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In this paper, we report on our analysis and optimization of a serial Fortran 90 benchmark called
Yee bench. This benchmark has been run on a variety of architectures and its performance is
reasonably well understood. However, on AMD Opteron based machines, we found unexpected
dips in the delivered MFLOPS of the code for a seemingly random set of problem sizes. Through
the use of the Opteron’s on-chip hardware performance counters and PapiEx, a PAPI based tool,
we discovered that these drops were directly related to high L1 cache miss rates for these problem
sizes. The high miss rates could be attributed to the fact that in the two core regions of the code
we have references to three dynamically allocated arrays which compete for the same set in the
Opteron’s 2-way set associative cache. We validated this conclusion by accurately predicting those
problem sizes that exhibit this problem. We were able to alleviate these performance anomalies
using variable intra-array padding to effectively accomplish inter-array padding. We conclude with
some comments on the general applicability of this method as well how one might improving the
implementation of the Fortran 90 ALLOCATE intrinsic to handle this case.

1. Introduction

In this paper, we report on the analysis and optimization of Yee bench [1,2] using a Per-
formance Application Programming Interface (PAPI) [7] based tool called PapiEx (PAPI Exe-
cute) [8]. We show how we tracked down a number of performance dips when Yee bench was
run on an AMD Opteron and the problem size was varied.
Yee bench is a benchmark developed at the Center for Parallel Computers (PDC) in Stockholm,

Sweden. It implements the core of the Finite-Difference Time-Domain (FDTD) method [5,6,9] for
the Maxwell equations, a commonly used method in Computational Electromagnetics. See Ap-
pendix A for a listing of the core of Yee bench. Yee bench is strongly bound by memory band-
width and it’s results show a strong correspondence with the numbers produced from the STREAM2
microbenchmark [4]. Yee bench is widely used at PDC as part of the architectural evaluation
process when purchasing new hardware.

To achieve the best possible speed-up and scale-up for the parallel version of Yee bench, it
is crucial to understand the performance of the serial code and how that varies depending on the
problem size. If this is understood, we can use padding to avoid unsuitable local problem sizes in
the parallel code. Many FDTD application strives to use as much memory as possible, and hence
scale-up is a relevant measure of parallel performance, and behavior for large problem sizes are more
important than performance for small problem sizes.

These ’dips’ in performance occurred with no apparent regularity and thus we looked to hard-
ware performance monitors (through the use of PAPI and PapiEx) to provide us with additional
information. PapiEx is a portable and easy-to-use command line tool to monitor the performance
counters for any executable. No source code instrumentation is needed. Through the information
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gathered with PapiEx, we were able to characterize and subsequently alleviate these performance
anomalies in Yee bench.

We also analyze the performance of Yee bench on the Intel Itanium-2 and the Intel Xeon
EM64T

2. AMD Opteron

2.1. Technical data
For our AMD runs we used one CPU of a four-way Opteron Processor 846. The clock speed was

2.0 GHz and the 8 Gbyte memory system was DDR 333. The size of the L2 cache was 1 Mbytes and
the associativity was 16. The L1 cache was two-way set-associative. The L1 cache line length was
64 bytes and the L1 cache size was 64 kbytes.

The compiler used was version 5.2-4 of pgf90. The following options were used: -fast
-fastsse -tp=amd. Similar behavior was observed with the pathf90 compiler on other
Opteron systems. The OS used was:
> uname -a
Linux dhcp-221-84 2.6.8.1-pek-perfctr #1 SMP Mon Nov 15 17:08:04
CET 2004 x86_64 x86_64 x86_64 GNU/Linux

2.2. Results
The upper part of Figure 1 displays the 64-bit precision performance of the original (no padding)

version of Yee bench [1]. The computational domain used is a cube and thus Nx = Ny = Nz ≡ N .
The results for the original code in Figure 1 is representative for all Opteron results achieved for

Yee bench. Based on our previous experience on other architectures, we expect poor performance
whenever N or N + 1 is a power-of-two if no padding is used [1]. On some architectures we get
poor performance whenever N or N + 1 contains at least four factors of 2 due to low cache hit rate
(see [1]). This phenomena is well understood and easy to avoid. However, in Figure 1 we have poor
performance for many more cases for the original code.

2.3. L1 Cache hit rate
We initially suspected intra-array way con¤icts in the L1 cache. So we ran a different version of

Yee bench, one that contained intra-array padding. Each of the three electric £eld arrays were
padded identically. So was the three magnetic £eld arrays. We also tried the stock version of the
code, except that we introduced compiler directives to do the padding. Neither had any appreciable
affect on performance, which ruled out intra-array con¤icts. However, such tremendous drops in
performance could only be caused by L1 misses. We therefore decided to measure the L1 cache hit
rate for all problem sizes. The result is displayed in the lower part of Figure 1. The L1 cache hit rate
was computed from PapiEx output as:

PAPI L1 DCH
PAPI L1 DCH + PAPI L1 DCM

. (1)

There is clearly a correspondence between performance (GFLOPS) and L1 cache hit rate. The
question now becomes: Why do we get so low L1 cache hit rate for certain problem sizes?

2.4. L1 cache hit rate analysis
We will £rst analyze what the best possible L1 cache hit rate for the loops in Appendix A is.

Each iteration in these triple nested loops contains three stores and ten loads. Four of the ten loads
are values that have already been used in earlier iterations, while six of the ten loads are new values.
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Figure 1. Yee bench performance and L1 cache hit rate on the AMD Opteron.

(There are two more “loads”, but these values where used in the preceding iteration and can therefore
be expected to reside in registers.)

Each L1 cache line contains eight 64-bit precision ¤oating-point values. This means that one of
eight loads is a compulsory cache miss for each of the six new values. The four loads of already
used values will always, in the ideal case, already be in cache. We expect every store to be a cache
hit. This gives us a load hit rate of
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+
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≈ 92.5% , (2)

and a total L1 cache hit rate of

10

13

37

40
+

3

13
≈ 94.2% . (3)

The measured L1 cache hit rate for the good cases in Figure 1 is around 93.7 %, which is pretty
close to our estimate in 3. This estimate is an upper limit. It is not reasonable to expect the four
loads of already used values to always be cache hits.
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If none of the ten loads give a hit when we load the £rst element of a cache line we get a load hit
rate of 7/8 and a total hit rate of

10

13

7

8
+

3

13
≈ 90.4% (4)

The low cache hit rate values in Figure 1 are below the estimate in 4 which indicates that we have
cache line contentions. The question now is whether it is possible to predict for which values of N
this will happen.

2.5. Allocation analysis
By using the utility function LOC, we established that the electromagnetic arrays are always

allocated with a distance that is a multiple of the pagesize (4 kbytes). Considering that the L1
cache is two-way set associative we realize that if the three cache lines containing Ex(i,j,k),
Ey(i,j,k) and Ez(i,j,k) belong to the same set we get contention.

The L1 cache is 64 kbytes. If we divide this with two due to the set-associativity we get 32 kbytes.
This equals eight pages since the page size is 4 kbytes. Hence we postulate that we will get poor
performance if the distance between the different arrays is a multiple of 32 kbytes. In Figure 1 we
have indicated for which problem sizes we expect this to happen. To be able to do this prediction it
is important to note that there is overhead involved when an allocation is performed. If two arrays
having the size of one page are allocated, they will be two page sizes apart.

2.6. Padding
The original version of Yee bench allowed for internal padding of the electric and magnetic

£eld arrays even though this was not used when computing the results for the original code in Fig-
ure 1. However, it used the same padding on all three electric £eld arrays and similarly for the
three magnetic £eld arrays. This meant that the allocations were always of the same size. Due to
cache-line contention, it was necessary to £nd a way to make sure that the iterations over the three
dimensional arrays didn’t start at the same place. However, the memory allocate statement in both
the Portland Group compiler and the Pathscale compiler always returned data on this page bound-
ary. In order to reduce the amount of changes to the code, we decided to use the existing padding
infrastructure but pad each array differently. By doing so, we could guarantee that the same iteration
started computing at different offsets into each array. With these changes, contention should only
occur during the £rst iteration of the inner loop (see Appendix A) and the padding would handle
subsequent iterations.

To achieve the individual padding we used this allocation scheme:

Hx(1:nx +padHx(1),1:ny +padHx(2),1:nz +padHx(3))
Hy(1:nx +padHy(1),1:ny +padHy(2),1:nz +padHy(3))
Hz(1:nx +padHz(1),1:ny +padHz(2),1:nz +padHz(3))
Ex(1:nx+1+padEx(1),1:ny+1+padEx(2),1:nz+1+padEx(3))
Ey(1:nx+1+padEy(1),1:ny+1+padEy(2),1:nz+1+padEy(3))
Ez(1:nx+1+padEz(1),1:ny+1+padEz(2),1:nz+1+padEz(3))

Figure 1 displays the results for padEx=padHx=(/1,0,0/), padEy=padHy=(/2,0,0/),
and padEz=padHz=(/3,0,0/). We see that all the large dips have disappeared. However, for
150 < N < 250 we see a loss of performance compared to the good cases of the original code. For
the most important problem sizes, the large ones, we see a considerable improvement in performance
for the padded code version.
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2.7. Building a Better Fortran 90 ALLOCATE
At the time of this work, neither the Portland Group Compiler nor the Pathscale compiler provided

any mechanisms to do inter-array padding or otherwise change the behavior of the allocator. On
systems where a level of cache has low associativity, it is critical to be able to recognize this situation.
However, doing so is a non-trivial task and requires that the compiler recognize array references as
having possible con¤icts. While this is simple for relative address computations as with intra-array
padding, it is very dif£cult to do otherwise. Instead of having the compiler involved, it is probably a
better choice to simply waste some memory and return locations always offset by one or more cache
lines. This allocator need not be called for smaller allocations, say, under a page size.

Algorithm 2.1: ALLOCATE(bytes)

static pad ← 0
local numpages,mem, address

numpages ← (size/PAGESIZE) + 1
mem ← ALLOCATE PAGES(numpages)
address ← mem + (pad ∗ L1LINESIZE)
if (pad + 1 == L1LINESPERPAGE)

pad ← 0
else

pad ← pad + 1
return (address)
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3. Intel Itanium-2

The 64-bit precision results for Yee bench on the Intel 900 MHz Itanium-2 are shown in Fig-
ure 2. There is a clear correspondence between the performance and the L3 cache hit rate. The
L2 cache size was 256 kbytes and the L3 cache size was 1.5 Mbytes. (The L1 cache is not used by
¤oating-point data.)

The L3 cache is referenced whenever we have an L2 cache miss. A majority of the L2 cache
misses are compulsory cache misses and therefore also becomes L3 cache misses unless the problem
size is small. As mentioned in section 2.4 we have ten loads per iteration. Six of these loads are
compulsory cache misses, two of these loads are highly likely to hit L2 cache, since they were used
for the previous iteration value of the middle iteration, and two of the loads refers to values that were
used in the previous iteration of the outer loop. These may hit L2 cache. If they miss L2, they might
hit L3. For large problem sizes, they will miss both, and we will get an L3 cache hit rate that is
almost zero. For N = 100 they will almost always miss L2 but hit L3 and we well get an L3 hit rate
of 25/hits per six compulsory misses). The data traversed during one iteration of the outer loop is
64N2 bytes. ForN = 100 this becomes 0.61 Mbytes, which is well within the L3 cache size.

The reason for the increase in performance when going from N = 45 to N = 100 is the loop
restart penalty for the inner loop [2]. Examining the assembly code, we £nd the prolog (and the
epilog) consists of four iterations (see Chapter 2 in [3] for an explanation of the terms prolog and
epilog). This is independent of N and is thus more expensive for smaller values of N .
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Figure 2. Yee bench performance on the Intel Itanium-2.
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4. Intel Xeon EM64

Figure 3 displays the 64-bit precision performance of the Yee bench on the Intel 3.4 MHz
Xeon EM64. Results are compared for the original and the padded code. The padding used was
padEx=padHx=(/0,0,0/), padEy=padHy=(/8,0,0/), and padEz=padHz=(/16,0,0/).
Again we see that padding smooths the performance curve, but results in a performance loss for
medium sized problems.
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Figure 3. Yee bench performance on the Intel Xeon EM64.

5. Variable Intra-Array Padding as a Technique for Padding Dynamic Data Structures

Stepping back, it is clear that what makes this problem interesting is that these arrays are allocated
dynamically and thus we have no direct control over the starting address. As more and more HPC
applications move to Fortran 90, traditional approaches like common block padding and power-of-
two avoidance become obsolete. There is nothing special about Yee bench that makes it amenable
to the solution we have put in place here, except for compile time constants for variable amounts
of padding. If a compiler were instead to do this work at allocate time, it would have to be able
to discover array references with possible con¤icts and then rewrite their corresponding allocate
statements. This is only possible with signi£cant work in an intra-procedural analysis phase, which
some compilers lack entirely. Replacing ALLOCATE, as discussed in Section 2.7, is an option, but
that requires knowledge of the compiler’s run-time system and the exact arguments and linkage of
the call to the ALLOCATE intrinsic. Instead of the above approaches, consider that the compiler
could generate code for array declarations such that every array in the application was padded by
some pseudo-random amount. This would include both static and dynamic allocations. This could
be taken a step further and pad the starting address of each array by a similar amount. This approach
drastically reduces the chances of a way con¤ict. Whether done by compiler or by hand, we believe
that variable padding scheme method is generalizable to other codes.
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6. Comments on the Tuning Process

On of the important lessons to be learned here is that we were able to £nd data with PapiEx
that directly correlated with the codes performance. As this was a benchmark, it contained internal
timers to compute a theoretical GFLOPS number. The code could have just as easily reported its
performance in terms of timesteps/day or cell-domains/second. What was important was that the
code’s metric and the metric chosen for analysis (L1 miss rate) were both rates and thus independent
of problem size.

Another important point is that the fact that no source code instrumentation is needed to use
PapiExmeans that an investigation of strange performance can be started immediately.

A. The core of Yee bench

The core of Yee bench is two triple-nested loops, one for updating the magnetic £eld compo-
nents and one for updating the electric £eld components. Close to 100% of the time is spent in these
two triple-nested loops if the surrounding time-stepping loop contains enough time steps to dominate
the initialization time. The code for the update of the magnetic £eld components is:

do k=1,nz ; do j=1,ny ; do i=1,nx
Hx(i,j,k) = Hx(i,j,k) + ( (Ey(i,j,k+1)-Ey(i,j ,k))*Cbdz + &

(Ez(i,j,k )-Ez(i,j+1,k))*Cbdy )
Hy(i,j,k) = Hy(i,j,k) + ( (Ez(i+1,j,k)-Ez(i,j,k ))*Cbdx + &

(Ex(i ,j,k)-Ex(i,j,k+1))*Cbdz )
Hz(i,j,k) = Hz(i,j,k) + ( (Ex(i,j+1,k)-Ex(i ,j,k))*Cbdy + &

(Ey(i,j ,k)-Ey(i+1,j,k))*Cbdx )
end do ; end do ; end do

where Cbdx etc. are constants. The code for the electric £eld components update is very similar.
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