cs.utk.edu/hpcc/

• To examine the performance of
HPC architectures using kernels
with more challenging memory
access patterns than HPL

• To complement the Top500 list
• To provide benchmarks that bound

the performance of many real
applications as a function of
memory access characteristics ―
e.g., spatial and temporal locality

• To outlive HPCS

HPCchallenge Benchmarks
http://icl.cs.utk.edu/hpcc/

Local and Embarrassingly Parallel
1. EP-DGEMM (matrix x matrix multiply)
2. STREAM

– COPY
– SCALE
– ADD
– TRIADD

3. EP-RandomAccess
4. EP-1DFFT

Global
1. High Performance LINPACK (HPL)
2. PTRANS — parallel matrix transpose
3. G-RandomAccess
4. G-1DFFT
5. Communication Bandwidth & Latency

8 HPCchallenge
Benchmarks

Local
DGEMM
STREAM

RandomAccess
1D FFT

Global
Linpack
PTRANS

RandomAccess
1D FFT

Execution
Bounds

Version 1.0
Now Available!

• Scalable framework — Unified Benchmark Framework
– By design, the HPC Challenge Benchmarks are scalable with the size of data sets being a

function of the largest HPL matrix for the tested system

• Scalable framework — Unified Benchmark Framework
– By design, the HPC Challenge Benchmarks are scalable with the size of data sets being a

function of the largest HPL matrix for the tested system

Slide-23
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Motivation for More “Challenging”
Benchmarks

• “To examine the performance of HPC architectures using kernels
with more challenging memory access patterns than HPL“

• Briefly address the questions:
– What effects do more challenging memory access patterns have on

performance?
– What applications exhibit more challenging memory access

patterns?

Slide-24
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Uniprocessor Sparse Matrix-Vector
Multiply Performance

Source: R. Vuduc, J. Demmel, K. Yelick, UC Berkeley

Top500 HPL

Slide-25
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Uniprocessor Sparse Matrix-Vector
Multiply Performance

Source: R. Vuduc, J. Demmel, K. Yelick, UC Berkeley

Top500 HPL

• HPL — dense
linear solver

– High temporal
locality or data
reuse due to
blocked data

– Architecture
able to move
data to
processors to
keep them
busy

• Sparse linear
solvers

– Difficulties in
keeping data
moving to the
processors to
keep them
busy

Slide-26
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

IBM Power3 MAPS Graph

San Diego Supercomputer Center
Performance Modeling and Characterization Lab

5PMaC

Framework addition: Data Dependency

Slide-27
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Intel Itanium MAPS Graph

San Diego Supercomputer Center
Performance Modeling and Characterization Lab

6PMaC

Framework addition: Data Dependency

Slide-28
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Node Spatial and Temporal Locality

HPC Challenge
Benchmarks

Select Applications

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Spatial Locality

Te
m

po
ra

l l
oc

al
ity

HPL

Test3D

CG

OverflowGamess

RandomAccess

AVUS

OOCore

RFCTH2

STREAM

HYCOM

• Spatial and temporal data locality
here is for one node/processor —
i.e., locally or “in the small”

• Spatial and temporal data locality
here is for one node/processor —
i.e., locally or “in the small”

Generated by PMaC @ SDSC

Slide-29
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Node Spatial and Temporal Locality

HPC Challenge
Benchmarks

Select Applications

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Spatial Locality

Te
m

po
ra

l l
oc

al
ity

HPL

Test3D

CG

OverflowGamess

RandomAccess

AVUS

OOCore

RFCTH2

STREAM

HYCOM

Generated by PMaC @ SDSC

High Temporal Locality
Good Performance on
Cache-based systems

No Temporal or Spatial Locality
Poor Performance on
Cache-based systems

High Spatial Locality
Moderate Performance on

Cache-based systems

Slide-30
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Node Spatial and Temporal Locality

HPC Challenge
Benchmarks

Select Applications

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Spatial Locality

Te
m

po
ra

l l
oc

al
ity

HPL

Test3D

CG

OverflowGamess

RandomAccess

AVUS

OOCore

RFCTH2

STREAM

HYCOM

Generated by PMaC @ SDSC

High Temporal Locality
Good Performance on
Cache-based systems

No Temporal or Spatial Locality
Poor Performance on
Cache-based systems

High Spatial Locality
Moderate Performance on

Cache-based systems

HPC Challenge Benchmarks
“bound” real application

performance in the
locality space

Slide-31
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization

• Component Kernels
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions

Slide-32
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Component Kernels

• HPL (High Performance Linpack)
• DGEMM
• STREAM
• PTRANS (Parallel Matrix Transpose)
• RandomAccess
• FFT
• Communications Latency
• Communications Bandwidth

Slide-33
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
HPL (1 of 3)

• HPL (High Performance Linpack)
– Implementation of the Linpack TPP (Toward Peak

Performance) benchmark
– Measures the floating point rate of execution for solving a

linear system of equations
• HPL solves a linear system of equations of order n:

• by computing an LU factorization with row partial pivoting
of the n by n+1 coefficient matrix:

• Since the row pivoting (represented by the permutation
matrix P) and the lower triangular factor L are applied to b
as the factorization progresses, the solution x is obtained in
one step by solving the upper triangular system:

Slide-34
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
HPL (2 of 3)

• The lower triangular matrix L is left unpivoted and the array
of pivots is not returned.

• The operation counts are
– Factorization phase — (⅔n3 – ½n2)
– Solve phase — (2n2)

• Correctness is ascertained by calculating the scaled
residuals where ε is machine precision for 64-bit floating-
point values and n is the size of the problem

Slide-35
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
HPL (3 of 3)

• Scalability
– Assume memory available in the entire system is linearly

proportional to the number of processors
– HPL is dominated by CPU “costs”

Computation complexity — O(n3)
Communication complexity — O(n2)

– It can be shown that the rate of execution (flop/s - r) for HPL
is proportional to the number of processors (P)

rHPL ∝ P

– It can also be shown that the time (t) to run HPL is
proportional to the square root of the number of processors

tHPL ∝ √P

More at http://www.netlib.org/benchmark/hpl/

Slide-36
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
DGEMM

• DGEMM measures the floating point rate of execution of
double precision real matrix-matrix multiplication

• The exact operation performed is:

where:

• The operation count is — (2n3)
• Correctness is ascertained by calculating the scaled

residual:

(Ĉ is a result of a reference implementation of the
multiplication)

Slide-37
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
STREAM (1 of 2)

• STREAM is a simple benchmark program that measures
sustainable memory bandwidth (in Gbyte/s) and the
corresponding computation rate for four simple vector
kernels:

where:

• HPC Challenge Benchmarks are intended to operate on
large data objects

– Object size is determined at runtime which contrasts with the
original version of the STREAM benchmark which uses static
storage (determined at compile time) and size

– The original benchmark gives the compiler more information
(and control) over data alignment, loop trip counts, etc.

Slide-38
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
STREAM (2 of 2)

• The benchmark measures Gbyte/s and the amount of data
transferred is

– Copy — (2m)
– Scale — (2m)
– Add — (3m)
– Triad — (3m)

• Correctness is ascertained by calculating the norm of the
difference between reference and computed vectors:

• The STREAM run rules require that the data dependency
chain implied by the sequence of operations be maintained

1. Copy
2. Scale
3. Add
4. Triad

More at http://www.cs.virginia.edu/stream/

Slide-39
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
PTRANS

• PTRANS (parallel matrix transpose) exercises the
communications where pairs of processors exchange large
messages simultaneously

• It is a useful test of the total communications capacity of
the system interconnect

• The performed operation sets a random n by n matrix to a
sum of its transpose with another random matrix:

where:

• The data transfer rate (in Gbyte/s) is calculated by dividing
the size of n2 matrix entries by the time it took to perform
the transpose

• Correctness is ascertained by calculating the scaled
residual:

More at http://www.netlib.org/parkbench/html/matrix-kernels.html

Slide-40
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
RandomAccess (1 of 2)

• RandomAccess measures the rate of integer updates to
random memory locations measured by the metric Giga-
Updates per Second (GUPS)

• The operation being performed on an integer array of size
m is:

where:

• The operation count is (4m) and since all the operations are
in integral values over GF(2) field they can be checked
exactly with a reference implementation

• The verification procedure allows 1% of the operations to
be incorrect (skipped or due to data race conditions) which
allows loosening concurrent memory update semantics on
shared memory architectures

Slide-41
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
RandomAccess (2 of 2)

• Scalability
– Assume memory available in the entire system is linearly

proportional to the number of processors
– Global RandomAccess is communications-limited on

distributed memory multiprocessors
– Depending on the capability of the architecture Global

RandomAccess may be scalable with rate (r)
1. Proportional to the number of processors (P)

rRA ∝ P

2. Independent of the number of processors (P)

rRA ∝ 1

3. Inversely proportional to the number of processors (P)
(scaling decreases as the number of processors increases)

rRA ∝ 1/P

More at http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/

Slide-42
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
FFT

• FFT measures the floating point rate of execution of double
precision complex one-dimensional Discrete Fourier
Transform (DFT) of size m measured in Gflop/s :

where:

• The operation count for the calculation is (5mlog2m)
• Correctness is ascertained by calculating the residual:

where ê is the result of applying a reference implementation
of inverse transform to the outcome of the benchmarked
code

– With infinite-precision arithmetic — the residual should be
zero

More at http://www.ffte.jp/

Slide-43
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
Communications Bandwidth and Latency (1 of 4)

• The latency and bandwidth benchmark measures two
different communication patterns

– Single-process-pair latency and bandwidth
– Parallel all-processes-in-a-ring latency and bandwidth

• For Single-process-pair latency and bandwidth ping-pong
communication is used on a pair of processes

– Several different pairs of processes are used and the
maximal latency and minimal bandwidth over all pairs is
reported

– While the ping-pong benchmark is executed on one process
pair all other processes are waiting in a blocking receive

– To limit the total benchmark time to 30 sec — only a subset of
the set of possible pairs is used

– The communication is implemented with MPI standard
blocking send and receive.

Slide-44
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
Communications Bandwidth and Latency (2 of 4)

• For Parallel all-processes-in-a-ring latency and bandwidth
communications

– All processes are arranged in a ring topology
– Each process sends and receives a message from its left and

its right neighbor in parallel
– Two types of rings are used

A naturally ordered ring (i.e., ordered by the process ranks in MPI
COMM WORLD)
The geometric mean of the bandwidth of ten different randomly
chosen process orderings in the ring

– The communication is implemented with
MPI standard non-blocking receive and send
Two calls to MPI Sendrecv for both directions in the ring
Always the fastest of both measurements are used

– Bandwidth per process is defined as total amount of
message data divided by the number of processes and the
maximal time needed in all processes

– This benchmark is based on patterns studied in the effective
bandwidth communication benchmark (b_eff)

Slide-45
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
Communications Bandwidth and Latency (3 of 4)

• Message lengths
– 8 byte
– 2,000,000 bytes

• The major results reported by this benchmark are:
– Maximal ping pong latency
– Average latency of parallel communication in randomly

ordered rings
– Minimal ping pong bandwidth
– Bandwidth per process in the naturally ordered ring
– Average bandwidth per process in randomly ordered rings.

• Additionally results reported by this benchmark are:
– Latency of the naturally ordered ring
– Minimum, maximum, and average of the ping-pong latency

and bandwidth

Slide-46
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Kernels
Communications Bandwidth and Latency (4 of 4)

• Communications Bandwidth and Latency benchmarks
model

– Ring based — the communication behavior of multi-
dimensional domain-decomposition applications

– Natural ring — the message transfer pattern of a regular grid
based application

Only in the first dimension
Adequate ranking of the processes is assumed

– Random ring — the communication pattern of unstructured
grid based applications

More at http://www.hlrs.de/organization/par/services/models/mpi/b_eff/

MITRESlide-47
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

A Deep Dive into RandomAccess

RandomAccess may be the least familiar of the
HPC Challenge Benchmark suite kernels…

Slide-48
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

GUPS (Giga UPdates Per Second)
Characteristics of the Metric

• GUPS (Giga UPdates per Second)
– A measurement that profiles the memory architecture of a system
– A measure of performance similar to MFLOPS

• The HPCS HPCchallenge RandomAccess benchmark exercises
the GUPS capability of a system like the LINPACK benchmark is
intended to exercise the MFLOPS capability of a computer

• In each case, we would expect these benchmarks to achieve close
to the "peak" capability of the memory system

• The extent of the similarities between RandomAccess and
LINPACK are limited to both benchmarks attempting to calculate a
peak system capabilities

– RandomAccess is a memory benchmark and not a computational
benchmark like LINPACK

• We are interested in the GUPS performance of entire systems and
system subcomponents

– The GUPS rating of a distributed memory multiprocessor
– The GUPS rating of an SMP node
– The GUPS rating of a single processor

• While there is typically a strict scaling of MFLOPS to processor
count, a similar phenomenon may not always occur for GUPS

Slide-49
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Calculating GUPS

• Calculating GUPS
– Identify the number of memory locations that can be

randomly updated in one second
– Divide by 1 billion (1e9)

• “Randomly” means that there is little relationship between
one address to be updated and the next — except that they
occur in the space of ½ the total system memory

• An update is a read-modify-write operation on a table of 64-
bit words

– An address is generated
– The value at that address is to be read from memory
– The value is to be modified by an integer operation

(add, and, or, xor) with a literal value
– The new value is written back to memory

Slide-50
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

GUPS Rules
Memory and Error Rate

• Memory
– Select the memory size to be the power of two

such that ¼ ≤ 2m ≤ ½ of the total memory
– Each CPU operates on its own address stream
– The single table may be distributed among nodes
– The distribution of memory to nodes is left to the

implementer
A uniform data distribution may help balance the workload
A non-uniform data distribution may simplify the calculations that
identify processor location by eliminating the requirement for
integer divides

• Error rate
– A small (less than 1%) percentage of missed updates are

permitted

Slide-51
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

GUPS Rules
Look Ahead and Stored Updates

• When measuring GUPS on a distributed memory multiprocessor
system — define constraints

– How far in the random address stream each node is permitted to
"look ahead“

– The number of update messages that can be stored before
processing to permit multi-level parallelism

• For the purpose of measuring GUPS, each “node” is permitted to
– Look ahead no more than 1024 random address stream samples
– Store the same number of update messages before processing

• The limits on “look ahead” and “stored updates” are being
implemented to assure that the benchmark meets the intent to
profile memory architecture and not induce significant artificial
data locality

Slide-52
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

RandomAccess Text Definition

RandomAccess is Benchmark #0 from the DARPA HPCS Discrete Math Benchmarks
Contact Robert Lucas (rflucas@isi.edu) or David Koester (dkoester@mitre.org) for further information

• Let T be a table of size 2n filled with random 64-bit integers
• Let {Ai} be a stream of 64-bit integers of length 2n+2 generated by the

primitive polynomial over GF(2), X63 + X3 + X+1
– GF(2) (Galois Field of order 2)
– The elements of GF(2) can be represented using the integers 0 and 1,

i.e., binary operands
• For each ai ,set T[ai <63, 64-n>] = T[ai <63, 64-n>] + ai

– + denotes addition in GF(2) i.e. bit-wise exclusive “or” (⊕)
– ai<j, i> denotes the sequence of bits within ai

e.g. <63, 64-n> are the highest n bits
• Parameters

n is the largest power of 2 that is
less than or equal to half of main memory

• Acceptable error — 1%
– This flexibility would generally be used

to allow non-coherent parallel operations
• Look ahead and storage before processing on

distributed memory multi-processor systems
– limited to 1024 per “node”

The Commutative and Associative nature of ⊕
allows processing in any order

Bit-Level
Exclusive Or

⊕

Slide-53
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Sequential RandomAccess
Implementation

2n

1/2 Memory

64 bits

T

{Ai} Length
2n+2

ai
64 bits

k = [ai <63, 64-n>]

⊕

Define
Addresses

Tables

Data Stream

Data-Driven
Memory Access

Sequences of
bits within ai

Highest n bits

The Commutative and Associative nature of ⊕
allows processing in any order

Bit-Level
Exclusive Or

⊕

The expected value of the number
of accesses per memory location T[k]

E[T[k]] = (2n+2 / 2n) = 4

k

aiT[k]

Acceptable Error — 1%
Look ahead and Storage before processing —1024 per “processor”

Slide-54
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Global Address Space (GAS)
G-RandomAccess Implementation

2n

1/2 Memory

64 bitsTables

T

{Ai} Length
2n+2

ai
64 bits

k = [ai <63, 64-n>]

⊕

Define
Addresses

Sequences of
bits within ai

The expected value of the number
of accesses per memory location T[k]

E[T[k]] = (2n+2 / 2n) = 4

k

Highest n bits

aiT[k]

Data Stream
For p threads/vectors/nodes/processors

Calculate ai to ai+p simultaneously

Data-Driven
Memory Access

Acceptable Error — 1%
Look ahead —1024 per “sub-stream”

Storage before processing —1024 per “processor”

Slide-55
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Distributed Memory G-RandomAccess
Implementation — p = 2m

Define
Addresses

Sequences of
bits within ai

k = [ai <(63 - log2(p)) , (64 - n) >]

T[q][k]

Local Offset

Processor Number

0

p-1

q

T
Table

“Processor”

q = ai <(63, (64-log2(p) >

Table Size - 2n

1/2 Global
Memory

Highest log2(p) bits

{Ai}
Data Stream

For p “processors”Length
2n+2 Calculate ai to ai+p simultaneously

Data-Driven
Memory Access

ai
64 bits

Acceptable Error — 1%
Look ahead —1024 per “sub-stream”

Storage before processing —1024 per “processor”

Slide-56
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Distributed Memory G-RandomAccess
Implementation — p ≠ 2m

Define
Addresses

Sequences of
bits within ai

T[q][k]

0
“Processor”

Local Offset
Processor Number

d = ai <63, 64-n>
Highest n bits

Table

p-1

q

T
Table Size - 2n

1/2 Global
Memory

q = f(d)
k = d – k0[q]

k0[q]

k0[q] is the Global Offset
corresponding to T[q][0]

Integer Divide
& Conditional

{Ai} Length
2n+2

ai
64 bits

Data Stream

Data-Driven
Memory Access

Acceptable Error — 1%
Look ahead —1024 per “sub-stream”

Storage before processing —1024 per “processor”

For p “processors”
Calculate ai to ai+p simultaneously

Slide-57
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization

• Component Kernels
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions

Slide-58
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Award Competition

• The First Annual HPC Challenge Award Competition
• Sponsors — DARPA HPCS, DOE, NSF, and HPCWire
• http://www.hpcchallenge.org
• Goal: to focus the HPC community’s attention on a broad

set of HPC hardware and HPC software capabilities that are
necessary to effectively use HPC systems.

• The core of the HPC Challenge Award Competition is the
HPC Challenge benchmark suite

• The competition will focus on four of the most challenging
benchmarks in the suite:

– Global HPL
– Global RandomAccess
– EP STREAM (Triad) per system
– Global FFT

Prizes sponsored by HPCWire

http://www.hpcchallenge.org/

Slide-59
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Award Competition
Award Classes

• Class 1: Best Performance (4 awards)
– Best performance on a base or optimized run submitted to the HPC Challenge

website
Global HPL
Global RandomAccess
EP STREAM (Triad) per system
Global FFT

– The prize will be $500 plus a certificate for the best of each benchmark
• Class 2: Most Productivity

– Most "elegant" implementation of one or more of the HPC Challenge
benchmarks listed above

– This award would be weighted 50% on performance and 50% on code elegance,
clarity, and size as determined by an evaluation committee

– For this award, the implementer must submit by October 15th, 2005, a short
description of:

The implementation,
The performance achieved,
Lines-of-code,
The actual source code of their implementation.

– The evaluation committee will select a set of finalists who will be invited to give
a short presentation at the HPC Challenge Award BOF at SC|05 that will be
judged by the evaluation committee to select the winner

– The prize will be $1500 plus a certificate for this award and may be split among
the "best" entries.

• Awards will be presented at the HPC Challenge Award BOF at SC|05
Tuesday 15 November 2005 at noon

Prizes sponsored by HPCWire

Slide-60
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Award Competition
Award Classes

• Class 1: Best Performance (4 awards)
– Best performance on a base or optimized run submitted to the HPC Challenge

website
Global HPL
Global RandomAccess
EP STREAM (Triad) per system
Global FFT

– The prize will be $500 plus a certificate for the best of each benchmark
• Class 2: Most Productivity

– Most "elegant" implementation of one or more of the HPC Challenge
benchmarks listed above

– This award would be weighted 50% on performance and 50% on code elegance,
clarity, and size as determined by an evaluation committee

– For this award, the implementer must submit by October 15th, 2005, a short
description of:

The implementation,
The performance achieved,
Lines-of-code,
The actual source code of their implementation.

– The evaluation committee will select a set of finalists who will be invited to give
a short presentation at the HPC Challenge Award BOF at SC|05 that will be
judged by the evaluation committee to select the winner

– The prize will be $1500 plus a certificate for this award and may be split among
the "best" entries.

• Awards will be presented at the HPC Challenge Award BOF at SC|05
Tuesday 15 November 2005 at noon

Prizes sponsored by HPCWire

Awards will be presented at the
SC|05 HPC Challenge Award BOF

Tuesday 15 November 2005 at noon

Slide-61
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Awards
Evaluation Committee

• David Bailey
LBNL NERSC

• Jack Dongarra (Co-Chair)
U of Tenn/ORNL

• Jeremy Kepner (Co-Chair)
MIT Lincoln Lab

• David Koester
MITRE

• Bob Lucas
ISI

• Rusty Lusk
Argonne National Lab

• Piotr Luszczek
U of Tennessee

• John McCalpin
IBM Austin

• Rolf Rabenseifner
HLRS Stuttgart

• Daisuke Takahashi
U of Tsukuba

Slide-62
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization

• Component Kernels
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions

Slide-63
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Unified HPCC Framework

• HPCC unifies a number of existing (and well known) codes in one
consistent framework

• A single executable is built to run all of the components
– Easy interaction with batch queues
– All codes are run under the same OS conditions – just as an

application would
No special mode (page size, etc.) for just one test (say Linpack
benchmark)
Each test may still have its own set of compiler flags

□Changing compiler flags in the same executable may inhibit inter-procedural
optimization

• Why not use a script and a separate executable for each test?
– Lack of enforced integration between components

Ensure reasonable data sizes
Either all tests pass and produce meaningful results or failure is reported

– Running a single component of HPCC for testing is easy enough

Slide-64
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Baseline MPI-1 Implementation

• Publicly available code is required
for base submission

1. Requires C compiler, MPI 1.1,
and BLAS

2. Source code cannot be changed
for submission run

3. Linked libraries have to be
publicly available

4. The code contains optimizations
for contemporary hardware
systems

5. Algorithmic variants provided for
performance portability

• This to mimic legacy applications’
performance

1. Reasonable software
dependences

2. Code cannot be changed due to
complexity and maintenance
cost

3. Relies on publicly available
software

4. Some optimization has been
done on various platforms

5. Conditional compilation and
runtime algorithm selection for
performance tuning

Baseline code has over 10k SLOC — there must more productive way of coding

Slide-65
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Optimized HPCC Submissions

• Timed portions of the code may be replaced with optimized code
• Verification code still has to pass

– Must use the same data layout or pay the cost of redistribution
– Must use sufficient precision to pass residual checks

• Allows to use new parallel programming technologies
– New paradigms, e.g. one-sided communication of MPI-2:

MPI_Win_create(…);
MPI_Get(…);
MPI_Put(…);
MPI_Win_fence(…);

– New languages, e.g. UPC:
shared pointers
upc_memput()

• Code for optimized portion may be proprietary but needs to use publicly
available libraries

• Optimizations need to be described but not necessarily in detail – possible
use in application tuning

• Attempting to capture: invested effort per flop rate gain
– Hence the need for baseline submission

• There can be more than one optimized submission for a single base
submission (if a given architecture allows for many optimizations)

Slide-66
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization

• Component Kernels
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions

Slide-67
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Running HPC Challenge

• To enter data into the HPC Challenge archive — you must
submit a baseline run for each HPC system

– Only complete benchmark output may be submitted — partial
results will not be accepted

• You may also submit an optimized run for each HPC
system

– Again — only complete benchmark output may be submitted

Slide-68
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Rules
Baseline Runs

The following optimizations are allowed in the baseline runs

• Compile and load options
– Compiler or loader flags which are supported and documented by the

supplier are allowed
– These include porting, optimization, and preprocessor invocation

• Libraries
– Linking to optimized versions of the following libraries is allowed

BLAS
MPI

– Acceptable use of such libraries is subject to the following rules:
All libraries used shall be disclosed with the results submission. Each
library shall be identified by library name, revision, and source (supplier).
Libraries which are not generally available are not permitted unless they
are made available by the reporting organization within 6 months
Calls to library subroutines should have equivalent functionality to that in
the released benchmark code. Code modifications to accommodate various
library call formats are not allowed

Slide-69
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Rules
Optimizations — Code Modifications

The following routines may have optimized versions substituted for the
baseline codes — the input and output specification must be preserved

• HPL
– pdgesv()
– pdtrsv()

• DGEMM
– no changes are allowed

• PTRANS
– pdtrans()

• STREAM
– Copy()
– Scale()
– Add()
– Triad()

• RandomAccess
– MPIRandomAccessUpdate()
– RandomAccessUpdate()

• FFT(all functions are compatible with FFTW 2.1.5 [11, 12])
– fftw malloc(), fftw free(), fftw one(), fftw mpi()
– fftw create plan(), fftw destroy plan()
– fftw mpi create plan(), fftw mpi local sizes()
– fftw mpi destroy plan()

• b eff — alternative MPI routines might be used for communication
– Only standard MPI calls are to be performed
– Only MPI libraries that are widely available on the tested system may be used

Slide-70
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Rules
Optimizations — Limitations

• Calculations must be performed in 64-bit precision or the
equivalent

– Codes with limited calculation accuracy are not permitted
• All algorithm modifications must be fully disclosed and are

subject to review by the HPC Challenge Committee
– Passing the verification test is a necessary condition for such

an approval
– The replacement algorithm must be as robust as the baseline

algorithm
For example — the Strassen Algorithm may not be used for the
matrix multiply in the HPL benchmark, as it changes the
operation count of the algorithm

• Any modification of the code or input data sets — which
utilizes knowledge of the solution or of the verification test
— is not permitted

• Any code modification to circumvent the actual
computation is not permitted

Slide-71
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Etiquette

• The HPC Challenge Benchmark suite has been designed to permit
academic style usage for comparing

– Technologies
– Architectures
– Programming models

• There is an overt attempt to keep HPC Challenge significantly
different than “commercialized” benchmark suites

– Vendors and users can submit results
– System “cost/price” is not included intentionally
– No “composite” benchmark metric

• Be cool about comparisons!
• While we can not enforce any rule to limit comparisons observe

rules of
– Academic honesty
– Good taste

Slide-72
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization

• Component Kernels
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions

Slide-73
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Benchmark Suite
http://icl.cs.utk.edu/hpcc/

Slide-74
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

TOP500 and HPCC Data Analysis

• TOP500
– Performance is represented by

only a single metric
– Data is available for an extended

time period
(1993-2005)

• Problem:
There can only be one “winner”

• Additional metrics and statistics
– Count (single) vendor systems on

each list
– Count total flops on each list per

vendor
– Use external metrics: price,

ownership cost, power, …
– Focus on growth trends over time

• HPCC
– Performance is represented by

multiple single metrics
– Benchmark is new — so data is

available for a limited time period
(2003-2005)

• Problem:
There cannot be one “winner”

• We avoid “composite” benchmarks
– Perform trend analysis

HPCC can be used to show
complicated kernel/ architecture
performance characterizations

– Select some numbers for
comparison

– Use of kiviat charts
Best when showing the differences
due to a single independent
“variable”

• Over time — also focus on growth
trends

Slide-75
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Submissions
Baseline and Optimized Results

80 Systems
As of 1 November 2005

Slide-76
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Submissions
Baseline Results

74 Systems
As of 1 November 2005

Slide-77
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Submissions
Optimized Results

6 Systems
As of 1 November 2005

Slide-78
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Submissions
Display

Lines Depict
Relative Performance

Additional “cool” features will be discussed
in the conference hands-on session!

Slide-79
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Benchmark Suite
Selected Results

1000+ Processor Systems
As of 1 November 2005

• 10 of 80 submissions have over 1,000 processors
– 1008 – 5200 processors

G-H
stem - Processor Speed Count TFlo
y XT3 AMD Opteron 2.4GHz 5200 20.52
y XT3 AMD Opteron 2.6GHz 4096 16.975
y XT3 AMD Opteron 2.4GHz 3744 14.70
 Blue Gene PowerPC 440 0.7GHz 2048 1.407
 XT3 AMD Opteron 2.6GHz 1100 4.78

y T3E Alpha 21164 0.6GHz 1024 0.048
 Blue Gene PowerPC 440 0.7GHz 1024 0.716
 Blue Gene/L PowerPC 440 0.7GHz 1024 1.420
 Blue Gene PowerPC 440 0.7GHz 1024 0.730

I Altix 3700 Intel Itanium 2 1.6GHz 1008 5.138

System Information PL G-PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
Sy p/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cra 7 874.899 0.268583 644.73 26020.8 5.004 4.395 0.14682 25.8
Cra 2 302.979 0.533072 905.57 20656.5 5.043 4.782 0.16896 9.44
Cra 4 608.506 0.220296 417.17 18146.4 4.847 4.413 0.16164 25.32
IBM 5 34.251 0.454092 96.19 1484.6 0.725 0.905 0.02089 4.98
Cray 23 217.923 0.137002 266.66 5274.7 4.795 4.811 0.28638 25.94
Cra 2 10.277 529.2 0.517 0.03174 12.09
IBM 4 27.578 0.134994 48.99 868.4 0.848 0.919 0.03461 4.81
IBM 1 27.994 0.134729 49.93 862.9 0.843 2.467 0.03455 4.83
IBM 1 26.44 0.299617 70.94 765.3 0.747 0.901 0.0448 4.5
SG 3 105.666 0.032598 15.66 1907.5 1.892 5.884 0.20288 6.82

Slide-80
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Benchmark Suite
Selected Results

G-HPL G-PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System - Processor Speed Count TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cray mfeg8 X1E 1.13GHz 248 opt 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58
Cray X1E X1E MSP 1.13GHz 252 base 3.1941 85.204 0.014868 15.54 2440 9.682 14.185 0.36024 14.93

System Information Run
Type

Optimized G-RandomAccess
As of 1 November 2005

• Optimized G-RandomAccess is an UPC code
– ~125x improvement

Be sure to attend the SC|05 HPC Challenge Award BOF
Tuesday 15 November 2005 at noon for new, record-setting results!!

Slide-81
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Benchmark Suite
Top Performers

As of 1 November 2005

G-HPL
G-

PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System - Processor Speed Count Tds Proc TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cray XT3 AMD Opteron 2.4GHz 5200 1 5200 20.527 874.899 0.268583 644.73 26020.8 5.004 4.395 0.14682 25.8
Cray mfeg8 X1E 1.13GHz 248 1 248 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58
Cray XT3 AMD Opteron 2.6GHz 4096 1 4096 16.9752 302.979 0.533072 905.57 20656.5 5.043 4.782 0.16896 9.44
NEC SX-7 0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-8/6 SX-8 2GHz 6 1 6 0.0918 25.183 0.000769 3.19 370.6 61.773 15.944 13.5473 3.02
IBM pSeries 655 Power 4+ 1.7GHz 256 4 64 1.0744 23.721 0.005502 10.46 411.7 6.433 17.979 0.72395 8.34
PathScale Inc. AMD Opteron 2.6GHz 32 1 32 0.1258 6.719 0.030367 10.35 134.3 4.197 4.775 0.26531 1.31

System Information

• Machine size (number of processors) matters for global
benchmarks

– HPL, PTRANS, FFT, STREAM,
• G-RandomAccess is an optimized UPC code
• Node “size” matters for local benchmarks

– STREAM, DGEMM
• Bandwidth and latency are dependent on

– MPI and architecture

Slide-82
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Benchmark Suite
Top Performers

G-HPL
G-

PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System - Processor Speed Count Tds Proc TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cray XT3 AMD Opteron 2.4GHz 5200 1 5200 20.527 874.899 0.268583 644.73 26020.8 5.004 4.395 0.14682 25.8
Cray mfeg8 X1E 1.13GHz 248 1 248 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58
Cray XT3 AMD Opteron 2.6GHz 4096 1 4096 16.9752 302.979 0.533072 905.57 20656.5 5.043 4.782 0.16896 9.44
NEC SX-7 0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-8/6 SX-8 2GHz 6 1 6 0.0918 25.183 0.000769 3.19 370.6 61.773 15.944 13.5473 3.02
IBM pSeries 655 Power 4+ 1.7GHz 256 4 64 1.0744 23.721 0.005502 10.46 411.7 6.433 17.979 0.72395 8.34
PathScale Inc. AMD Opteron 2.6GHz 32 1 32 0.1258 6.719 0.030367 10.35 134.3 4.197 4.775 0.26531 1.31

System Information

• HPC Challenge Award Competition will focus on four of the
benchmarks in the suite:

– Global HPL
– Global RandomAccess
– Global STREAM Triad (System aggregate)
– Global FFT

As of 1 November 2005

Be sure to attend the SC|05 HPC Challenge Award BOF
Tuesday 15 November 2005 at noon for new, record-setting results!!

Slide-83
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Benchmark Suite
Threads and Processes

As of 1 November 2005

G-HPL G-PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System Speed Count Threads Processes TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
NEC SX-7 0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-7 0.552GHz 32 1 32 0.2553 20.546 0.000964 11.29 836.9 26.154 8.239 5.03934 14.21

System Information

• The NEC SX-7 architecture can permit the definition of
threads and processes to significantly enhance
performance of the EP versions of the benchmark suite by
allocating more powerful “nodes”

– EP-STREAM
– EP-DGEMM

Slide-84
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Top 10 Performance
HPL

As of 1 November 2005

1 Cray Cray XT3 AMD Opteron 2.40 5200 5200 20.53
2 Cray XT3 AMD Opteron 2.60 4096 4096 16.98
3 Cray XT3 AMD Opteron 2.40 3744 3744 14.70
4 NEC NEC SX-8 NEC SX-8 2.00 576 576 8.01
5 SGI Altix 3700 Bx2 Intel Itanium 2 1.60 1008 1008 5.14
6 Cray XT3 AMD Opteron 2.60 1100 1100 4.78
7 Cray mfeg8 Cray X1E 1.13 248 248 3.39
8 Cray Cray X1E CrayX1E MSP 1.13 252 252 3.19
9 Cray X1 Cray X1 MSP 0.80 252 252 2.38

10 Cray X1 Cray X1 MSP 0.80 252 252 2.37

HPL
(TFlop/s)

MPI
Processes

Procesor
CountManufacturer System Processor Type

Processor
Speed
(GHz)

Rank

• HPC Challenge Awards Class 1

Slide-85
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Top 10 Performance
PTRANS

As of 1 November 2005

1 Cray Cray XT3 AMD Opteron 2.40 5200 5200 874.90
2 Cray XT3 AMD Opteron 2.40 3744 3744 608.51
3 NEC NEC SX-8 NEC SX-8 2.00 576 576 312.71
4 Cray XT3 AMD Opteron 2.60 4096 4096 302.98
5 Cray XT3 AMD Opteron 2.60 1100 1100 217.92
6 SGI Altix 3700 Bx2 Intel Itanium 2 1.60 1008 1008 105.67
7 Cray X1 Cray X1 MSP 0.80 252 252 97.41
8 Cray X1 Cray X1 MSP 0.80 252 252 96.14
9 NEC SX-6 NEC SX-6 0.50 192 192 92.97
10 Cray Cray X1E CrayX1E MSP 1.13 252 252 85.20

Procesor
CountRank PTRANS

(GB/s)
MPI

ProcessesManufacturer System Processor Type
Processor

Speed
(GHz)

Slide-86
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Top 10 Performance
G-RandomAccess

As of 1 November 2005

1 Cray mfeg8 Cray X1E 1.13 248 248 1.85475
2 Rackable Systems Emerald AMD Opteron 2.20 256 512 0.55474
3 Cray XT3 AMD Opteron 2.60 4096 4096 0.53307
4 IBM Blue Gene IBM PowerPC 440 0.70 2048 2048 0.45409
5 Rackable Systems Emerald AMD Opteron 2.20 128 256 0.42255
6 Rackable Systems Emerald AMD Opteron 2.20 64 128 0.30807
7 IBM Blue Gene IBM PowerPC 440 0.70 1024 1024 0.29962
8 Cray Cray XT3 AMD Opteron 2.40 5200 5200 0.26858
9 Cray XT3 AMD Opteron 2.40 3744 3744 0.22030
10 Cray XT3 AMD Opteron 2.60 1100 1100 0.13700

Procesor
CountRank

Global
RandomAccess

(GUP/s)

MPI
ProcessesManufacturer System Processor Type

Processor
Speed
(GHz)

• HPC Challenge Awards Class 1

Slide-87
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Top 10 Performance
G-FFTE

As of 1 November 2005

1 Cray XT3 AMD Opteron 2.60 4096 4096 905.57
2 Cray Cray XT3 AMD Opteron 2.40 5200 5200 644.73
3 Cray XT3 AMD Opteron 2.40 3744 3744 417.17
4 Cray XT3 AMD Opteron 2.60 1100 1100 266.66
5 NEC NEC SX-8 NEC SX-8 2.00 576 576 160.95
6 IBM Blue Gene IBM PowerPC 440 0.70 2048 2048 96.19
7 IBM Blue Gene IBM PowerPC 440 0.70 1024 1024 70.94
8 Rackable Systems Emerald AMD Opteron 2.20 256 512 67.86
9 IBM Blue Gene/L IBM PowerPC 440 0.70 1024 1024 49.93
10 IBM Blue Gene IBM PowerPC 440 0.70 1024 1024 48.99

Global FFT
(GFlop/s)Manufacturer System Processor Type

Processor
Speed
(GHz)

Procesor
Count

MPI
ProcessesRank

• HPC Challenge Awards Class 1

Slide-88
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Top 10 Performance
STREAM Triad (per Process)

As of 1 November 2005

per Process per System

1 NEC NEC SX-7 NEC SX-7 0.552 32 2 492.161 984.322
2 NEC SX-8/6 NEC SX-8 2.000 6 6 61.7735 370.641
3 NEC NEC SX-8 NEC SX-8 2.000 576 576 40.8954 23555.7504
4 NEC NEC SX-6+ NEC SX-6 0.563 32 32 28.6168 915.7376
5 NEC SX-6 NEC SX-6 0.500 64 64 27.0884 1733.6576
6 NEC SX-6 NEC SX-6 0.500 128 128 26.8584 3437.8752
7 NEC SX-6 NEC SX-6 0.500 32 32 26.8319 858.6208
8 NEC SX-6 NEC SX-6 0.500 192 192 26.3087 5051.2704
9 NEC NEC SX-7 NEC SX-7 0.552 32 32 26.1539 836.9248
10 Cray X1 Cray X1 MSP 0.800 60 60 21.768 1306.08

Procesor
Count

MPI
Processes

EP STREAM Triad
Rank Manufacturer System Processor

Type

Processor
Speed
(GHz)

Slide-89
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Top 10 Performance
STREAM Triad (per System)

As of 1 November 2005

per Process per System

1 Cray Cray XT3 AMD Opteron 2.40 5200 5200 5.00 26020.80
2 NEC NEC SX-8 NEC SX-8 2.00 576 576 40.90 23555.75
3 Cray XT3 AMD Opteron 2.60 4096 4096 5.04 20656.46
4 Cray XT3 AMD Opteron 2.40 3744 3744 4.85 18146.38
5 Cray X1 Cray X1 MSP 0.80 252 252 21.74 5478.73
6 Cray XT3 AMD Opteron 2.60 1100 1100 4.80 5274.70
7 NEC SX-6 NEC SX-6 0.50 192 192 26.31 5051.27
8 Cray X1 Cray X1 MSP 0.80 252 252 14.91 3758.40
9 NEC SX-6 NEC SX-6 0.50 128 128 26.86 3437.88
10 Cray mfeg8 Cray X1E 1.13 248 248 13.23 3280.92

Rank Procesor
Count

MPI
Processes

EP STREAM Triad
Manufacturer System Processor

Type

Processor
Speed
(GHz)

• HPC Challenge Awards Class 1

Slide-90
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Top 10 Performance
DGEMM (per Process)

As of 1 November 2005

per Process per System

1 NEC NEC SX-7 NEC SX-7 0.55 32 2 140.64 281.27
2 IBM eServer pSeries 655 IBM Power 4+ 1.70 256 64 17.98 1150.68
3 IBM eServer pSeries 655 IBM Power 4+ 1.70 128 32 17.79 569.36
4 IBM eServer pSeries 655 IBM Power 4+ 1.70 64 16 17.50 280.00
5 NEC SX-8/6 NEC SX-8 2.00 6 6 15.94 95.66
6 NEC NEC SX-8 NEC SX-8 2.00 576 576 15.22 8768.56
7 Cray Cray X1E CrayX1E MSP 1.13 252 252 14.18 3574.54
8 Cray mfeg8 Cray X1E 1.13 248 248 13.56 3363.87
9 Cray X1E Cray X1E 1.13 32 32 11.61 371.38

10 Cray X1 Cray X1 MSP 0.80 60 60 10.92 654.91

Manufacturer System Processor Type
Processor

Speed
(GHz)

Procesor
Count

MPI
ProcessesRank

EP DGEMM
(GFlop/s)

Slide-91
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Top 10 Performance
RandomRing Latency

As of 1 November 2005

Latency
(usec)

Bandwidth
(GB/s)

1 PathScale, Inc.
Customer Benchmark

Cluster AMD Opteron 2.6 InfiniPath 1.0 32 32 1.31 0.27
2 Cray XD1 AMD Opteron 2.2 RapidArray Interconnect System 64 64 1.63 0.23

3 Rackable Systems Emerald AMD Opteron 2.2
InfiniPath HTX InfiniBand Adapter

SilverStorm 9120 InfiniBand Switch 64 128 2.02 0.12
4 Cray XD1 AMD Opteron 2.4 Rapid Array Fat Tree 128 128 2.06 0.26

5 Rackable Systems Emerald AMD Opteron 2.2
InfiniPath HTX InfiniBand Adapter

SilverStorm 9120 InfiniBand Switch 128 256 2.20 0.10

6 Rackable Systems Emerald AMD Opteron 2.2
InfiniPath HTX InfiniBand Adapter

SilverStorm 9120 InfiniBand Switch 256 512 2.33 0.09
7 NEC SX-8/6 NEC SX-8 2.0 Internode Crossbar Switch 6 6 3.02 13.55
8 SGI Altix 3700 Bx2 Intel Itanium 2 1.6 N/A 32 32 3.26 1.52
9 SGI Altix 3700 Bx2 Intel Itanium 2 1.6 N/A 64 64 3.68 0.87
10 SGI Altix 3700 Bx2 Intel Itanium 2 1.6 N/A 128 128 3.91 0.90

RandomRing
Procesor

Count
MPI

ProcessesManufacturer System Processor
Type

Processor
Speed
(GHz)

Rank Interconnect

Slide-92
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Top 10 Performance
RandomRing Bandwidth

As of 1 November 2005

Latency
(usec)

Bandwidth
(GB/s)

1 NEC SX-8/6 NEC SX-8 2.000 Internode Crossbar Switch 6 6 3.02 13.55
2 NEC NEC SX-7 NEC SX-7 0.552 non 32 2 4.85 8.15
3 NEC NEC SX-7 NEC SX-7 0.552 non 32 32 14.21 5.04
4 SGI Altix 3700 Bx2 Intel Itanium 2 1.600 N/A 32 32 3.26 1.52
5 Cray X1 Cray X1 MSP 0.800 Cray modified 2-D Torus 32 32 14.94 1.41
6 Cray X1E Cray X1E 1.130 Cray Interconnect 32 32 12.21 1.40
7 Cray X1 Cray X1 MSP 0.800 Cray modified 2-D Torus 60 60 14.66 1.17
8 Cray X1 Cray X1 MSP 0.800 Cray modified 2D torus 60 60 20.83 1.03
9 Cray X1 Cray X1 MSP 0.800 Cray modified 2D torus 60 60 21.16 1.01
10 Cray X1 Cray X1 MSP 0.800 Cray modified 2D torus 64 64 20.34 0.94

Interconnect Procesor
Count

MPI
Processes

RandomRing
Rank Manufacturer System Processor

Type

Processor
Speed
(GHz)

Slide-93
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPL versus Theoretical Peak

HPL versus Theoretical Peak

0

5

10

15

20

25

30

0 5 10 15 20 25

HPL (Tflop/s)

Th
eo

re
tic

al
 P

ea
k

(T
flo

p/
s)

Cray XT3

NEC SX-8

SGI Altix

• How well does HPL data correlate with theoretical peak
performance?

Slide-94
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPL versus DGEMM

HPL versus DGEMM

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

HPL (Tflop/s)

DG
EM

M
 (G

flo
p/

s)

• Can I Run Just Run DGEMM Instead of HPL?
• DGEMM alone overestimates HPL performance
• Note the 1,000x difference in scales! (Tera/Giga)

Cray XT3

NEC SX-8

SGI Altix

Slide-95
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPL versus STREAM Triad

HPL versus STREAM Triad

0

5000

10000

15000

20000

25000

30000

0 5 10 15 20 25

HPL (Tflop/s)

ST
R

EA
M

 T
ria

d
(G

B/
s)

• How well does HPL correlate with G-RandomAccess
performance?

Cray XT3
NEC SX-8

SGI Altix

Cray X1E/opt

Slide-96
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPL versus RandomAccess

HPL versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5 10 15 20 25

HPL (Tflop/s)

G
-R

an
do

m
A

cc
es

s
(G

UP
S

)

• How well does HPL correlate with G-RandomAccess
performance?

• Note the 1,000x difference in scales! (Tera/Giga)

Cray XT3

NEC SX-8

SGI Altix

Cray X1E/opt

IBM BG/L

Rackable

Slide-97
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPL versus FFT

HPL versus FFT

0

100

200

300

400

500

600

700

800

900

1000

0 5 10 15 20 25

HPL (Tflop/s)

FF
T

(G
flo

p/
s)

• How well does HPL correlate with FFT performance?
• Note the 1,000x difference in scales! (Tera/Giga)

Cray XT3

NEC SX-8

SGI Altix

Slide-98
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Global STREAM versus PTRANS

Global Stream versus PTRANS

0

100

200

300

400

500

600

700

800

900

1000

0 5000 10000 15000 20000 25000 30000

Global STREAM (GB/s)

P
TR

AN
S

 (G
B/

s)

• How well does STREAM data correlate with PTRANS
performance?

Cray XT3

NEC SX-8

Slide-99
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

RandomRing Bandwidth versus
PTRANS
RandomRing Bandwidth versus PTRANS

0

100

200

300

400

500

600

700

800

900

1000

0 2 4 6 8 10 12 14 16

RandomRing Bandwidth (GB/s)

PT
R

AN
S

(G
B/

s)

• How well does RandomRing Bandwidth data correlate with
PTRANS performance

• Possible bad data?

Cray XT3

NEC SX-8

NEC SX-7

Slide-100
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

RandomAccess Correlations?

• HPL versus G-RandomAccess
• Number of Processors versus G-RandomAccess
• RandomRing Bandwidth versus G-RandomAccess
• RandomRing Latency versus G-RandomAccess
• Single Processor RandomAccess versus G-RandomAccess

– per System (Single Processor)
– per Processor (Single Processor)

• STREAM Triad versus G-RandomAccess

Slide-101
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Number of Processors versus
G-RandomAccess

Number of Processors versus G-RandomAccess

0

0.2
0.4

0.6
0.8

1

1.2
1.4

1.6
1.8

2

0 1000 2000 3000 4000 5000 6000

Number of Processors

G
-R

an
do

m
A

cc
es

s
(G

U
PS

)

• Does G-RandomAccess scale with the number of
processors?

Cray XT3

SGI Altix

Cray X1E/opt

IBM BG/LRackable

Slide-102
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

RandomRing Bandwidth versus
G-RandomAccess

RandomRing Bandwidth versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 2 4 6 8 10 12 14 16

RandomRing Bandwidth (GB/s)

G
-R

an
do

m
Ac

ce
ss

 (G
U

PS
)

• Does G-RandomAccess scale with the RandomRing
Bandwidth?

• Possible bad data?

Cray X1E/opt

Cray XT3

NEC SX-8
NEC SX-7

Slide-103
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

RandomRing Bandwidth versus
G-RandomAccess

RandomRing Bandwidth versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

RandomRing Bandwidth (GB/s)

G
-R

an
do

m
Ac

ce
ss

 (G
U

PS
)

• Does G-RandomAccess scale with RandomRing
Bandwidth?

• Ignoring possible bad data…

Cray X1E/opt

Slide-104
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

RandomRing Latency versus
G-RandomAccess

RandomRing Latency versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60

RandomRing Latency (usec)

G
-R

an
do

m
Ac

ce
ss

 (G
U

PS
)

• Does G-RandomAccess scale with RandomRing Latency ?

Cray X1E/opt

Rackable

Slide-105
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Single Processor RandomAccess
versus G-RandomAccess (per System)

Single Processor RandomAccess versus G-RandomAccess
(per System)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 20 40 60 80 100 120 140 160 180 200

Single Processor RandomAccess (GUPS)

G
-R

an
do

m
A

cc
es

s
(G

U
PS

)

• Does G-RandomAccess scale with single processor
RandomAccess performance (per system)?

Cray X1E/opt

Cray XT3
Rackable

Slide-106
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Single Processor RandomAccess
versus G-RandomAccess (per Proc)

Single Processor RandomAccess versus G-RandomAccess
(per Processor)

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

0 0.1 0.2 0.3

Single Processor RandomAccess (GUPS)

G
-R

an
do

m
A

cc
es

s
(G

U
PS

)

• Does G-RandomAccess scale with single processor
RandomAccess performance?

Cray X1E/opt

Rackable

Slide-107
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

STREAM Triad (per System) versus
G-RandomAccess

STREAM Triad versus G-RandomAccess

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 5000 10000 15000 20000 25000 30000

STREAM Triad (GB/s)

G
-R

an
do

m
Ac

ce
ss

 (G
UP

S)

• Does G-RandomAccess scale with STREAM Triad?

Cray XT3

SGI Altix

Cray X1E/opt

Rackable

NEC SX-8

IBM BG/L

Slide-108
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

RandomAccess Correlations?

• HPL versus G-RandomAccess
• Number of Processors versus G-RandomAccess
• RandomRing Bandwidth versus G-RandomAccess
• RandomRing Latency versus G-RandomAccess
• Single Processor RandomAccess versus G-RandomAccess

– per System (Single Processor)
– per Processor (Single Processor)

• STREAM Triad versus G-RandomAccess

Slide-109
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

RandomAccess Correlations?

• HPL versus G-RandomAccess
• Number of Processors versus G-RandomAccess
• RandomRing Bandwidth versus G-RandomAccess
• RandomRing Latency versus G-RandomAccess
• Single Processor RandomAccess versus G-RandomAccess

– per System (Single Processor)
– per Processor (Single Processor)

• STREAM Triad versus G-RandomAccess

• Biggest factor in G-RandomAccess improved performance
is optimized codes!

– Rules on storing updates forces non-optimal short messages
in MPI

– UPC

HPC Challenge Awards will be presented at the HPC Challenge
Award BOF at SC|05 Tuesday 15 November 2005 at noon!

Slide-110
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

G-RandomAccess UPC Code‡

void
RandomAccessUpdate(u64Int TableSize)
{
s64Int i;
u64Int ran[MAXJOBS];
int j;

/* Translated for loop from upc_forall construct */
#pragma _CRI ivdep
#pragma _CRI concurrent
for(i = MYTHREAD; i<TableSize; i += THREADS)

Table[i] = i;

upc_barrier;

/* Translated for loop from upc_forall construct */
#pragma _CRI ivdep
#pragma _CRI concurrent
for(j = MYTHREAD; j<MAXJOBS; j += THREADS)

{
ran[j] = starts ((NUPDATE/MAXJOBS) * j);
for (i=0; i<NUPDATE/MAXJOBS; i++)
{
ran[j] = (ran[j] << 1) ^ ((s64Int) ran[j] < 0 ? POLY : 0);
Table[(ran[j] & (TableSize-1))] ^= ran[j];

}
}

}

/**/
/* Note: UPC version of RandomAccess Benchmark */
/* */
/* Date: Mon Jun 13 10:57:54 2005 */
/* */
/* */
/* Written By */
/* High Performance Computing Lab */
/* The George Washington University */
/**/

‡ Yiyi Yao (GWU)

Initialize
Table

Update
Table

Slide-111
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Benchmark Suite
http://icl.cs.utk.edu/hpcc/

Slide-112
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Kiviat Charts

• Comparisons of multiple systems
for

1. Per Processor HPL
2. Per Processor PTRANS
3. Per Processor Global

RandomAccess
4. Per Processor Global FFTE
5. Single Node STREAM Triad
6. Single Node DGEMM
7. System RandomRing Latency
8. System RandomRing Bandwidth

• Data in each dimension is
normalized to the maximum value

• Represented on a linear scale [0,1]
• Best when showing the

differences due to a single
independent “variable”

Slide-113
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Kiviat Chart Disclaimer

• Please remember that each Kiviat chart should include the
following disclaimer

• It has not been included due to vugraph orientation and to
minimize clutter

Slide-114
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — Scali Cluster Comparison

■ InfiniBand
■ SCI
■ Myrinet
■ GigE

1. RandomRing Bandwidth
InfiniBand has significantly
greater bandwidth than
other technologies

2. RandomRing Latency
InfiniBand and SCI have
significantly lower latencies
than other technologies

3. STREAM, DGEMM, and HPL
Interconnect technology
doesn’t matter
STREAM and DGEMM have no
communications
HPL scales well with respect
to communications

4. RandomAccess
Interconnect technology does
matter! Latency sensitive

5. PTRANS and FFTE
Interconnect technology does
matter Bandwidth sensitive

Slide-115
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — Opteron System Comparison

1. RandomRing Bandwidth
The Cray XD1 has greater
bandwidth than the other
technologies

2. RandomRing Latency
The Cray XD1 has significantly
lower latency than other
technologies

3. STREAM, DGEMM, and HPL
Interconnect technology
doesn’t matter
STREAM and DGEMM have no
communications
HPL scales well with respect
to communications

4. RandomAccess
Interconnect technology does
matter Extremely latency
sensitive!

5. PTRANS and FFTE
Interconnect technology does
matter! Bandwidth sensitive

Slide-116
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — Cray XT3 Comparison

Per System — Absolute Scaling
for Operations Benchmarks

Per Processor Performance
“Weak Scaling”

1. RandomRing Bandwidth
The smallest model has the
highest bandwidth? MPI?

2. RandomRing Latency
The newest model has the
lowest latency

3. STREAM and DGEMM
Slight differences in models?

4. HPL
Some degradation when
scaling to larger machines

5. RandomAccess
Latency dependent and scales
inversely proportional to
number of processors

6. PTRANS
Bandwidth sensitive

7. FFTE
Bandwidth and processor
speed sensitive

Scalability

Slide-117
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — Rackable Cluster Comparison

Per System — Absolute Scaling
for Operations Benchmarks

Per Processor Performance
“Weak Scaling”

1. RandomRing Bandwidth
Smaller system has greater
bandwidth per processor

2. RandomRing Latency
Smaller system has lower
latency per processor

3. DGEMM, and HPL
Similar performance

4. STREAM
Minor variations in
performance??

5. RandomAccess
Extremely latency or
bandwidth sensitive!

6. PTRANS
Variations in performance??

7. FFTE
Some latency or bandwidth
sensitivity!

Scalability

Slide-118
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — Opteron System Comparison

1. RandomRing Bandwidth
System with two cores has
significantly lower bandwidth
⇒ cores vs interconnect?

2. RandomRing Latency
System with two cores has
slightly lower latency than one
technology
⇒ cores vs connect?

3. STREAM and DGEMM
Significantly reduced
performance for 2 cores

4. HPL, RandomAccess, and FFT
Top per processor
performance?

• HPL ~2x single cores
• RA 2.5-10x single cores
• FFTE slightly better

5. PTRANS
Bandwidth sensitivity but 2
core better than expected

1 versus 2 Cores

2 Cores

Slide-119
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — Cluster Comparison

1. RandomRing Bandwidth
Quadrics QsNet provides
greater bandwidth

2. RandomRing Latency
InfiniBand provides lower
latency

3. STREAM, DGEMM, and HPL
Interconnect technology
doesn’t matter but Intel Xeons
are faster
STREAM and DGEMM have no
communications
HPL scales well with respect
to communications

4. RandomAccess
Interconnect technology does
matter — but uncertain if
bandwidth or latency
dependent

5. PTRANS and FFTE
Interconnect technology does
matter Bandwidth sensitive

Slide-120
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — Cray Architecture Comparison

Comparing Dissimilar Systems
Can be Difficult!

1. RandomRing Bandwidth
X1 and X1E have higher
bandwidth

2. RandomRing Latency
XT3 has lower latency when
using MPI

3. STREAM, DGEMM, and HPL
Interconnect technology
doesn’t matter and X1 and
X1E are faster

4. RandomAccess
Interconnect technology does
matter — but poor X1 and X1E
performance due to MPI
latencies

5. PTRANS
Interconnect technology does
matter Bandwidth sensitive

6. FFTE
XT3 is significantly faster

Slide-121
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — Custom Interconnect Comparison

1. RandomRing Bandwidth
SGI Altix has highest
bandwidth

2. RandomRing Latency
Cray XD1 has lowest latency

3. STREAM
NEC SX-6 vector processor
dominates

4. DGEMM and HPL
NEC SX-6 vector processor
slightly better
Otherwise similar
performance

5. RandomAccess
Latency dependent

6. PTRANS
NEC SX-6 vector processor
dominates

7. FFTE
NEC SX-6 vector processor
slightly better
Otherwise similar
performance

Slide-122
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — NEC SX-6/7 Comparison

1. RandomRing Bandwidth
SX-7 has significantly higher
bandwidth

2. RandomRing Latency
SX-7 has lowest latency

3. All remaining benchmarks
Clock frequency dependent

Slide-123
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization

• Component Kernels
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions

MITRESlide-124
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

HPC Challenge Tutorial:
Hands-on Demonstrations/Exercises

Piotr Luszczek
University of Tennessee

Slide-125
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Download

• Always use the latest source code:
http://icl.cs.utk.edu/hpcc/

http://icl.cs.utk.edu/hpcc/

Slide-126
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Software Versioning

• http://icl.cs.utk.edu/hpcc/software/index.html

● Latest version is always at the top

http://icl.cs.utk.edu/hpcc/software/index.html

Slide-127
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Makefile Structure (1of 2)

• Sample Makefiles live in
hpl/setup

• BLAS
– LAdir – BLAS top directory for other LA-variables
– LAinc – where BLAS headers live (if needed)
– LAlib – where BLAS libraries live (libmpi.a and friends)
– F2CDEFS – resolves Fortran-C calling issues (BLAS is usually callable

from Fortran)
-DAdd_, -DNoChange, -DUpCase, -Dadd__
-DStringSunStyle, -DStringStructPtr, -DStringStructVal, -
DStringCrayStyle

• MPI
– MPdir – MPI top directory for other MP-variables
– MPinc – where MPI headers live (mpi.h and friends)
– MPlib – where MPI libraries live (libmpi.a and friends)

Slide-128
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Makefile Structure (2 of 2)

• Compiler
– CC – C compiler
– CCNOOPT – C flags without optimization (for optimization-

sensitive code)
– CCFLAGS – C flags with optimization

• Linker
– LINKER – program that can link BLAS and MPI together
– LINKFLAGS – flags required to link BLAS and MPI together

• Programs/commands
– SHELL, CD, CP, LN_S, MKDIR, RM, TOUCH
– ARCHIVER, ARFLAGS, RANLIB

Slide-129
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

MPI Implementations for HPCC

• Vendor
– Cray (MPT)
– IBM (POE)
– SGI (MPT)
– Dolphin, Infiniband (Mellanox, Voltaire, ...), Myricom (GM, MX), Quadrics,

PathScale, Scali, ...
• Open Source

– MPICH1, MPICH2 (http://www-unix.mcs.anl.gov/mpi/mpich/)
– Lam MPI (http://www.lam-mpi.org/)
– OpenMPI (http://www.open-mpi.org/)
– LA-MPI (http://public.lanl.gov/lampi/)

• MPI implementation components
– Compiler (adds MPI header directories)
– Linker (need to link in Fortran I/O)
– Exe (poe, mprun, mpirun, aprun, mpiexec, ...)

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.lam-mpi.org/
http://www.open-mpi.org/
http://public.lanl.gov/lampi/

Slide-130
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Fast BLAS for HPCC

• Vendor
– AMD (AMD Core Math Library)
– Cray (SciLib)
– HP (MLIB)
– IBM (ESSL)
– Intel (Math Kernel Library)
– SGI (SGI/Cray Scientific Library)
– ...

• Free implementations
– ATLAS

http://www.netlib.org/atlas/
– Goto BLAS

http://www.cs.utexas.edu/users/flame/goto
http://www.tacc.utexas.edu/resources/software

• Implementations that use
Threads

– Some vendor BLAS
– Atlas
– Goto BLAS

• You should never use
reference BLAS from Netlib

– There are better
alternatives for every
system in existence

http://www.netlib.org/atlas/
http://www.cs.utexas.edu/users/flame/goto
http://www.tacc.utexas.edu/resources/software

Slide-131
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning Process - Internal

• Changes to source code are not allowed for submission
• But just for tuning it's best to change a few things

– Switch off some tests temporarily
• Choosing right parallelism levels

– Processes (MPI)
– Threads (OpenMP in code, vendor in BLAS)
– Processors
– Cores

• Compile time parameters
– More details below

• Runtime input file
– More details below

Slide-132
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning Process - External

• MPI settings examples
– Messaging modes

Eager polling is probably not a good idea
– Buffer sizes
– Consult MPI implementation documentation

• OS settings
– Page size

Large page size should be better on many systems
– Pinning down the pages

Optimize affinity on DSM architectures
– Priorities
– Consult OS documentation

Slide-133
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Parallelism Examples

• Pseudo-threading helps but be careful
– Hyper-threading
– Simultaneous Multi-Threading
– ...

• Cores
– Intel (x86-64, Itanium), AMD (x86)
– Cray: SSP, MSP
– IBM Power4, Power5, ...
– Sun SPARC

• SMP
– BlueGene/L (single/double CPU usage per card)
– SGI (NUMA, ccNUMA, DSM)
– Cray, NEC

• Others
– Cray MTA (no MPI !)

Slide-134
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Input and Output

• Memory file hpccmemf.txt
– Memory available per MPI

process
Process=64

– Memory available per
thread
Thread=64

– Total available memory
Total=64

– Many HPL and PTRANS
parameters might not be
optimal

• Parameter file
hpccinf.txt

– HPL parameters
Lines 5-31

– PTRANS parameters
Lines 32-36

– Indirectly: sizes of arrays
for all HPCC components

Hard coded

● Output file hpccoutf.txt

– Must be uploaded to the website

– Easy to parse

– More details later...

Slide-135
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning HPL - Introduction

• Performance of HPL comes from
– BLAS
– Input file hpccinf.txt

• Essential parameters in the input file
– N – matrix size
– NB – blocking factor — influences BLAS performance and load balance
– PMAP – process mapping — depends on network topology
– PxQ – process grid

• Definitions

N

NB

=

A x = b

PX PY PZ PX

Slide-136
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning HPL – More Definitions

• Process grid parameters: P, Q, and PMAP

Q=4

P0

P1

P2

P3 P6

P4

P5

P7

P8

P9

P10

P11

P0

P4

P8

P1 P2

P5

P9

P6

P10

P3

P7

P11

P=3

PMAP=RPMAP=C

Slide-137
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning HPL – Selecting Process Grid

Slide-138
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning HPL – Number of Processors

Prime numbers
37

41 43

47
53

59 61

Slide-139
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning HPL – Matrix Size

Too small
Best performance

Too big
6 x 10

Not optimial parameters

Too big
12 x 10

Slide-140
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPL - Website

• http://www.netlib.org/benchmark/hpl/

• Much more details from HPL's author:

• Antoine Petitet

http://www.netlib.org/benchmark/hpl/

Slide-141
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning FFT

• Compile-time parameters
– FFTE_NBLK – blocking factor
– FFTE_NP – padding (to alleviate negative cache-line effects)
– FFTE_L2SIZE – size of level 2 cache

• Use FFTW instead of FFTE
– Define USING_FFTW symbol during compilation
– Add FFTW location and library to linker flags

Slide-142
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning STREAM

• Intended to measure main memory bandwidth
• Requires many optimizations to run at full hardware speed

– Software pipelining
– Prefetching
– Loop unrolling
– Data alignment
– Removal of array aliasing

• Original STREAM has advantages
– Constant array sizes (known at compile time)
– Static storage of arrays (at full compiler's control)

Slide-143
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning PTRANS

• Parameter file hpccinf.txt
– Line 33 — number of matrix sizes
– Line 34 — matrix sizes

Must not be too small – enforced in the code
– Line 35 — number of blocking factors
– Line 36 — blocking factors

No need to worry about BLAS
Very influential for performance

Slide-144
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Tuning b_eff

• b_eff (Effective bandwidth and latency) test can also be
tuned

• Tuning must use only standard MPI calls
• Examples

– Persistent communication
– One-sided communication

Slide-145
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Output File

• The output file has two parts
– Verbose output (free format)
– Summary section

Pairs of the form:
name=value

• The summary section names
– MPI* — global results

Example: MPIRandomAccess_GUPs
– Star* — embarrassingly parallel results

Example: StarRandomAccess_GUPs
– Single* — single process results

Example: SingleRandomAccess_GUPs

Slide-146
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Submitting Result Data

• Output file hpccoutf.txt should be submitted along with
system info

Slide-147
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPCC Upload Form

Slide-148
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Optimized Run Ideas

• For optimized run the same MPI harness has to be run on the
same system

• Certain routines can be replaced – the timed regions
• The verification has to pass – limits data layout and accuracy of

optimization
• Variations of the reference implementation are allowed (within

reason)
– No Strassen algorithm for HPL due to different operation count

• Various non-portable C directives can significantly boost
performance

– Example: #pragma ivdep
• Various messaging substrates can be used

– Removes MPI overhead
• Various languages can be used

– Allows for direct access to non-portable hardware features
– UPC was used to increase RandomAccess performance by orders of

magnitude
• Optimizations need to be explained upon results submission

Slide-149
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization

• Component Kernels
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions

Slide-150
HPC Challenge v1.x Benchmarks

SC|05 Tutorial S-13

MITRE

Summary/Conclusions

• HPC Challenge Benchmark Suite
– To examine the performance of HPC architectures using kernels

with more challenging memory access patterns than HPL
– To augment the Top500 list
– To provide benchmarks that bound the performance of many real

applications
– Available for download http://icl.cs.utk.edu/hpcc/

G-HPL G-PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System - Processor Speed Count Tds Proc TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cray XT3 AMD Opteron 2.4GHz 5200 1 5200 20.527 874.899 0.268583 644.73 26020.8 5.004 4.395 0.14682 25.8
Cray mfeg8 X1E 1.13GHz 248 1 248 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58
Cray XT3 AMD Opteron 2.6GHz 4096 1 4096 16.9752 302.979 0.533072 905.57 20656.5 5.043 4.782 0.16896 9.44
NEC SX-7 0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-8/6 SX-8 2GHz 6 1 6 0.0918 25.183 0.000769 3.19 370.6 61.773 15.944 13.5473 3.02
IBM pSeries 655 Power 4+ 1.7GHz 256 4 64 1.0744 23.721 0.005502 10.46 411.7 6.433 17.979 0.72395 8.34
PathScale Inc. AMD Opteron 2.6GHz 32 1 32 0.1258 6.719 0.030367 10.35 134.3 4.197 4.775 0.26531 1.31

System Information

As of 1 November 2005

HPC Challenge Awards will be presented at the SC|05 HPC
Challenge Award BOF Tuesday 15 November 2005 at noon!

	HPC Challenge v1.x Benchmark Suite SC|05 Tutorial — S13
	Acknowledgements
	People
	HPC Challenge v1.x Benchmark SuiteOutline
	HPC Challenge Benchmark Suitehttp://icl.cs.utk.edu/hpcc/
	HPC Challenge v1.x Benchmark Suite Introduction (1 of 6)
	HPC Challenge v1.x Benchmark Suite Introduction (2 of 6)
	HPC Challenge v1.x Benchmark Suite Introduction (3 of 6)
	HPC Challenge v1.x Benchmark Suite Introduction (4 of 6)
	HPC Challenge v1.x Benchmark Suite Introduction (5 of 6)
	HPC Challenge v1.x Benchmark Suite Introduction (6 of 6)
	HPC Challenge v1.x Benchmark SuiteOutline
	High Productivity Computing Systems(HPCS)
	Phase II Program Goals
	HPCS I/O Challenges
	HPCS Productivity Team
	HPCS Benchmark Working GroupGoals
	HPCS Benchmark Working GroupGoals
	HPCS Benchmark Spectrum
	HPC Challenge v1.x Benchmark Suite Introduction (1 of 2)
	Government HPC (HPCS)Benchmark Spectrum
	Motivation for More “Challenging”Benchmarks
	Uniprocessor Sparse Matrix-VectorMultiply Performance
	Uniprocessor Sparse Matrix-VectorMultiply Performance
	IBM Power3 MAPS Graph
	Intel Itanium MAPS Graph
	Node Spatial and Temporal Locality
	Node Spatial and Temporal Locality
	Node Spatial and Temporal Locality
	HPC Challenge v1.x Benchmark SuiteOutline
	HPC Challenge v1.x Benchmark Suite Component Kernels
	HPC Challenge v1.x Kernels HPL (1 of 3)
	HPC Challenge v1.x Kernels HPL (2 of 3)
	HPC Challenge v1.x Kernels HPL (3 of 3)
	HPC Challenge v1.x Kernels DGEMM
	HPC Challenge v1.x Kernels STREAM (1 of 2)
	HPC Challenge v1.x Kernels STREAM (2 of 2)
	HPC Challenge v1.x Kernels PTRANS
	HPC Challenge v1.x Kernels RandomAccess (1 of 2)
	HPC Challenge v1.x Kernels RandomAccess (2 of 2)
	HPC Challenge v1.x Kernels FFT
	HPC Challenge v1.x Kernels Communications Bandwidth and Latency (1 of 4)
	HPC Challenge v1.x Kernels Communications Bandwidth and Latency (2 of 4)
	HPC Challenge v1.x Kernels Communications Bandwidth and Latency (3 of 4)
	HPC Challenge v1.x Kernels Communications Bandwidth and Latency (4 of 4)
	A Deep Dive into RandomAccess
	GUPS (Giga UPdates Per Second)Characteristics of the Metric
	Calculating GUPS
	GUPS RulesMemory and Error Rate
	GUPS RulesLook Ahead and Stored Updates
	RandomAccess Text Definition
	Sequential RandomAccessImplementation
	Global Address Space (GAS)G-RandomAccess Implementation
	Distributed Memory G-RandomAccess Implementation — p = 2m
	Distributed Memory G-RandomAccess Implementation — p ≠ 2m
	HPC Challenge v1.x Benchmark SuiteOutline
	HPC Challenge Award Competition
	HPC Challenge Award CompetitionAward Classes
	HPC Challenge Award CompetitionAward Classes
	HPC Challenge AwardsEvaluation Committee
	HPC Challenge v1.x Benchmark SuiteOutline
	Unified HPCC Framework
	Baseline MPI-1 Implementation
	Optimized HPCC Submissions
	HPC Challenge v1.x Benchmark SuiteOutline
	Running HPC Challenge
	RulesBaseline Runs
	RulesOptimizations — Code Modifications
	RulesOptimizations — Limitations
	Etiquette
	HPC Challenge v1.x Benchmark SuiteOutline
	HPC Challenge Benchmark Suitehttp://icl.cs.utk.edu/hpcc/
	TOP500 and HPCC Data Analysis
	HPCC Submissions Baseline and Optimized Results
	HPCC Submissions Baseline Results
	HPCC Submissions Optimized Results
	HPCC SubmissionsDisplay
	HPC Challenge Benchmark SuiteSelected Results
	HPC Challenge Benchmark SuiteSelected Results
	HPC Challenge Benchmark SuiteTop Performers
	HPC Challenge Benchmark SuiteTop Performers
	HPC Challenge Benchmark SuiteThreads and Processes
	Top 10 PerformanceHPL
	Top 10 PerformancePTRANS
	Top 10 PerformanceG-RandomAccess
	Top 10 PerformanceG-FFTE
	Top 10 PerformanceSTREAM Triad (per Process)
	Top 10 PerformanceSTREAM Triad (per System)
	Top 10 PerformanceDGEMM (per Process)
	Top 10 PerformanceRandomRing Latency
	Top 10 PerformanceRandomRing Bandwidth
	HPL versus Theoretical Peak
	HPL versus DGEMM
	HPL versus STREAM Triad
	HPL versus RandomAccess
	HPL versus FFT
	Global STREAM versus PTRANS
	RandomRing Bandwidth versus PTRANS
	RandomAccess Correlations?
	Number of Processors versus G-RandomAccess
	RandomRing Bandwidth versusG-RandomAccess
	RandomRing Bandwidth versusG-RandomAccess
	RandomRing Latency versusG-RandomAccess
	Single Processor RandomAccess versus G-RandomAccess (per System)
	Single Processor RandomAccess versus G-RandomAccess (per Proc)
	STREAM Triad (per System) versusG-RandomAccess
	RandomAccess Correlations?
	RandomAccess Correlations?
	G-RandomAccess UPC Code‡
	HPC Challenge Benchmark Suitehttp://icl.cs.utk.edu/hpcc/
	Kiviat Charts
	Kiviat Chart Disclaimer
	HPC Challenge AnalysisKiviat Diagram — Scali Cluster Comparison
	HPC Challenge AnalysisKiviat Diagram — Opteron System Comparison
	HPC Challenge AnalysisKiviat Diagram — Cray XT3 Comparison
	HPC Challenge AnalysisKiviat Diagram — Rackable Cluster Comparison
	HPC Challenge AnalysisKiviat Diagram — Opteron System Comparison
	HPC Challenge AnalysisKiviat Diagram — Cluster Comparison
	HPC Challenge AnalysisKiviat Diagram — Cray Architecture Comparison
	HPC Challenge AnalysisKiviat Diagram — Custom Interconnect Comparison
	HPC Challenge AnalysisKiviat Diagram — NEC SX-6/7 Comparison
	HPC Challenge v1.x Benchmark SuiteOutline
	HPC Challenge Tutorial:Hands-on Demonstrations/Exercises
	Download
	HPCC Software Versioning
	HPCC Makefile Structure (1of 2)
	HPCC Makefile Structure (2 of 2)
	MPI Implementations for HPCC
	Fast BLAS for HPCC
	Tuning Process - Internal
	Tuning Process - External
	Parallelism Examples
	HPCC Input and Output
	Tuning HPL - Introduction
	Tuning HPL – More Definitions
	Tuning HPL – Selecting Process Grid
	Tuning HPL – Number of Processors
	Tuning HPL – Matrix Size
	HPL - Website
	Tuning FFT
	Tuning STREAM
	Tuning PTRANS
	Tuning b_eff
	HPCC Output File
	Submitting Result Data
	HPCC Upload Form
	Optimized Run Ideas
	HPC Challenge v1.x Benchmark SuiteOutline
	Summary/Conclusions

