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HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization 

• Component Kernels 
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions 
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HPC Challenge Benchmark Suite
http://icl.cs.utk.edu/hpcc/
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HPC Challenge v1.x Benchmark Suite 
Introduction (1 of 6)

• HPCS has developed a spectrum of benchmarks to provide 
different views of system

– ~40 Kernel Benchmarks
– HPCS Spanning Set of Kernels
– HPC Challenge Benchmark Suite

• HPC Challenge Benchmark Suite
– To examine the performance of HPC architectures using 

kernels with more challenging memory access patterns than 
HPL 

– To augment the Top500 list
– To provide benchmarks that bound the performance of many 

real applications as a function of memory access 
characteristics ― e.g., spatial and temporal locality

– To outlive HPCS
• HPCchallenge pushes spatial and temporal boundaries and 

defines performance bounds

Available for download http://icl.cs.utk.edu/hpcc/
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HPC Challenge v1.x Benchmark Suite 
Introduction (2 of 6)

1. HPL — High Performance 
LINPACK

2. DGEMM — matrix x matrix 
multiply

3. STREAM
– Copy
– Scale
– Add
– Triad

4. PTRANS — parallel matrix 
transpose

5. FFT 
6. RandomAccess 
7. Communications Bandwidth 

and Latency 

• Scalable framework — Unified 
Benchmark Framework
– By design, the HPC Challenge 

Benchmarks are scalable with 
the size of data sets being a 
function of the largest HPL 
matrix for the tested system

• Scalable framework — Unified 
Benchmark Framework
– By design, the HPC Challenge 

Benchmarks are scalable with 
the size of data sets being a 
function of the largest HPL 
matrix for the tested system
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HPC Challenge v1.x Benchmark Suite 
Introduction (3 of 6)

Local and Embarrassingly Parallel
1. EP-DGEMM (matrix x matrix 

multiply)
2. STREAM

– Copy
– Scale
– Add
– Triad

3. EP-RandomAccess
4. EP-1DFFT 

Global
1. High Performance LINPACK 

(HPL)
2. PTRANS — parallel matrix 

transpose
3. G-RandomAccess
4. G-1DFFT 
5. Communications Bandwidth & 

Latency

1. HPL — High Performance 
LINPACK

2. DGEMM — matrix x matrix 
multiply

3. STREAM
– Copy
– Scale
– Add
– Triad

4. PTRANS — parallel matrix 
transpose

5. FFT (EP & G)
6. RandomAccess (EP & G)
7. Communications Bandwidth 

and Latency 
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HPC Challenge v1.x Benchmark Suite
Introduction (4 of 6)

• Many of the component benchmarks were widely used 
before the HPC Challenge suite of Benchmarks was 
assembled

– HPC Challenge has been more than a packaging effort
– Almost all component benchmarks were augmented from 

their original form to provide consistent verification and 
reporting 

• We stress the importance of running these benchmarks on 
a single machine — with a single configuration and options

– The benchmarks were useful separately for the HPC 
community, meanwhile

– The unified HPC Challenge framework creates an 
unprecedented view of performance characterization of a 
system

A comprehensive view with data captured the under the same 
conditions allows for a variety of analyses depending on end user 
needs
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HPC Challenge v1.x Benchmark Suite
Introduction (5 of 6)

• To characterize a system architecture — consider three 
testing scenarios:

1. Local – only a single processor is performing computations
2. Embarrassingly Parallel – each processor in the entire 

system is performing computations but they do not 
communicate with each other explicitly

3. Global – all processors in the system are performing 
computations and they explicitly communicate with each 
other.

• All benchmarks operate on either matrices (of size n2) or 
vectors (of size m) 

– n2 ≤ m ≤ Available Memory
– i.e., the matrices or vectors are large enough to fill almost all 

available memory.
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HPC Challenge v1.x Benchmark Suite
Introduction (6 of 6)

• HPC Challenge encourages users to develop optimized benchmark codes 
that use architecture specific optimizations to demonstrate the best 
system performance

• Meanwhile, we are interested in both
– The base run with the provided reference implementation
– An optimized run

• The base run represents behavior of legacy code because
– It is conservatively written using only widely available programming languages 

and libraries
– It reflects a commonly used approach to parallel processing sometimes 

referred to as hierarchical parallelism that combines
Message Passing Interface (MPI)
OpenMP Threading

– We recognize the limitations of the base run and hence we encourage 
optimized runs 

• Optimizations may include alternative implementations in different 
programming languages using parallel environments available specifically 
on the tested system

• We require that the information about the changes made to the original 
code be submitted together with the benchmark results

– We understand that full disclosure of optimization techniques may sometimes 
be impossible 

– We request at a minimum some guidance for the users that would like to use 
similar optimizations in their applications
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HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization 

• Component Kernels 
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions 
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High Productivity Computing Systems
(HPCS)

Goal:
Provide a new generation of economically viable high productivity computing 
systems for the national security and industrial user community (2010)

Impact:
Performance (time-to-solution): speedup critical national 
security applications by a factor of 10X to 40X
Programmability (idea-to-first-solution): reduce cost and 
time of developing application solutions 
Portability (transparency): insulate research and 
operational application software from system
Robustness (reliability): apply all known techniques to 
protect against outside attacks, hardware faults, & 
programming errors

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Applications:
Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant 
modeling and biotechnology

HPCS Program Focus Areas

Analysis &

Analysis &

Assessment

Assessment

Performance
Characterization

& Prediction

System
Architecture

Software
Technology

Hardware
Technology

Programming 
Models

Industry R&D

Industry R&D
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(Funded Three)
Phase II

R&D

02 05 06 07 08 09 1003

Phase III
Prototype Development

System 
Design
ReviewIndustry

Milestones 

Productivity
Assessment
(MIT LL, DOE, 

DoD, NASA, NSF)

MP Peta-Scale
Procurements

Year (CY)

Concept 
Review PDR 

Early
Demo 

Technology
Assessment 

Review

(Funded Five)
Phase I
Industry
Concept

Study

Program Reviews     

Critical Milestones                                             

Program Procurements

CDR
DRR

1 2 4 5 6 7

04

3

Mission
Partners

Mission Partner
Peta-Scale

Application Dev

11

Final
Demo

SW
Rel 1

SCR

SW
Rel 2

SW
Rel 3

SW
Dev Unit

Deliver UnitsMission Partner
Dev Commitment

Mission Partner
System Commitment

HPLS
Plan

MP Language Dev

HPCS Program Phases I -III
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Phase II Program Goals

• Phase II Overall Productivity Goals 
– Execution (sustained performance) – 1 Petaflop/sec (scalable to greater 

than 4 Petaflop/sec). Reference: Workflow 3
– Development – 10X over today’s systems.  Reference: Workflows 1,2,4,5

• Productivity Framework 
– Establish experimental baseline 
– Evaluate emerging vendor execution and development productivity 

concepts
– Provide a solid reference for evaluation of vendor’s Phase III designs
– Early adoption or phase in of execution and development metrics by 

mission partners
• Subsystem Performance Indicators  (Vendor Specified Goals)

– 3.2 PB/sec bisection bandwidth; 
– 64,000 GUPS;
– 6.5 PB/sec data streams bandwidth;
– 2+ PF/s Linpack

10 to 10K times Delta 
from Business as Usual
10 to 10K times Delta 

from Business as Usual

Documented and Validated Through Simulations, 
Experiments, Prototypes, and Analysis
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HPCS I/O Challenges

An Envelope on HPCS Mission
Partner Requirements HPCS as part of a

Mission Partner’s Enterprise Architecture  
• 1 Trillion files in a single file 

system
– 32K file creates per second

• 10K metadata operations per 
second

– Needed for 
Checkpoint/Restart files

• Streaming I/O at 30 GB/sec 
full duplex

– Needed for data capture
• Support for 30K nodes

– Future file system need low 
latency communication

Networks

InformationData 

Sys 1Sys 1 Sys NSys NSys NHPCS
High Performance

Storage

HPCS Sys 1Sys 1

Storage Networks

Sys NSys NSys N

Storage SystemStorage SystemHigh Performance
Storage System

High Performance
Storage System

Tier 1 Storage Tier 2 Storage

Agency Enterprise System
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HPCS Productivity Team

Productivity Team Lead
MIT Lincoln 
Laboratory

Jeremy Kepner

September 2003 — July 2005
(Phase II Years 1 and 2)

Development Experiments
Existing Code Analysis

Workflows, Models, Metrics
Benchmarks

High Productivity Language Systems
Execution Time Models
Test & Specifications

July 2005 — ??
(Phase II Year 3 and Early Phase III)

Development Experiments
Workflows, Models, Metrics

High Productivity Language Systems
Execution Time Models

Test & Spec Specifications
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HPCS Benchmark Working Group
Goals 

• Provide the HPCS Vendors and HPCS Productivity Team 
the Benchmarks and Applications for

– Scoping requirements for designing systems
– Productivity Testing

Execution Time Testing
Development Time Testing

Reliability

Portability Dev Time 
Experiments

Exe Time 
Experiments

Productivity
Metrics

System Parameters
(Examples)

BW bytes/flop (Balance)
Memory latency

Memory size
……..

Productivity

Processor flop/cycle 
Processor integer op/cycle

Bisection BW
………

Size (ft3)
Power/rack

Facility operation     
……….

Code size 
Restart time (Reliability) 
Code Optimization time                         

………

Benchmarks

Actual 
System 

or
Model

Work
Flows (Utility/Cost)

Ψ≡
U
C
=

U(T)
CS +CO +CM

Productivity = Utility/Cost

U

T

Production

T

Production

U

T

Constant

T

Constant

Utility → U(T)
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HPCS Benchmark Working Group
Goals 

Reliability

Portability Dev Time 
Experiments

Exe Time 
Experiments

Productivity
Metrics

System Parameters
(Examples)

BW bytes/flop (Balance)
Memory latency

Memory size
……..

Productivity

Processor flop/cycle 
Processor integer op/cycle

Bisection BW
………

Size (ft3)
Power/rack

Facility operation     
……….

Code size 
Restart time (Reliability) 
Code Optimization time                         

………

Benchmarks

Actual 
System 

or
Model

Work
Flows (Utility/Cost)

Ψ≡
U
C
=

U(T)
CS +CO +CM

Productivity = Utility/Cost

U

T

Production

T

Production

U

T

Constant

T

Constant

Utility → U(T)

Benchmarks and Workflows are non-linear functions
representing HPCS Mission Partner requirements

that will enable the measurement of the productivity
terms utility and cost for systems represented

by traditional parameter sets
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HPCS Benchmark Spectrum

8 HPCchallenge
Benchmarks

(~40) Micro & Kernel
Benchmarks
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Execution and
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(~10) Compact
Applications

Spectrum of benchmarks provide different views of system
• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds
• Applications drive system issues; set legacy code performance bounds 
• Kernels and Compact Apps for deeper analysis of execution and development time

Spectrum of benchmarks provide different views of system
• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds
• Applications drive system issues; set legacy code performance bounds 
• Kernels and Compact Apps for deeper analysis of execution and development time
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HPC Challenge v1.x Benchmark Suite 
Introduction (1 of 2)

(~40) Micro & Kernel
Benchmarks
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• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds
• Available for download http://icl.cs.utk.edu/hpcc/
• HPCchallenge pushes spatial and temporal boundaries; sets performance bounds
• Available for download http://icl.cs.utk.edu/hpcc/

HPCchallenge Benchmarks
http://icl.cs.utk.edu/hpcc/

• To examine the performance of 
HPC architectures using kernels 
with more challenging memory 
access patterns than HPL

• To augment the Top500 list
• To provide benchmarks that bound

the performance of many real 
applications as a function of 
memory access characteristics ―
e.g., spatial and temporal locality

• To outlive HPCS

8 HPCchallenge
Benchmarks

Local
DGEMM
STREAM

RandomAccess
1D FFT

Global
Linpack
PTRANS

RandomAccess
1D FFT

Execution
Bounds
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Government HPC (HPCS)
Benchmark Spectrum

(~40) Micro & Kernel
Benchmarks
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HPCchallenge Benchmarks
http://icl.cs.utk.edu/hpcc/

• To examine the performance of 
HPC architectures using kernels 
with more challenging memory 
access patterns than HPL

• To complement the Top500 list
• To provide benchmarks that bound

the performance of many real 
applications as a function of 
memory access characteristics ―
e.g., spatial and temporal locality

• To outlive HPCS

HPCchallenge Benchmarks
http://icl.cs.utk.edu/hpcc/

Local and Embarrassingly Parallel
1. EP-DGEMM (matrix x matrix multiply)
2. STREAM

– COPY
– SCALE
– ADD
– TRIADD

3. EP-RandomAccess
4. EP-1DFFT 

Global
1. High Performance LINPACK (HPL)
2. PTRANS — parallel matrix transpose
3. G-RandomAccess
4. G-1DFFT 
5. Communication Bandwidth & Latency

8 HPCchallenge
Benchmarks

Local
DGEMM
STREAM

RandomAccess
1D FFT

Global
Linpack
PTRANS

RandomAccess
1D FFT

Execution
Bounds

Version 1.0
Now Available!

• Scalable framework — Unified Benchmark Framework
– By design, the HPC Challenge Benchmarks are scalable with the size of data sets being a 

function of the largest HPL matrix for the tested system

• Scalable framework — Unified Benchmark Framework
– By design, the HPC Challenge Benchmarks are scalable with the size of data sets being a 

function of the largest HPL matrix for the tested system
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Motivation for More “Challenging”
Benchmarks

• “To examine the performance of HPC architectures using kernels 
with more challenging memory access patterns than HPL“

• Briefly address the questions:
– What effects do more challenging memory access patterns have on 

performance?
– What applications exhibit more challenging memory access 

patterns?
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Uniprocessor Sparse Matrix-Vector
Multiply Performance

Source: R. Vuduc, J. Demmel, K. Yelick,  UC Berkeley

Top500 HPL
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Uniprocessor Sparse Matrix-Vector
Multiply Performance

Source: R. Vuduc, J. Demmel, K. Yelick,  UC Berkeley

Top500 HPL

• HPL — dense 
linear solver

– High temporal 
locality or data 
reuse due to 
blocked data

– Architecture 
able to move 
data to 
processors to 
keep them 
busy

• Sparse linear 
solvers

– Difficulties in 
keeping data 
moving to the 
processors to 
keep them 
busy
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IBM Power3 MAPS Graph

San Diego Supercomputer Center
Performance Modeling and Characterization Lab

5PMaC

Framework addition: Data Dependency
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Intel Itanium MAPS Graph

San Diego Supercomputer Center
Performance Modeling and Characterization Lab

6PMaC

Framework addition: Data Dependency
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Node Spatial and Temporal Locality

HPC Challenge 
Benchmarks
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• Spatial and temporal data locality 
here is for one node/processor —
i.e., locally or “in the small”

• Spatial and temporal data locality 
here is for one node/processor —
i.e., locally or “in the small”

Generated by PMaC @ SDSC
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Node Spatial and Temporal Locality
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High Temporal Locality
Good Performance on
Cache-based systems
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Cache-based systems
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High Temporal Locality
Good Performance on
Cache-based systems

No Temporal or Spatial Locality
Poor Performance on
Cache-based systems

High Spatial Locality
Moderate Performance on

Cache-based systems

HPC Challenge Benchmarks 
“bound” real application 

performance in the
locality space
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HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization 

• Component Kernels 
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions 
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HPC Challenge v1.x Benchmark Suite 
Component Kernels 

• HPL (High Performance Linpack) 
• DGEMM 
• STREAM 
• PTRANS (Parallel Matrix Transpose) 
• RandomAccess 
• FFT 
• Communications Latency 
• Communications Bandwidth
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HPC Challenge v1.x Kernels 
HPL (1 of 3)

• HPL (High Performance Linpack)
– Implementation of the Linpack TPP (Toward Peak 

Performance) benchmark 
– Measures the floating point rate of execution for solving a 

linear system of equations
• HPL solves a linear system of equations of order n:

• by computing an LU factorization with row partial pivoting 
of the n by n+1 coefficient matrix:

• Since the row pivoting (represented by the permutation 
matrix P) and the lower triangular factor L are applied to b 
as the factorization progresses, the solution x is obtained in 
one step by solving the upper triangular system:
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HPC Challenge v1.x Kernels 
HPL (2 of 3)

• The lower triangular matrix L is left unpivoted and the array 
of pivots is not returned. 

• The operation counts are
– Factorization phase — (⅔n3 – ½n2)
– Solve phase — (2n2)

• Correctness is ascertained by calculating the scaled 
residuals where ε is machine precision for 64-bit floating-
point values and n is the size of the problem
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HPC Challenge v1.x Kernels 
HPL (3 of 3)

• Scalability
– Assume memory available in the entire system is linearly 

proportional to the number of processors
– HPL is dominated by CPU “costs”

Computation complexity — O(n3)
Communication complexity — O(n2)

– It can be shown that the rate of execution (flop/s - r) for HPL 
is proportional to the number of processors (P)

rHPL ∝ P

– It can also be shown that the time (t) to run HPL is 
proportional to the square root of the number of processors

tHPL ∝ √P

More at http://www.netlib.org/benchmark/hpl/
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HPC Challenge v1.x Kernels 
DGEMM

• DGEMM measures the floating point rate of execution of 
double precision real matrix-matrix multiplication

• The exact operation performed is:

where:

• The operation count is — (2n3)
• Correctness is ascertained by calculating the scaled 

residual:

(Ĉ is a result of a reference implementation of the 
multiplication)
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HPC Challenge v1.x Kernels 
STREAM (1 of 2)

• STREAM is a simple benchmark program that measures 
sustainable memory bandwidth (in Gbyte/s) and the 
corresponding computation rate for four simple vector 
kernels:

where:

• HPC Challenge Benchmarks are intended to operate on 
large data objects

– Object size is determined at runtime which contrasts with the 
original version of the STREAM benchmark which uses static 
storage (determined at compile time) and size

– The original benchmark gives the compiler more information 
(and control) over data alignment, loop trip counts, etc.
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HPC Challenge v1.x Kernels 
STREAM (2 of 2)

• The benchmark measures Gbyte/s and the amount of data 
transferred is 

– Copy — (2m) 
– Scale — (2m) 
– Add — (3m) 
– Triad — (3m) 

• Correctness is ascertained by calculating the norm of the 
difference between reference and computed vectors:

• The STREAM run rules require that the data dependency 
chain implied by the sequence of operations be maintained 

1. Copy
2. Scale
3. Add 
4. Triad

More at http://www.cs.virginia.edu/stream/
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HPC Challenge v1.x Kernels 
PTRANS

• PTRANS (parallel matrix transpose) exercises the 
communications where pairs of processors exchange large 
messages simultaneously

• It is a useful test of the total communications capacity of 
the system interconnect

• The performed operation sets a random n by n matrix to a 
sum of its transpose with another random matrix:

where:

• The data transfer rate (in Gbyte/s) is calculated by dividing 
the size of n2 matrix entries by the time it took to perform 
the transpose

• Correctness is ascertained by calculating the scaled 
residual:

More at http://www.netlib.org/parkbench/html/matrix-kernels.html
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HPC Challenge v1.x Kernels 
RandomAccess (1 of 2)

• RandomAccess measures the rate of integer updates to 
random memory locations measured by the metric Giga-
Updates per Second (GUPS)

• The operation being performed on an integer array of size 
m is:

where:

• The operation count is (4m) and since all the operations are 
in integral values over GF(2) field they can be checked 
exactly with a reference implementation

• The verification procedure allows 1% of the operations to 
be incorrect (skipped or due to data race conditions) which 
allows loosening concurrent memory update semantics on 
shared memory architectures
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HPC Challenge v1.x Kernels 
RandomAccess (2 of 2)

• Scalability
– Assume memory available in the entire system is linearly 

proportional to the number of processors
– Global RandomAccess is communications-limited on 

distributed memory multiprocessors
– Depending on the capability of the architecture Global 

RandomAccess may be scalable with rate (r)
1. Proportional to the number of processors (P)

rRA ∝ P

2. Independent of the number of processors (P)

rRA ∝ 1

3. Inversely proportional to the number of processors (P)
(scaling decreases as the number of processors increases)

rRA ∝ 1/P

More at http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/
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HPC Challenge v1.x Kernels 
FFT

• FFT measures the floating point rate of execution of double 
precision complex one-dimensional Discrete Fourier 
Transform (DFT) of size m measured in Gflop/s :

where:

• The operation count for the calculation is (5mlog2m)
• Correctness is ascertained by calculating the residual:

where ê is the result of applying a reference implementation 
of inverse transform to the outcome of the benchmarked 
code 

– With infinite-precision arithmetic — the residual should be 
zero

More at http://www.ffte.jp/
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HPC Challenge v1.x Kernels 
Communications Bandwidth and Latency (1 of 4)

• The latency and bandwidth benchmark measures two 
different communication patterns

– Single-process-pair latency and bandwidth
– Parallel all-processes-in-a-ring latency and bandwidth

• For Single-process-pair latency and bandwidth ping-pong 
communication is used on a pair of processes

– Several different pairs of processes are used and the 
maximal latency and minimal bandwidth over all pairs is 
reported

– While the ping-pong benchmark is executed on one process 
pair all other processes are waiting in a blocking receive

– To limit the total benchmark time to 30 sec — only a subset of 
the set of possible pairs is used 

– The communication is implemented with MPI standard 
blocking send and receive.
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HPC Challenge v1.x Kernels 
Communications Bandwidth and Latency (2 of 4)

• For Parallel all-processes-in-a-ring latency and bandwidth
communications

– All processes are arranged in a ring topology
– Each process sends and receives a message from its left and 

its right neighbor in parallel
– Two types of rings are used

A naturally ordered ring (i.e., ordered by the process ranks in MPI 
COMM WORLD)
The geometric mean of the bandwidth of ten different randomly 
chosen process orderings in the ring

– The communication is implemented with 
MPI standard non-blocking receive and send 
Two calls to MPI Sendrecv for both directions in the ring
Always the fastest of both measurements are used

– Bandwidth per process is defined as total amount of 
message data divided by the number of processes and the 
maximal time needed in all processes

– This benchmark is based on patterns studied in the effective 
bandwidth communication benchmark (b_eff)
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HPC Challenge v1.x Kernels 
Communications Bandwidth and Latency (3 of 4)

• Message lengths
– 8 byte
– 2,000,000 bytes

• The major results reported by this benchmark are:
– Maximal ping pong latency
– Average latency of parallel communication in randomly 

ordered rings
– Minimal ping pong bandwidth
– Bandwidth per process in the naturally ordered ring
– Average bandwidth per process in randomly ordered rings.

• Additionally results reported by this benchmark are: 
– Latency of the naturally ordered ring
– Minimum, maximum, and average of the ping-pong latency 

and bandwidth
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HPC Challenge v1.x Kernels 
Communications Bandwidth and Latency (4 of 4)

• Communications Bandwidth and Latency benchmarks 
model 

– Ring based — the communication behavior of multi-
dimensional domain-decomposition applications

– Natural ring — the message transfer pattern of a regular grid 
based application

Only in the first dimension 
Adequate ranking of the processes is assumed

– Random ring — the communication pattern of unstructured 
grid based applications

More at http://www.hlrs.de/organization/par/services/models/mpi/b_eff/
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A Deep Dive into RandomAccess

RandomAccess may be the least familiar of the 
HPC Challenge Benchmark suite kernels…
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GUPS (Giga UPdates Per Second)
Characteristics of the Metric

• GUPS (Giga UPdates per Second)
– A measurement that profiles the memory architecture of a system
– A measure of performance similar to MFLOPS

• The HPCS HPCchallenge RandomAccess benchmark exercises 
the GUPS capability of a system like the LINPACK benchmark is 
intended to exercise the MFLOPS capability of a computer

• In each case, we would expect these benchmarks to achieve close 
to the "peak" capability of the memory system

• The extent of the similarities between RandomAccess and 
LINPACK are limited to both benchmarks attempting to calculate a
peak system capabilities

– RandomAccess is a memory benchmark and not a computational 
benchmark like LINPACK

• We are interested in the GUPS performance of entire systems and 
system subcomponents

– The GUPS rating of a distributed memory multiprocessor 
– The GUPS rating of an SMP node
– The GUPS rating of a single processor

• While there is typically a strict scaling of MFLOPS to processor
count, a similar phenomenon may not always occur for GUPS 
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Calculating GUPS 

• Calculating GUPS 
– Identify the number of memory locations that can be 

randomly updated in one second
– Divide by 1 billion (1e9)

• “Randomly” means that there is little relationship between 
one address to be updated and the next — except that they 
occur in the space of ½ the total system memory

• An update is a read-modify-write operation on a table of 64-
bit words

– An address is generated
– The value at that address is to be read from memory
– The value is to be modified by an integer operation 

(add, and, or, xor) with a literal value
– The new value is written back to memory
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GUPS Rules
Memory and Error Rate

• Memory 
– Select the memory size to be the power of two 

such that ¼ ≤ 2m ≤ ½ of the total memory
– Each CPU operates on its own address stream
– The single table may be distributed among nodes
– The distribution of memory to nodes is left to the 

implementer
A uniform data distribution may help balance the workload
A non-uniform data distribution may simplify the calculations that 
identify processor location by eliminating the requirement for 
integer divides

• Error rate
– A small (less than 1%) percentage of missed updates are 

permitted
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GUPS Rules
Look Ahead and Stored Updates

• When measuring GUPS on a distributed memory multiprocessor 
system — define constraints

– How far in the random address stream each node is permitted to 
"look ahead“

– The number of update messages that can be stored before 
processing to permit multi-level parallelism 

• For the purpose of measuring GUPS, each “node” is permitted to 
– Look ahead no more than 1024 random address stream samples 
– Store the same number of update messages before processing 

• The limits on “look ahead” and “stored updates” are being 
implemented to assure that the benchmark meets the intent to 
profile memory architecture and not induce significant artificial 
data locality
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RandomAccess Text Definition

RandomAccess is Benchmark #0 from the DARPA HPCS Discrete Math Benchmarks
Contact Robert Lucas (rflucas@isi.edu) or David Koester (dkoester@mitre.org) for further information

• Let T be a table of size 2n filled with random 64-bit integers
• Let {Ai} be a stream of 64-bit integers of length 2n+2 generated by the 

primitive polynomial over GF(2), X63 + X3 + X+1
– GF(2) (Galois Field of order 2)
– The elements of GF(2) can be represented using the integers 0 and 1, 

i.e., binary operands
• For each ai ,set T[ai <63, 64-n>] = T[ai <63, 64-n>] + ai

– +          denotes addition in GF(2) i.e. bit-wise exclusive “or” (⊕)
– ai<j, i> denotes the sequence of bits within ai

e.g. <63, 64-n> are the highest n bits
• Parameters

n is the largest power of 2 that is 
less than or equal to half of main memory

• Acceptable error — 1%
– This flexibility would generally be used

to allow non-coherent parallel operations
• Look ahead and storage before processing on 

distributed memory multi-processor systems
– limited to 1024 per “node”

The Commutative and Associative nature of ⊕
allows processing in any order

Bit-Level
Exclusive Or

⊕
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Sequential RandomAccess
Implementation

2n

1/2 Memory

64 bits

T

{Ai} Length
2n+2

ai
64 bits

k = [ai <63, 64-n>]

⊕

Define
Addresses

Tables

Data Stream

Data-Driven
Memory Access 

Sequences of
bits within ai

Highest n bits

The Commutative and Associative nature of ⊕
allows processing in any order

Bit-Level
Exclusive Or

⊕

The expected value of the number
of accesses per memory location T[ k ]

E[ T[ k ] ] = (2n+2 / 2n) = 4

k

aiT[ k ]

Acceptable Error — 1%
Look ahead and Storage before processing —1024 per “processor”
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Global Address Space (GAS)
G-RandomAccess Implementation

2n

1/2 Memory

64 bitsTables

T

{Ai} Length
2n+2

ai
64 bits

k = [ai <63, 64-n>]

⊕

Define
Addresses

Sequences of
bits within ai

The expected value of the number
of accesses per memory location T[ k ]

E[ T[ k ] ] = (2n+2 / 2n) = 4

k

Highest n bits

aiT[ k ]

Data Stream
For p threads/vectors/nodes/processors

Calculate ai to ai+p simultaneously 

Data-Driven
Memory Access 

Acceptable Error — 1%
Look ahead —1024 per “sub-stream”

Storage before processing —1024 per “processor”
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Distributed Memory G-RandomAccess 
Implementation — p = 2m

Define
Addresses

Sequences of
bits within ai

k = [ai <(63 - log2(p)) , (64 - n) >]

T[q][k]

Local Offset

Processor Number

0

p-1

q

T
Table

“Processor”

q = ai <(63, (64-log2(p) >

Table Size - 2n

1/2 Global
Memory

Highest log2(p) bits

{Ai}
Data Stream

For p “processors”Length
2n+2 Calculate ai to ai+p simultaneously 

Data-Driven
Memory Access 

ai
64 bits

Acceptable Error — 1%
Look ahead —1024 per “sub-stream”

Storage before processing —1024 per “processor”
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Distributed Memory G-RandomAccess 
Implementation — p ≠ 2m

Define
Addresses

Sequences of
bits within ai

T[q][k]

0
“Processor”

Local Offset
Processor Number

d = ai <63, 64-n>
Highest n bits

Table

p-1

q

T
Table Size - 2n

1/2 Global
Memory

q = f(d) 
k = d – k0[q]

k0[q]

k0[q] is the Global Offset
corresponding to T[q][0]

Integer Divide
& Conditional

{Ai} Length
2n+2

ai
64 bits

Data Stream

Data-Driven
Memory Access 

Acceptable Error — 1%
Look ahead —1024 per “sub-stream”

Storage before processing —1024 per “processor”

For p “processors”
Calculate ai to ai+p simultaneously 
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HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization 

• Component Kernels 
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions 
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HPC Challenge Award Competition

• The First Annual HPC Challenge Award Competition
• Sponsors — DARPA HPCS, DOE, NSF, and HPCWire 
• http://www.hpcchallenge.org
• Goal: to focus the HPC community’s attention on a broad 

set of HPC hardware and HPC software capabilities that are 
necessary to effectively use HPC systems.

• The core of the HPC Challenge Award Competition is the 
HPC Challenge benchmark suite 

• The competition will focus on four of the most challenging 
benchmarks in the suite:

– Global HPL
– Global RandomAccess
– EP STREAM (Triad) per system
– Global FFT

Prizes sponsored by HPCWire

http://www.hpcchallenge.org/
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HPC Challenge Award Competition
Award Classes

• Class 1: Best Performance (4 awards)
– Best performance on a base or optimized run submitted to the HPC Challenge 

website
Global HPL
Global RandomAccess
EP STREAM (Triad) per system
Global FFT

– The prize will be $500 plus a certificate for the best of each benchmark
• Class 2: Most Productivity

– Most "elegant" implementation of one or more of the HPC Challenge 
benchmarks listed above

– This award would be weighted 50% on performance and 50% on code elegance, 
clarity, and size as determined by an evaluation committee

– For this award, the implementer must submit by October 15th, 2005, a short 
description of:

The implementation,
The performance achieved,
Lines-of-code,
The actual source code of their implementation.

– The evaluation committee will select a set of finalists who will be invited to give 
a short presentation at the HPC Challenge Award BOF at SC|05 that will be 
judged by the evaluation committee to select the winner

– The prize will be $1500 plus a certificate for this award and may be split among 
the "best" entries.

• Awards will be presented at the HPC Challenge Award BOF at SC|05
Tuesday 15 November 2005 at noon

Prizes sponsored by HPCWire
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HPC Challenge Award Competition
Award Classes

• Class 1: Best Performance (4 awards)
– Best performance on a base or optimized run submitted to the HPC Challenge 

website
Global HPL
Global RandomAccess
EP STREAM (Triad) per system
Global FFT

– The prize will be $500 plus a certificate for the best of each benchmark
• Class 2: Most Productivity

– Most "elegant" implementation of one or more of the HPC Challenge 
benchmarks listed above

– This award would be weighted 50% on performance and 50% on code elegance, 
clarity, and size as determined by an evaluation committee

– For this award, the implementer must submit by October 15th, 2005, a short 
description of:

The implementation,
The performance achieved,
Lines-of-code,
The actual source code of their implementation.

– The evaluation committee will select a set of finalists who will be invited to give 
a short presentation at the HPC Challenge Award BOF at SC|05 that will be 
judged by the evaluation committee to select the winner

– The prize will be $1500 plus a certificate for this award and may be split among 
the "best" entries.

• Awards will be presented at the HPC Challenge Award BOF at SC|05
Tuesday 15 November 2005 at noon

Prizes sponsored by HPCWire

Awards will be presented at the 
SC|05 HPC Challenge Award BOF

Tuesday 15 November 2005 at noon
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HPC Challenge Awards
Evaluation Committee

• David Bailey
LBNL NERSC

• Jack Dongarra (Co-Chair)
U of Tenn/ORNL

• Jeremy Kepner (Co-Chair)
MIT Lincoln Lab

• David Koester
MITRE

• Bob Lucas
ISI

• Rusty Lusk
Argonne National Lab

• Piotr Luszczek
U of Tennessee

• John McCalpin
IBM Austin

• Rolf Rabenseifner
HLRS Stuttgart

• Daisuke Takahashi
U of Tsukuba
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HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization 

• Component Kernels 
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions 
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Unified HPCC Framework

• HPCC unifies a number of existing (and well known) codes in one 
consistent framework

• A single executable is built to run all of the components
– Easy interaction with batch queues
– All codes are run under the same OS conditions – just as an 

application would
No special mode (page size, etc.) for just one test (say Linpack
benchmark)
Each test may still have its own set of compiler flags

□Changing compiler flags in the same executable may inhibit inter-procedural 
optimization

• Why not use a script and a separate executable for each test?
– Lack of enforced integration between components

Ensure reasonable data sizes
Either all tests pass and produce meaningful results or failure is reported

– Running a single component of HPCC for testing is easy enough



Slide-64
HPC Challenge v1.x Benchmarks 

SC|05 Tutorial S-13

MITRE

Baseline MPI-1 Implementation

• Publicly available code is required 
for base submission

1. Requires C compiler, MPI 1.1, 
and BLAS

2. Source code cannot be changed 
for submission run

3. Linked libraries have to be 
publicly available

4. The code contains optimizations 
for contemporary hardware 
systems

5. Algorithmic variants provided for 
performance portability

• This to mimic legacy applications’
performance

1. Reasonable software 
dependences

2. Code cannot be changed due to 
complexity and maintenance 
cost

3. Relies on publicly available 
software

4. Some optimization has been 
done on various platforms

5. Conditional compilation and 
runtime algorithm selection for 
performance tuning

Baseline code has over 10k SLOC — there must more productive way of coding
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Optimized HPCC Submissions

• Timed portions of the code may be replaced with optimized code
• Verification code still has to pass

– Must use the same data layout or pay the cost of redistribution
– Must use sufficient precision to pass residual checks

• Allows to use new parallel programming technologies
– New paradigms, e.g. one-sided communication of MPI-2:

MPI_Win_create(…);
MPI_Get(…);
MPI_Put(…);
MPI_Win_fence(…);

– New languages, e.g. UPC:
shared pointers
upc_memput()

• Code for optimized portion may be proprietary but needs to use publicly 
available libraries

• Optimizations need to be described but not necessarily in detail – possible 
use in application tuning

• Attempting to capture: invested effort per flop rate gain
– Hence the need for baseline submission

• There can be more than one optimized submission for a single base 
submission (if a given architecture allows for many optimizations)
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HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization 

• Component Kernels 
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions 
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Running HPC Challenge

• To enter data into the HPC Challenge archive — you must 
submit a baseline run for each HPC system

– Only complete benchmark output may be submitted — partial 
results will not be accepted

• You may also submit an optimized run for each HPC 
system

– Again — only complete benchmark output may be submitted
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Rules
Baseline Runs

The following optimizations are allowed in the baseline runs

• Compile and load options
– Compiler or loader flags which are supported and documented by the 

supplier are allowed
– These include porting, optimization, and preprocessor invocation

• Libraries
– Linking to optimized versions of the following libraries is allowed

BLAS
MPI

– Acceptable use of such libraries is subject to the following rules:
All libraries used shall be disclosed with the results submission. Each 
library shall be identified by library name, revision, and source (supplier). 
Libraries which are not generally available are not permitted unless they 
are made available by the reporting organization within 6 months
Calls to library subroutines should have equivalent functionality to that in 
the released benchmark code. Code modifications to accommodate various 
library call formats are not allowed
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Rules
Optimizations — Code Modifications

The following routines may have optimized versions substituted for the 
baseline codes — the input and output specification must be preserved

• HPL
– pdgesv()
– pdtrsv()

• DGEMM
– no changes are allowed

• PTRANS
– pdtrans()

• STREAM
– Copy()
– Scale()
– Add()
– Triad()

• RandomAccess
– MPIRandomAccessUpdate()
– RandomAccessUpdate()

• FFT(all functions are compatible with FFTW 2.1.5 [11, 12])
– fftw malloc(), fftw free(), fftw one(), fftw mpi()
– fftw create plan(), fftw destroy plan()
– fftw mpi create plan(), fftw mpi local sizes()
– fftw mpi destroy plan()

• b eff — alternative MPI routines might be used for communication
– Only standard MPI calls are to be performed
– Only MPI libraries that are widely available on the tested system may be used
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Rules
Optimizations — Limitations

• Calculations must be performed in 64-bit precision or the 
equivalent

– Codes with limited calculation accuracy are not permitted
• All algorithm modifications must be fully disclosed and are 

subject to review by the HPC Challenge Committee
– Passing the verification test is a necessary condition for such 

an approval
– The replacement algorithm must be as robust as the baseline 

algorithm
For example — the Strassen Algorithm may not be used for the 
matrix multiply in the HPL benchmark, as it changes the 
operation count of the algorithm

• Any modification of the code or input data sets — which 
utilizes knowledge of the solution or of the verification test 
— is not permitted

• Any code modification to circumvent the actual 
computation is not permitted
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Etiquette

• The HPC Challenge  Benchmark suite has been designed to permit 
academic style usage for comparing 

– Technologies
– Architectures
– Programming models

• There is an overt attempt to keep HPC Challenge significantly 
different than “commercialized” benchmark suites

– Vendors and users can submit results
– System “cost/price” is not included intentionally
– No “composite” benchmark metric

• Be cool about comparisons!
• While we can not enforce any rule to limit comparisons observe 

rules of 
– Academic honesty
– Good taste
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HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization 

• Component Kernels 
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions 
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HPC Challenge Benchmark Suite
http://icl.cs.utk.edu/hpcc/
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TOP500 and HPCC Data Analysis

• TOP500
– Performance is represented by 

only a single metric
– Data is available for an extended 

time period
(1993-2005)

• Problem:
There can only be one “winner”

• Additional metrics and statistics
– Count (single) vendor systems on 

each list
– Count total flops on each list per 

vendor
– Use external metrics: price, 

ownership cost, power, …
– Focus on growth trends over time

• HPCC
– Performance is represented by 

multiple single metrics
– Benchmark is new — so data is 

available for a limited time period
(2003-2005)

• Problem:
There cannot be one “winner”

• We avoid “composite” benchmarks
– Perform trend analysis

HPCC can be used to show 
complicated kernel/ architecture 
performance characterizations

– Select some numbers for 
comparison

– Use of kiviat charts
Best when showing the differences 
due to a single independent 
“variable”

• Over time — also focus on growth 
trends
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HPCC Submissions
Baseline and Optimized Results

80 Systems
As of 1 November 2005
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HPCC Submissions
Baseline Results

74 Systems
As of 1 November 2005
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HPCC Submissions
Optimized Results

6 Systems
As of 1 November 2005
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HPCC Submissions
Display

Lines Depict
Relative Performance

Additional “cool” features will be discussed
in the conference hands-on session!
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HPC Challenge Benchmark Suite
Selected Results

1000+ Processor Systems
As of 1 November 2005

• 10 of 80 submissions have over 1,000 processors
– 1008 – 5200 processors

G-H
stem - Processor Speed Count TFlo
y XT3 AMD Opteron  2.4GHz 5200 20.52
y XT3 AMD Opteron  2.6GHz 4096 16.975
y XT3 AMD Opteron  2.4GHz 3744 14.70
 Blue Gene PowerPC 440  0.7GHz 2048 1.407
 XT3 AMD Opteron  2.6GHz 1100 4.78

y T3E Alpha 21164  0.6GHz 1024 0.048
 Blue Gene PowerPC 440  0.7GHz 1024 0.716
 Blue Gene/L PowerPC 440  0.7GHz 1024 1.420
 Blue Gene PowerPC 440  0.7GHz 1024 0.730

I Altix 3700 Intel Itanium 2  1.6GHz 1008 5.138

System Information PL G-PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
Sy p/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cra 7 874.899 0.268583 644.73 26020.8 5.004 4.395 0.14682 25.8
Cra 2 302.979 0.533072 905.57 20656.5 5.043 4.782 0.16896 9.44
Cra 4 608.506 0.220296 417.17 18146.4 4.847 4.413 0.16164 25.32
IBM 5 34.251 0.454092 96.19 1484.6 0.725 0.905 0.02089 4.98
Cray 23 217.923 0.137002 266.66 5274.7 4.795 4.811 0.28638 25.94
Cra 2 10.277 529.2 0.517 0.03174 12.09
IBM 4 27.578 0.134994 48.99 868.4 0.848 0.919 0.03461 4.81
IBM 1 27.994 0.134729 49.93 862.9 0.843 2.467 0.03455 4.83
IBM 1 26.44 0.299617 70.94 765.3 0.747 0.901 0.0448 4.5
SG 3 105.666 0.032598 15.66 1907.5 1.892 5.884 0.20288 6.82
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HPC Challenge Benchmark Suite
Selected Results

G-HPL G-PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System - Processor Speed Count TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cray mfeg8 X1E  1.13GHz 248 opt 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58
Cray X1E X1E MSP  1.13GHz 252  base 3.1941 85.204 0.014868 15.54 2440 9.682 14.185 0.36024 14.93

System Information Run
Type

Optimized G-RandomAccess
As of 1 November 2005

• Optimized G-RandomAccess is an UPC code
– ~125x improvement

Be sure to attend the SC|05 HPC Challenge Award BOF
Tuesday 15 November 2005 at noon for new, record-setting results!!
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HPC Challenge Benchmark Suite
Top Performers

As of 1 November 2005

G-HPL
G-

PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System - Processor Speed Count Tds Proc TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cray XT3 AMD Opteron  2.4GHz 5200 1 5200 20.527 874.899 0.268583 644.73 26020.8 5.004 4.395 0.14682 25.8
Cray mfeg8 X1E  1.13GHz 248 1 248 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58
Cray XT3 AMD Opteron  2.6GHz 4096 1 4096 16.9752 302.979 0.533072 905.57 20656.5 5.043 4.782 0.16896 9.44
NEC SX-7  0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-8/6 SX-8  2GHz 6 1 6 0.0918 25.183 0.000769 3.19 370.6 61.773 15.944 13.5473 3.02
IBM pSeries 655 Power 4+  1.7GHz 256 4 64 1.0744 23.721 0.005502 10.46 411.7 6.433 17.979 0.72395 8.34
PathScale Inc. AMD Opteron  2.6GHz 32 1 32 0.1258 6.719 0.030367 10.35 134.3 4.197 4.775 0.26531 1.31

System Information

• Machine size (number of processors) matters for global 
benchmarks

– HPL, PTRANS, FFT, STREAM, 
• G-RandomAccess is an optimized UPC code
• Node “size” matters for local benchmarks 

– STREAM, DGEMM
• Bandwidth and latency are dependent on

– MPI and architecture
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HPC Challenge Benchmark Suite
Top Performers

G-HPL
G-

PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System - Processor Speed Count Tds Proc TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cray XT3 AMD Opteron  2.4GHz 5200 1 5200 20.527 874.899 0.268583 644.73 26020.8 5.004 4.395 0.14682 25.8
Cray mfeg8 X1E  1.13GHz 248 1 248 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58
Cray XT3 AMD Opteron  2.6GHz 4096 1 4096 16.9752 302.979 0.533072 905.57 20656.5 5.043 4.782 0.16896 9.44
NEC SX-7  0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-8/6 SX-8  2GHz 6 1 6 0.0918 25.183 0.000769 3.19 370.6 61.773 15.944 13.5473 3.02
IBM pSeries 655 Power 4+  1.7GHz 256 4 64 1.0744 23.721 0.005502 10.46 411.7 6.433 17.979 0.72395 8.34
PathScale Inc. AMD Opteron  2.6GHz 32 1 32 0.1258 6.719 0.030367 10.35 134.3 4.197 4.775 0.26531 1.31

System Information

• HPC Challenge Award Competition will focus on four of the 
benchmarks in the suite:

– Global HPL
– Global RandomAccess
– Global STREAM Triad (System aggregate)
– Global FFT

As of 1 November 2005

Be sure to attend the SC|05 HPC Challenge Award BOF
Tuesday 15 November 2005 at noon for new, record-setting results!!
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HPC Challenge Benchmark Suite
Threads and Processes

As of 1 November 2005

G-HPL G-PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System Speed Count Threads Processes TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
NEC SX-7  0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-7  0.552GHz 32 1 32 0.2553 20.546 0.000964 11.29 836.9 26.154 8.239 5.03934 14.21

System Information

• The NEC SX-7 architecture can permit the definition of 
threads and processes to significantly enhance 
performance of the EP versions of the benchmark suite by 
allocating more powerful “nodes”

– EP-STREAM
– EP-DGEMM
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Top 10 Performance
HPL

As of 1 November 2005

1 Cray Cray XT3 AMD Opteron 2.40 5200 5200 20.53
2 Cray XT3 AMD Opteron 2.60 4096 4096 16.98
3 Cray XT3 AMD Opteron 2.40 3744 3744 14.70
4 NEC NEC SX-8 NEC SX-8 2.00 576 576 8.01
5 SGI Altix 3700 Bx2 Intel Itanium 2 1.60 1008 1008 5.14
6 Cray XT3 AMD Opteron 2.60 1100 1100 4.78
7 Cray mfeg8 Cray X1E 1.13 248 248 3.39
8 Cray Cray X1E CrayX1E MSP 1.13 252 252 3.19
9 Cray X1 Cray X1 MSP 0.80 252 252 2.38

10 Cray X1 Cray X1 MSP 0.80 252 252 2.37

HPL
(TFlop/s)

MPI 
Processes

Procesor 
CountManufacturer System Processor Type

Processor 
Speed
(GHz)

Rank

• HPC Challenge Awards Class 1
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Top 10 Performance
PTRANS

As of 1 November 2005

1 Cray Cray XT3 AMD Opteron 2.40 5200 5200 874.90
2 Cray XT3 AMD Opteron 2.40 3744 3744 608.51
3 NEC NEC SX-8 NEC SX-8 2.00 576 576 312.71
4 Cray XT3 AMD Opteron 2.60 4096 4096 302.98
5 Cray XT3 AMD Opteron 2.60 1100 1100 217.92
6 SGI Altix 3700 Bx2 Intel Itanium 2 1.60 1008 1008 105.67
7 Cray X1 Cray X1 MSP 0.80 252 252 97.41
8 Cray X1 Cray X1 MSP 0.80 252 252 96.14
9 NEC SX-6 NEC SX-6 0.50 192 192 92.97
10 Cray Cray X1E CrayX1E MSP 1.13 252 252 85.20

Procesor 
CountRank PTRANS

(GB/s)
MPI 

ProcessesManufacturer System Processor Type
Processor 

Speed
(GHz)
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Top 10 Performance
G-RandomAccess

As of 1 November 2005

1 Cray mfeg8 Cray X1E 1.13 248 248 1.85475
2 Rackable Systems Emerald AMD Opteron 2.20 256 512 0.55474
3 Cray XT3 AMD Opteron 2.60 4096 4096 0.53307
4 IBM Blue Gene IBM PowerPC 440 0.70 2048 2048 0.45409
5 Rackable Systems Emerald AMD Opteron 2.20 128 256 0.42255
6 Rackable Systems Emerald AMD Opteron 2.20 64 128 0.30807
7 IBM Blue Gene IBM PowerPC 440 0.70 1024 1024 0.29962
8 Cray Cray XT3 AMD Opteron 2.40 5200 5200 0.26858
9 Cray XT3 AMD Opteron 2.40 3744 3744 0.22030
10 Cray XT3 AMD Opteron 2.60 1100 1100 0.13700

Procesor 
CountRank

Global 
RandomAccess

(GUP/s)

MPI 
ProcessesManufacturer System Processor Type

Processor 
Speed
(GHz)

• HPC Challenge Awards Class 1
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Top 10 Performance
G-FFTE

As of 1 November 2005

1 Cray XT3 AMD Opteron 2.60 4096 4096 905.57
2 Cray Cray XT3 AMD Opteron 2.40 5200 5200 644.73
3 Cray XT3 AMD Opteron 2.40 3744 3744 417.17
4 Cray XT3 AMD Opteron 2.60 1100 1100 266.66
5 NEC NEC SX-8 NEC SX-8 2.00 576 576 160.95
6 IBM Blue Gene IBM PowerPC 440 0.70 2048 2048 96.19
7 IBM Blue Gene IBM PowerPC 440 0.70 1024 1024 70.94
8 Rackable Systems Emerald AMD Opteron 2.20 256 512 67.86
9 IBM Blue Gene/L IBM PowerPC 440 0.70 1024 1024 49.93
10 IBM Blue Gene IBM PowerPC 440 0.70 1024 1024 48.99

Global FFT
(GFlop/s)Manufacturer System Processor Type

Processor 
Speed
(GHz)

Procesor 
Count

MPI 
ProcessesRank

• HPC Challenge Awards Class 1



Slide-88
HPC Challenge v1.x Benchmarks 

SC|05 Tutorial S-13

MITRE

Top 10 Performance
STREAM Triad (per Process)

As of 1 November 2005

per Process per System

1 NEC NEC SX-7 NEC SX-7 0.552 32 2 492.161 984.322
2 NEC SX-8/6 NEC SX-8 2.000 6 6 61.7735 370.641
3 NEC NEC SX-8 NEC SX-8 2.000 576 576 40.8954 23555.7504
4 NEC NEC SX-6+ NEC SX-6 0.563 32 32 28.6168 915.7376
5 NEC SX-6 NEC SX-6 0.500 64 64 27.0884 1733.6576
6 NEC SX-6 NEC SX-6 0.500 128 128 26.8584 3437.8752
7 NEC SX-6 NEC SX-6 0.500 32 32 26.8319 858.6208
8 NEC SX-6 NEC SX-6 0.500 192 192 26.3087 5051.2704
9 NEC NEC SX-7 NEC SX-7 0.552 32 32 26.1539 836.9248
10 Cray X1 Cray X1 MSP 0.800 60 60 21.768 1306.08

Procesor 
Count

MPI 
Processes

EP STREAM Triad
Rank Manufacturer System Processor 

Type

Processor 
Speed
(GHz)
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Top 10 Performance
STREAM Triad (per System)

As of 1 November 2005

per Process per System

1 Cray Cray XT3 AMD Opteron 2.40 5200 5200 5.00 26020.80
2 NEC NEC SX-8 NEC SX-8 2.00 576 576 40.90 23555.75
3 Cray XT3 AMD Opteron 2.60 4096 4096 5.04 20656.46
4 Cray XT3 AMD Opteron 2.40 3744 3744 4.85 18146.38
5 Cray X1 Cray X1 MSP 0.80 252 252 21.74 5478.73
6 Cray XT3 AMD Opteron 2.60 1100 1100 4.80 5274.70
7 NEC SX-6 NEC SX-6 0.50 192 192 26.31 5051.27
8 Cray X1 Cray X1 MSP 0.80 252 252 14.91 3758.40
9 NEC SX-6 NEC SX-6 0.50 128 128 26.86 3437.88
10 Cray mfeg8 Cray X1E 1.13 248 248 13.23 3280.92

Rank Procesor 
Count

MPI 
Processes

EP STREAM Triad
Manufacturer System Processor 

Type

Processor 
Speed
(GHz)

• HPC Challenge Awards Class 1
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Top 10 Performance
DGEMM (per Process)

As of 1 November 2005

per Process per System

1 NEC NEC SX-7 NEC SX-7 0.55 32 2 140.64 281.27
2 IBM eServer pSeries 655 IBM Power 4+ 1.70 256 64 17.98 1150.68
3 IBM eServer pSeries 655 IBM Power 4+ 1.70 128 32 17.79 569.36
4 IBM eServer pSeries 655 IBM Power 4+ 1.70 64 16 17.50 280.00
5 NEC SX-8/6 NEC SX-8 2.00 6 6 15.94 95.66
6 NEC NEC SX-8 NEC SX-8 2.00 576 576 15.22 8768.56
7 Cray Cray X1E CrayX1E MSP 1.13 252 252 14.18 3574.54
8 Cray mfeg8 Cray X1E 1.13 248 248 13.56 3363.87
9 Cray X1E Cray X1E 1.13 32 32 11.61 371.38

10 Cray X1 Cray X1 MSP 0.80 60 60 10.92 654.91

Manufacturer System Processor Type
Processor 

Speed
(GHz)

Procesor 
Count

MPI 
ProcessesRank

EP DGEMM
(GFlop/s)
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Top 10 Performance
RandomRing Latency

As of 1 November 2005

Latency
(usec)

Bandwidth
(GB/s)

1 PathScale, Inc.
Customer Benchmark

Cluster AMD Opteron 2.6 InfiniPath 1.0 32 32 1.31 0.27
2 Cray XD1 AMD Opteron 2.2 RapidArray Interconnect System 64 64 1.63 0.23

3 Rackable Systems Emerald AMD Opteron 2.2
InfiniPath HTX InfiniBand Adapter

SilverStorm 9120 InfiniBand Switch 64 128 2.02 0.12
4 Cray XD1 AMD Opteron 2.4 Rapid Array Fat Tree 128 128 2.06 0.26

5 Rackable Systems Emerald AMD Opteron 2.2
InfiniPath HTX InfiniBand Adapter

SilverStorm 9120 InfiniBand Switch 128 256 2.20 0.10

6 Rackable Systems Emerald AMD Opteron 2.2
InfiniPath HTX InfiniBand Adapter

SilverStorm 9120 InfiniBand Switch 256 512 2.33 0.09
7 NEC SX-8/6 NEC SX-8 2.0 Internode Crossbar Switch 6 6 3.02 13.55
8 SGI Altix 3700 Bx2 Intel Itanium 2 1.6 N/A 32 32 3.26 1.52
9 SGI Altix 3700 Bx2 Intel Itanium 2 1.6 N/A 64 64 3.68 0.87
10 SGI Altix 3700 Bx2 Intel Itanium 2 1.6 N/A 128 128 3.91 0.90

RandomRing
Procesor 

Count
MPI 

ProcessesManufacturer System Processor 
Type

Processor 
Speed
(GHz)

Rank Interconnect
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Top 10 Performance
RandomRing Bandwidth

As of 1 November 2005

Latency
(usec)

Bandwidth
(GB/s)

1 NEC SX-8/6 NEC SX-8 2.000 Internode Crossbar Switch 6 6 3.02 13.55
2 NEC NEC SX-7 NEC SX-7 0.552 non 32 2 4.85 8.15
3 NEC NEC SX-7 NEC SX-7 0.552 non 32 32 14.21 5.04
4 SGI Altix 3700 Bx2 Intel Itanium 2 1.600 N/A 32 32 3.26 1.52
5 Cray X1 Cray X1 MSP 0.800 Cray modified 2-D Torus 32 32 14.94 1.41
6 Cray X1E Cray X1E 1.130 Cray Interconnect 32 32 12.21 1.40
7 Cray X1 Cray X1 MSP 0.800 Cray modified 2-D Torus 60 60 14.66 1.17
8 Cray X1 Cray X1 MSP 0.800 Cray modified 2D torus 60 60 20.83 1.03
9 Cray X1 Cray X1 MSP 0.800 Cray modified 2D torus 60 60 21.16 1.01
10 Cray X1 Cray X1 MSP 0.800 Cray modified 2D torus 64 64 20.34 0.94

Interconnect Procesor 
Count

MPI 
Processes

RandomRing
Rank Manufacturer System Processor 

Type

Processor 
Speed
(GHz)



Slide-93
HPC Challenge v1.x Benchmarks 

SC|05 Tutorial S-13

MITRE

HPL versus Theoretical Peak

HPL versus Theoretical Peak 
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• How well does HPL data correlate with theoretical peak 
performance?
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HPL versus DGEMM

HPL versus DGEMM
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• Can I Run Just Run DGEMM Instead of HPL?
• DGEMM alone overestimates HPL performance
• Note the 1,000x difference in scales! (Tera/Giga)

Cray XT3

NEC SX-8

SGI Altix
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HPL versus STREAM Triad

HPL versus STREAM Triad
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• How well does HPL correlate with G-RandomAccess 
performance?

Cray XT3
NEC SX-8

SGI Altix
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HPL versus RandomAccess

HPL versus G-RandomAccess
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• How well does HPL correlate with G-RandomAccess 
performance?

• Note the 1,000x difference in scales! (Tera/Giga)
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HPL versus FFT

HPL versus FFT
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• How well does HPL correlate with FFT performance?
• Note the 1,000x difference in scales! (Tera/Giga)
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SGI Altix
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Global STREAM versus PTRANS

Global Stream versus PTRANS
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• How well does STREAM data correlate with PTRANS 
performance?
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RandomRing Bandwidth versus 
PTRANS 
RandomRing Bandwidth versus PTRANS
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• How well does RandomRing Bandwidth data correlate with 
PTRANS performance

• Possible bad data?

Cray XT3

NEC SX-8

NEC SX-7
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RandomAccess Correlations?

• HPL versus G-RandomAccess
• Number of Processors versus G-RandomAccess
• RandomRing Bandwidth versus G-RandomAccess
• RandomRing Latency versus G-RandomAccess
• Single Processor RandomAccess versus G-RandomAccess

– per System (Single Processor)
– per Processor (Single Processor)

• STREAM Triad versus G-RandomAccess
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Number of Processors versus 
G-RandomAccess

Number of Processors versus G-RandomAccess
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• Does G-RandomAccess scale with the number of 
processors?
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RandomRing Bandwidth versus
G-RandomAccess

RandomRing Bandwidth versus G-RandomAccess
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• Does G-RandomAccess scale with the RandomRing 
Bandwidth?

• Possible bad data?

Cray X1E/opt

Cray XT3

NEC SX-8
NEC SX-7
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RandomRing Bandwidth versus
G-RandomAccess

RandomRing Bandwidth versus G-RandomAccess
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• Does G-RandomAccess scale with RandomRing 
Bandwidth?

• Ignoring possible bad data…

Cray X1E/opt



Slide-104
HPC Challenge v1.x Benchmarks 

SC|05 Tutorial S-13

MITRE

RandomRing Latency versus
G-RandomAccess

RandomRing Latency versus G-RandomAccess
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• Does G-RandomAccess scale with RandomRing Latency ?

Cray X1E/opt

Rackable
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Single Processor RandomAccess 
versus G-RandomAccess (per System)

Single Processor RandomAccess versus G-RandomAccess
(per System)
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• Does G-RandomAccess scale with single processor 
RandomAccess performance (per system)?
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Single Processor RandomAccess 
versus G-RandomAccess (per Proc)

Single Processor RandomAccess versus G-RandomAccess
(per Processor)
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• Does G-RandomAccess scale with single processor 
RandomAccess performance?

Cray X1E/opt

Rackable
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STREAM Triad (per System) versus
G-RandomAccess

STREAM Triad versus G-RandomAccess
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• Does G-RandomAccess scale with STREAM Triad?
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RandomAccess Correlations?

• HPL versus G-RandomAccess
• Number of Processors versus G-RandomAccess
• RandomRing Bandwidth versus G-RandomAccess
• RandomRing Latency versus G-RandomAccess
• Single Processor RandomAccess versus G-RandomAccess

– per System (Single Processor)
– per Processor (Single Processor)

• STREAM Triad versus G-RandomAccess
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RandomAccess Correlations?

• HPL versus G-RandomAccess
• Number of Processors versus G-RandomAccess
• RandomRing Bandwidth versus G-RandomAccess
• RandomRing Latency versus G-RandomAccess
• Single Processor RandomAccess versus G-RandomAccess

– per System (Single Processor)
– per Processor (Single Processor)

• STREAM Triad versus G-RandomAccess

• Biggest factor in G-RandomAccess improved performance 
is optimized codes!

– Rules on storing updates forces non-optimal short messages 
in MPI

– UPC

HPC Challenge Awards will be presented at the HPC Challenge 
Award BOF at SC|05 Tuesday 15 November 2005 at noon!
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G-RandomAccess UPC Code‡

void
RandomAccessUpdate(u64Int TableSize)
{
s64Int i;
u64Int ran[MAXJOBS];              
int j;

/* Translated for loop from upc_forall construct */
#pragma _CRI ivdep
#pragma _CRI concurrent
for( i = MYTHREAD;  i<TableSize;  i += THREADS)

Table[i] = i;

upc_barrier;

/* Translated for loop from upc_forall construct */
#pragma _CRI ivdep
#pragma _CRI concurrent
for( j = MYTHREAD;  j<MAXJOBS;  j += THREADS)

{
ran[j] = starts ((NUPDATE/MAXJOBS) * j);
for (i=0; i<NUPDATE/MAXJOBS; i++ )
{
ran[j] = (ran[j] << 1) ^ ((s64Int) ran[j] < 0 ? POLY : 0);
Table[(ran[j] & (TableSize-1))] ^= ran[j];

}
}

}

/********************************************************/
/* Note: UPC version of RandomAccess Benchmark          */
/*                                                      */
/* Date: Mon Jun 13 10:57:54 2005                       */
/*                                                      */
/*                                                      */
/*                      Written By                      */
/*           High Performance Computing Lab             */
/*          The George Washington University            */
/********************************************************/

‡ Yiyi Yao (GWU)

Initialize
Table

Update
Table
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HPC Challenge Benchmark Suite
http://icl.cs.utk.edu/hpcc/
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Kiviat Charts

• Comparisons of multiple systems 
for

1. Per Processor HPL
2. Per Processor PTRANS
3. Per Processor Global 

RandomAccess
4. Per Processor Global FFTE
5. Single Node STREAM Triad
6. Single Node DGEMM
7. System RandomRing Latency
8. System RandomRing Bandwidth

• Data in each dimension is 
normalized to the maximum value

• Represented on a linear scale [0,1]
• Best when showing the 

differences due to a single 
independent “variable”
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Kiviat Chart Disclaimer

• Please remember that each Kiviat chart should include the 
following disclaimer

• It has not been included due to vugraph orientation and to 
minimize clutter
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HPC Challenge Analysis
Kiviat Diagram — Scali Cluster Comparison

■ InfiniBand
■ SCI
■ Myrinet
■ GigE

1. RandomRing Bandwidth
InfiniBand has significantly 
greater bandwidth than 
other technologies

2. RandomRing Latency
InfiniBand and SCI have 
significantly lower latencies 
than other technologies

3. STREAM, DGEMM, and HPL
Interconnect technology 
doesn’t matter 
STREAM and DGEMM have no 
communications
HPL scales well with respect 
to communications

4. RandomAccess
Interconnect technology does 
matter!  Latency sensitive

5. PTRANS and FFTE
Interconnect technology does 
matter Bandwidth sensitive
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HPC Challenge Analysis
Kiviat Diagram — Opteron System Comparison

1. RandomRing Bandwidth
The Cray XD1 has greater 
bandwidth than the other 
technologies

2. RandomRing Latency
The Cray XD1 has significantly 
lower latency than other 
technologies

3. STREAM, DGEMM, and HPL
Interconnect technology 
doesn’t matter
STREAM and DGEMM have no 
communications
HPL scales well with respect 
to communications

4. RandomAccess
Interconnect technology does 
matter Extremely latency 
sensitive!

5. PTRANS and FFTE
Interconnect technology does 
matter! Bandwidth sensitive
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HPC Challenge Analysis
Kiviat Diagram — Cray XT3 Comparison

Per System — Absolute Scaling 
for Operations Benchmarks

Per Processor Performance
“Weak Scaling”

1. RandomRing Bandwidth
The smallest model has the 
highest bandwidth?  MPI?

2. RandomRing Latency
The newest model has the 
lowest latency

3. STREAM and DGEMM 
Slight differences in models?

4. HPL
Some degradation when 
scaling to larger machines

5. RandomAccess
Latency dependent and scales 
inversely proportional to 
number of processors

6. PTRANS
Bandwidth sensitive

7. FFTE
Bandwidth and processor 
speed sensitive

Scalability
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HPC Challenge Analysis
Kiviat Diagram — Rackable Cluster Comparison

Per System — Absolute Scaling 
for Operations Benchmarks

Per Processor Performance
“Weak Scaling”

1. RandomRing Bandwidth
Smaller system has greater 
bandwidth per processor

2. RandomRing Latency
Smaller system has lower 
latency per processor

3. DGEMM, and HPL
Similar performance

4. STREAM
Minor variations in 
performance??

5. RandomAccess
Extremely latency or 
bandwidth sensitive!

6. PTRANS
Variations in performance??

7. FFTE
Some latency or bandwidth 
sensitivity!

Scalability
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HPC Challenge Analysis
Kiviat Diagram — Opteron System Comparison

1. RandomRing Bandwidth
System with two cores has 
significantly lower bandwidth
⇒ cores vs interconnect?

2. RandomRing Latency
System with two cores has 
slightly lower latency than one 
technology
⇒ cores vs connect?

3. STREAM and DGEMM 
Significantly reduced 
performance for 2 cores

4. HPL, RandomAccess, and FFT
Top per processor 
performance? 

• HPL ~2x single cores
• RA 2.5-10x single cores
• FFTE slightly better

5. PTRANS
Bandwidth sensitivity but 2 
core better than expected

1 versus 2 Cores

2 Cores
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HPC Challenge Analysis
Kiviat Diagram — Cluster Comparison

1. RandomRing Bandwidth
Quadrics QsNet provides 
greater bandwidth

2. RandomRing Latency
InfiniBand provides lower 
latency

3. STREAM, DGEMM, and HPL
Interconnect technology 
doesn’t matter but Intel Xeons 
are faster
STREAM and DGEMM have no 
communications
HPL scales well with respect 
to communications

4. RandomAccess
Interconnect technology does 
matter — but uncertain if 
bandwidth or latency 
dependent

5. PTRANS and FFTE
Interconnect technology does 
matter Bandwidth sensitive
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HPC Challenge Analysis
Kiviat Diagram — Cray Architecture Comparison

Comparing Dissimilar Systems
Can be Difficult!

1. RandomRing Bandwidth
X1 and X1E have higher 
bandwidth

2. RandomRing Latency
XT3 has lower latency when 
using MPI

3. STREAM, DGEMM, and HPL
Interconnect technology 
doesn’t matter and X1 and 
X1E are faster

4. RandomAccess
Interconnect technology does 
matter — but poor X1 and X1E 
performance due to MPI 
latencies

5. PTRANS
Interconnect technology does 
matter Bandwidth sensitive

6. FFTE
XT3 is significantly faster
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HPC Challenge Analysis
Kiviat Diagram — Custom Interconnect Comparison

1. RandomRing Bandwidth
SGI Altix has highest 
bandwidth

2. RandomRing Latency
Cray XD1 has lowest latency

3. STREAM
NEC SX-6 vector processor 
dominates

4. DGEMM and HPL
NEC SX-6 vector processor 
slightly better 
Otherwise similar 
performance

5. RandomAccess
Latency dependent

6. PTRANS
NEC SX-6 vector processor 
dominates

7. FFTE
NEC SX-6 vector processor 
slightly better 
Otherwise similar 
performance



Slide-122
HPC Challenge v1.x Benchmarks 

SC|05 Tutorial S-13

MITRE

HPC Challenge Analysis
Kiviat Diagram — NEC SX-6/7 Comparison

1. RandomRing Bandwidth
SX-7 has significantly higher 
bandwidth

2. RandomRing Latency
SX-7 has lowest latency

3. All remaining benchmarks
Clock frequency dependent
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HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization 

• Component Kernels 
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions 
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Hands-on Demonstrations/Exercises

Piotr Luszczek
University of Tennessee
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Download

• Always use the latest source code:
http://icl.cs.utk.edu/hpcc/

http://icl.cs.utk.edu/hpcc/
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HPCC Software Versioning

• http://icl.cs.utk.edu/hpcc/software/index.html

● Latest version is always at the top

http://icl.cs.utk.edu/hpcc/software/index.html
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HPCC Makefile Structure (1of 2)

• Sample Makefiles live in
hpl/setup

• BLAS
– LAdir – BLAS top directory for other LA-variables
– LAinc – where BLAS headers live (if needed)
– LAlib – where BLAS libraries live (libmpi.a and friends)
– F2CDEFS – resolves Fortran-C calling issues (BLAS is usually callable 

from Fortran)
-DAdd_, -DNoChange, -DUpCase, -Dadd__
-DStringSunStyle, -DStringStructPtr, -DStringStructVal, -
DStringCrayStyle

• MPI
– MPdir – MPI top directory for other MP-variables
– MPinc – where MPI headers live (mpi.h and friends)
– MPlib – where MPI libraries live (libmpi.a and friends)
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HPCC Makefile Structure (2 of 2)

• Compiler
– CC – C compiler
– CCNOOPT – C flags without optimization (for optimization-

sensitive code)
– CCFLAGS – C flags with optimization

• Linker
– LINKER – program that can link BLAS and MPI together
– LINKFLAGS – flags required to link BLAS and MPI together

• Programs/commands
– SHELL, CD, CP, LN_S, MKDIR, RM, TOUCH
– ARCHIVER, ARFLAGS, RANLIB



Slide-129
HPC Challenge v1.x Benchmarks 

SC|05 Tutorial S-13

MITRE

MPI Implementations for HPCC

• Vendor
– Cray (MPT)
– IBM (POE)
– SGI (MPT)
– Dolphin, Infiniband (Mellanox, Voltaire, ...), Myricom (GM, MX), Quadrics, 

PathScale, Scali, ...
• Open Source

– MPICH1, MPICH2 (http://www-unix.mcs.anl.gov/mpi/mpich/)
– Lam MPI (http://www.lam-mpi.org/)
– OpenMPI (http://www.open-mpi.org/)
– LA-MPI (http://public.lanl.gov/lampi/)

• MPI implementation components
– Compiler (adds MPI header directories)
– Linker (need to link in Fortran I/O)
– Exe (poe, mprun, mpirun, aprun, mpiexec, ...)

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www.lam-mpi.org/
http://www.open-mpi.org/
http://public.lanl.gov/lampi/


Slide-130
HPC Challenge v1.x Benchmarks 

SC|05 Tutorial S-13

MITRE

Fast BLAS for HPCC

• Vendor
– AMD (AMD Core Math Library)
– Cray (SciLib)
– HP (MLIB)
– IBM (ESSL)
– Intel (Math Kernel Library)
– SGI (SGI/Cray Scientific Library)
– ...

• Free implementations
– ATLAS

http://www.netlib.org/atlas/
– Goto BLAS

http://www.cs.utexas.edu/users/flame/goto
http://www.tacc.utexas.edu/resources/software

• Implementations that use 
Threads

– Some vendor BLAS
– Atlas
– Goto BLAS

• You should never use 
reference BLAS from Netlib

– There are better 
alternatives for every 
system in existence

http://www.netlib.org/atlas/
http://www.cs.utexas.edu/users/flame/goto
http://www.tacc.utexas.edu/resources/software
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Tuning Process - Internal

• Changes to source code are not allowed for submission
• But just for tuning it's best to change a few things

– Switch off some tests temporarily
• Choosing right parallelism levels

– Processes (MPI)
– Threads (OpenMP in code, vendor in BLAS)
– Processors
– Cores

• Compile time parameters
– More details below

• Runtime input file
– More details below
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Tuning Process - External

• MPI settings examples
– Messaging modes

Eager polling is probably not a good idea
– Buffer sizes
– Consult MPI implementation documentation

• OS settings
– Page size

Large page size should be better on many systems
– Pinning down the pages

Optimize affinity on DSM architectures
– Priorities
– Consult OS documentation
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Parallelism Examples

• Pseudo-threading helps but be careful
– Hyper-threading
– Simultaneous Multi-Threading
– ...

• Cores
– Intel (x86-64, Itanium), AMD (x86)
– Cray: SSP, MSP
– IBM Power4, Power5, ...
– Sun SPARC

• SMP
– BlueGene/L (single/double CPU usage per card)
– SGI (NUMA, ccNUMA, DSM)
– Cray, NEC

• Others
– Cray MTA (no MPI !)
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HPCC Input and Output

• Memory file hpccmemf.txt
– Memory available per MPI 

process
Process=64

– Memory available per 
thread
Thread=64

– Total available memory
Total=64

– Many HPL and PTRANS 
parameters might not be 
optimal

• Parameter file 
hpccinf.txt

– HPL parameters
Lines 5-31

– PTRANS parameters
Lines 32-36

– Indirectly: sizes of arrays 
for all HPCC components

Hard coded

● Output file hpccoutf.txt

– Must be uploaded to the website

– Easy to parse

– More details later...
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Tuning HPL - Introduction

• Performance of HPL comes from
– BLAS
– Input file hpccinf.txt

• Essential parameters in the input file
– N – matrix size
– NB – blocking factor — influences BLAS performance and load balance
– PMAP – process mapping — depends on network topology
– PxQ – process grid

• Definitions

N

NB

=

A  x = b

PX PY PZ PX
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Tuning HPL – More Definitions

• Process grid parameters: P, Q, and PMAP

Q=4

P0

P1

P2

P3 P6

P4

P5

P7

P8

P9

P10

P11

P0

P4

P8

P1 P2

P5

P9

P6

P10

P3

P7

P11

P=3

PMAP=RPMAP=C
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Tuning HPL – Selecting Process Grid
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Tuning HPL – Number of Processors

Prime numbers
37

41 43

47
53

59 61
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Tuning HPL – Matrix Size

Too small
Best performance

Too big
6 x 10

Not optimial parameters

Too big
12 x 10
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HPL - Website

• http://www.netlib.org/benchmark/hpl/

• Much more details from HPL's author:

• Antoine Petitet

http://www.netlib.org/benchmark/hpl/
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Tuning FFT

• Compile-time parameters
– FFTE_NBLK – blocking factor
– FFTE_NP – padding (to alleviate negative cache-line effects)
– FFTE_L2SIZE – size of level 2 cache

• Use FFTW instead of FFTE
– Define USING_FFTW symbol during compilation
– Add FFTW location and library to linker flags
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Tuning STREAM

• Intended to measure main memory bandwidth
• Requires many optimizations to run at full hardware speed

– Software pipelining
– Prefetching
– Loop unrolling
– Data alignment
– Removal of array aliasing

• Original STREAM has advantages
– Constant array sizes (known at compile time)
– Static storage of arrays (at full compiler's control)
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Tuning PTRANS

• Parameter file hpccinf.txt
– Line 33 — number of matrix sizes
– Line 34 — matrix sizes

Must not be too small – enforced in the code
– Line 35 — number of blocking factors
– Line 36 — blocking factors

No need to worry about BLAS
Very influential for performance
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Tuning b_eff

• b_eff (Effective bandwidth and latency) test can also be 
tuned

• Tuning must use only standard MPI calls
• Examples

– Persistent communication
– One-sided communication
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HPCC Output File

• The output file has two parts
– Verbose output (free format)
– Summary section

Pairs of the form:
name=value

• The summary section names
– MPI* — global results

Example: MPIRandomAccess_GUPs
– Star* — embarrassingly parallel results

Example: StarRandomAccess_GUPs
– Single* — single process results

Example: SingleRandomAccess_GUPs
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Submitting Result Data

• Output file hpccoutf.txt should be submitted along with 
system info
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HPCC Upload Form
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Optimized Run Ideas

• For optimized run the same MPI harness has to be run on the 
same system

• Certain routines can be replaced – the timed regions
• The verification has to pass – limits data layout and accuracy of 

optimization
• Variations of the reference implementation are allowed (within 

reason)
– No Strassen algorithm for HPL due to different operation count

• Various non-portable C directives can significantly boost 
performance

– Example: #pragma ivdep
• Various messaging substrates can be used

– Removes MPI overhead
• Various languages can be used

– Allows for direct access to non-portable hardware features
– UPC was used to increase RandomAccess performance by orders of 

magnitude
• Optimizations need to be explained upon results submission
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HPC Challenge v1.x Benchmark Suite
Outline

• Introduction
• Motivations

– HPCS
– Performance Characterization 

• Component Kernels 
• HPC Challenge Awards
• Unified Benchmark Framework
• Rules

– Running HPC Challenge
– Optimizations
– Etiquette

• Performance Data
– Available Benchmark Data
– Kiviat Charts

• Hands-on Demonstrations/Exercises
– Installing the HPC Challenge v1.x Benchmark Unified Benchmark Framework
– Running the HPC Challenge v1.x Benchmark suite

• Summary/Conclusions 
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Summary/Conclusions

• HPC Challenge Benchmark Suite
– To examine the performance of HPC architectures using kernels 

with more challenging memory access patterns than HPL 
– To augment the Top500 list
– To provide benchmarks that bound the performance of many real 

applications
– Available for download http://icl.cs.utk.edu/hpcc/

G-HPL G-PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System - Processor Speed Count Tds Proc TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cray XT3 AMD Opteron  2.4GHz 5200 1 5200 20.527 874.899 0.268583 644.73 26020.8 5.004 4.395 0.14682 25.8
Cray mfeg8 X1E  1.13GHz 248 1 248 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58
Cray XT3 AMD Opteron  2.6GHz 4096 1 4096 16.9752 302.979 0.533072 905.57 20656.5 5.043 4.782 0.16896 9.44
NEC SX-7  0.552GHz 32 16 2 0.2174 16.34 0.000178 1.34 984.3 492.161 140.636 8.14753 4.85
NEC SX-8/6 SX-8  2GHz 6 1 6 0.0918 25.183 0.000769 3.19 370.6 61.773 15.944 13.5473 3.02
IBM pSeries 655 Power 4+  1.7GHz 256 4 64 1.0744 23.721 0.005502 10.46 411.7 6.433 17.979 0.72395 8.34
PathScale Inc. AMD Opteron  2.6GHz 32 1 32 0.1258 6.719 0.030367 10.35 134.3 4.197 4.775 0.26531 1.31

System Information

As of 1 November 2005

HPC Challenge Awards will be presented at the SC|05 HPC 
Challenge Award BOF Tuesday 15 November 2005 at noon!
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