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Abstract. Performance analysis of parallel programs requires information about the dynamic
behavior of all participating processes. The dynamic behavior can be modeled as a stream or trace
of events. The events are chosen in such a way that they represent important aspects in the execution
of the application on a level of abstraction suitable for the analysis task. Based on this idea, the
KOJAK toolkit for performance analysis records and analyzes the activities of MPI-1 point-to-point
and collective communication.

This paper describes the integration of performance measurement and analysis methods for re-
mote memory access (RMA) or one-sided communication into the KOJAK toolkit, in particular for
the MPI-2 and SHMEM interfaces. We introduce the underlying event model used to represent the
dynamic behavior of RMA operations and show that our model reflects the relationships between
communication and synchronization more accurately than existing models. Then, we present event
patterns which are used by KOJAK to locate inefficient situations in a program’s dynamic remote
memory access behavior.

1. Introduction

Remote memory access (RMA) describes the ability of a process to directly access a part of the
memory of a remote process, without explicit participation of the remote process in the data transfer.
As all parameters for the data transfer are determined by one process, it is also called one-sided or
single-sided communication. On platforms with special hardware providing efficient RMA support,
one-sided communication is often made available to the programmer in the form of libraries, for
example SHMEM (Cray/SGI) or LAPI (IBM). However, these libraries are typically platform- or at
least vendor-specific.

This is one of the reasons why the MPI forum decided to define a portable one-sided communi-
cation interface as part of MPI-2. The Message Passing Interface (MPI) was defined by a group of
vendors, government laboratories and universities in 1994 as a community standard [ 1]. This has
become known as MPI-1. In 1997, a second version of the interface (MPI-2) was defined, which
added support for parallel I/O, dynamic process creation, and one-sided communication [ 2].

Until recently there was only rare usage of RMA features in scientific applications and, therefore,
the demand for performance tools in this area was limited. As more and more programmers adopt
the new features to improve the performance of their codes, this is expected to change. For example,
NASA researchers report a 39% improvement in throughput after replacing MPI-1 non-blocking with
MPI-2 one-sided communication in a global atmosphere simulation program [ 3].

KOJAK, our toolkit for automatic performance analysis [ 9], is jointly developed by the Central
Institute for Applied Mathematics of the Research Centre Jülich and by the Innovative Computing
Laboratory of the University of Tennessee. It is able to instrument and analyze OpenMP constructs
and MPI-1 calls. In this paper we report on the integration of performance analysis methods for
one-sided communication into the existing toolkit. We introduce an extension to our event model
that realistically represents the dynamic behavior of MPI-2 RMA operations in the event stream. We
show that our model reflects the relationships between communication and synchronization more
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accurately than existing models. The model is general enough to also cover alternate, but simpler,
RMA interfaces. In addition, we present KOJAK’s new performance properties used to analyze MPI-2
and SHMEM parallel programs. Performance properties are event patterns which are used by KOJAK

to locate inefficient situations in a program’s dynamic behavior.
In our new prototype implementation, we added support for measurement and analysis of parallel

programs using MPI-2 and SHMEM one-sided communication and synchronization. We are also able
to handle Co-Array Fortran programs [ 8], a small extension to Fortran 95 that provides a simple,
explicit notation for one-sided communication and synchronization, expressed in a natural Fortran-
like syntax. Details of this work can be found in [ 10].

The remainder of the paper is organized as follows: First, we summarize related work in Section 2.
Section 3 gives a short description of the MPI-2 RMA communication and synchronization functions.
In Section 4, we present our event model, which realistically represents the dynamic behavior of RMA
operations. KOJAK’s hierarchy of performance properties for the analysis of RMA communication
and synchronization is described in Section 5. Finally, we present conclusions and future work in
Section 6.

2. Related Work

Currently, there are only very few tools which support the measurement and analysis of one-sided
communication and synchronization on a wide range of platforms. The well-known Paradyn tool
which performs an automatic on-line bottleneck search, was recently extended to support several
major features of MPI-2 [ 4]. For RMA analysis, it collects basic, process-local, statistical data
(i.e., transfer counts and execution time spent in RMA functions). It does not take inter-process
relationships into account nor does it provide detailed trace data. Also, it does not support analysis
of SHMEM programs. The very portable TAU performance analysis tool environment [ 5] supports
profiling and tracing of MPI-2 and SHMEM one-sided communication. However, it only monitors
the entry and exit of the RMA functions; it does not provide RMA transfer statistics nor are the
transfers recorded in tracing mode. The commercial Intel Trace Collector tool (formerly known
as VampirTrace) [ 6] records MPI execution traces. When used with MPI-2, only a subset of the
RMA functions are traced. It also traces the actual RMA transfers, but misrepresents their semantics,
as defined by MPI-2. Finally, it does not record the collective nature of MPI-2 window functions.
Besides these there are also some non-portable vendor tools with similar limitations.

3. MPI-2 One-sided Communication

The interface for RMA operations defined by MPI-2 differs from the vendor-specific APIs in many
respects. This is to ensure that it can be efficiently implemented on a wide variety of computing
platforms even if a platform does not provide any direct hardware support for RMA. The design be-
hind the MPI-2 RMA API specification is similar to that of weakly coherent memory systems: correct
ordering of memory accesses has to be specified by the user with explicit synchronization calls; for
efficiency, the implementation can delay communication operations until the synchronization calls
occur.

MPI does not allow access to arbitrary memory locations with RMA operations, but only to des-
ignated parts of a process’s memory, the so-called windows. Windows must be explicitly initialized
(with a call to MPI Win create) and released (with MPI Win free) by all processes that either
provide memory or want to access this memory. These calls are collective between all participating
partners and include an internal barrier operation. MPI denotes by origin the process that performs
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an RMA read or write operation, and by target the process in which the memory is accessed.
There are three RMA communication calls in MPI: MPI Put transfers data from the caller’s mem-

ory to the target memory (remote write); MPI Get transfers data from the target to the origin (remote
read); and MPI Accumulate updates locations in the target memory, for example, by replacing
them with sums or products of the local and remote data values (remote update). These operations
are nonblocking: the call initiates the transfer, but the transfer may continue after the call returns.
The transfer is completed, both at the origin and the target, only when a subsequent synchroniza-
tion call is issued by the caller on the involved window object. Only then are the transferred values
(and the associated communication buffers) available to the user code. RMA communication falls
in two categories: active target and passive target communication. In both modes, the parameters
of the data transfer are specified only at the origin, however in active mode, both origin and target
processes have to participate in the synchronization of the RMA accesses. Only in passive mode is
the communication and synchronization completely one-sided.

RMA accesses to locations inside a specific window must occur only within an access epoch for
this window. Such an access epoch starts with an RMA synchronization call, is followed by any num-
ber of remote read, write, or update operations in this window, and finally completes with another
(matching) synchronization call. Additionally, in active target communication, a target window can
only be accessed within an exposure epoch. There is a one-to-one mapping between access epochs
on origin processes and exposure epochs on target processes. Distinct epochs for a window on the
same process must be disjoint. However, epochs pertaining to different windows may overlap.

MPI provides three RMA synchronization mechanisms:

Fences: The MPI Win fence collective synchronization call is used for active target communi-
cation. An access epoch on an origin process or an exposure epoch on a target process are
started and completed by such a call.

General Active Target Synchronization (GATS): Here synchronization is minimized: only pairs
of communicating processes synchronize, and they do so only when needed to correctly order
accesses to a window with respect to local accesses to that window. An access epoch is started
at an origin process by MPI Win start and is terminated by a call to MPI Win complete.
The start call specifies the group of targets for that epoch. An exposure epoch is started at a
target process by MPI Win post and is completed by MPI Win wait or MPI Win test.
The post call specifies the group of origin processes for that epoch.

Locks: The MPI Win lock and MPI Win unlock calls provide shared and exclusive locks.
They are used for passive target communication.

In all cases, data read or written is only accessible from user code after the “closing” synchro-
nization call. It is implementation-defined whether some of the described calls are blocking or
nonblocking; for example, in contrast to other shared memory programming paradigms, the lock
call does not need to be blocking. For a complete description of MPI-2 RMA communication see [ 2].

4. An Event Model for One-sided Communication

In this section, we summarize the event types and event models used by KOJAK to realistically
represent the behavior of MPI-2 as well as Co-Array Fortran and vendor-specific RMA operations.
For a more detailed description of the models and the implementation of KOJAK’s monitoring com-
ponents for one-sided communications see [ 11]. For a complete description of KOJAK’s event types
for MPI-1 and OpenMP and of its analysis features see [ 7, 9].
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KOJAK’s Event Types for Modeling One-sided Communication

Abstraction Event type Type specific attributes
Start / end / origin of RMA PUT 1TS window id, rma id, length, dest loc

one-sided transfers PUT 1TE window id, rma id, length, src loc
GET 1TO window id, rma id
GET 1TS window id, rma id, length, dest loc
GET 1TE window id, rma id, length, src loc

Leaving MPI GATS function MPIWEXIT window id, region id, group id
Leaving MPI collective RMA function MPIWCEXIT window id, region id, comm id
Locking / unlocking a MPI window WLOCK window id, lock loc, type

WUNLOCK window id, lock loc

For the analysis of parallel scientific applications, events that capture the most important aspects
of the parallel programming paradigm used (e.g., MPI or OpenMP) and the entering and leaving of
surrounding user regions (e.g., functions or loops) are typically defined. In the case of collective
MPI functions and OpenMP constructs, instead of “normal” EXIT events, special collective events
are used to capture the attributes of the collective operation (e.g., the communicator). MPI-1 point-
to-point messages are modeled as pairs of SEND and RECV events. In OpenMP applications, FORK
and JOIN events mark the start and end of parallel regions and ALOCK and RLOCK events mark the
acquisition and release of locks.

In order to be able to also analyze RMA operations, we defined the new event types shown in
Table 1. Start and end of RMA one-sided transfers are marked with PUT 1TS and PUT 1TE (for
remote writes and updates) or with GET 1TS and GET 1TE (for remote reads). For these events,
we collect the source and destination and the amount of data transferred, as well as a unique RMA

operation identifier which allows an easier mapping of # 1TE to the corresponding # 1TS events in
the analysis stage later on. For all MPI RMA communication and synchronization operations we also
collect an identifier for the window on which the operation was performed. Exits of MPI-2 functions
related to general active target synchronization (GATS) are marked with a MPIWEXIT event which
also captures the groups of origin or target processors. For collective MPI-2 RMA functions we use
a MPIWCEXIT event and record the communicator which defines the group of processes which
participate in the collective operation. Finally, MPI window lock and unlock operations are marked
with WLOCK and WUNLOCK events.

Based on these event types and their attributes, we introduced two event models for describing the
dynamic behavior of RMA operations. For each model, we describe its basic features and analyze its
strengths and weaknesses.

4.1. Basic Model
In the first and simpler model, it is assumed that the RMA communication functions have a block-

ing behavior, that is, the data transfer is completed before the function is finished. Also, RMA
synchronization functions are treated as if they were independent of the communication functions.

The invocations of RMA communication and synchronization functions are modeled with EN-
TER and EXIT events. To model the actual RMA transfer, the transfer-start event is associated with
the source process immediately after the beginning of the corresponding communication function.
Accordingly, the end event is associated with the destination process shortly before the exit of the
(same) function.

The advantage of this model is a straight-forward implementation because events and their at-
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tributes can be recorded at exactly the place and time where they are supposed to appear in the
model. We use this model for analyzing SHMEM and Co-Array Fortran programs. However, for
MPI-2, this model is not sufficient because it ignores the necessary synchronization, as described in
Section 3. Since the end-of-transfer event is placed before the end of the communication function,
the transfers are recorded as completed even when this is not true, for example, in the case of a
nonblocking implementation. Even if the implementation is blocking, it still does not reflect the
user-visible behavior. Therefore, in case of MPI-2, we use an extended model, which is described in
the next subsection.

4.2. Extended Model
The extended model observes the MPI-2 synchronization semantics and, therefore, better reflects

the user-visible behavior of MPI-2 RMA operations. The end of fences and GATS calls is now mod-
eled with MPIWCEXIT or MPIWEXIT respectively in order to capture their collective nature. The
transfer-start event is still located in the source process immediately after the beginning of the cor-
responding communication function (as it is in the basic model). However, the transfer-end event is
now placed in the destination process shortly before the exit of the RMA synchronization function
which completes the transfer according to the MPI-2 standard rules. The extended model removes all
disadvantages of the basic model, and for most MPI-2 implementations (which have a non-blocking
behavior), it is even closer to reality. However, the model is more complex and the events can no
longer be recorded at the location where they appear in the model. Therefore, a complex post-
processing of the collected event trace becomes necessary.

5. Performance Properties of One-sided Communication and Synchronization

In this section we describe the analysis KOJAK is performing for execution traces of applications
using one-sided communication. KOJAK’s analyzer, named EXPERT [ 12], attempts to prove per-
formance properties for one execution of a parallel application and to quantify them according to
their influence on the performance. A performance property characterizes a class of performance
behavior and is specified in terms of a compound event, which the analyzer tries to detect in an event
trace. A compound event is a set of events matching a specific execution pattern, whose constituents
are connected by relationships and constraints. For each property, EXPERT calculates a severity mea-
sure indicating the fraction of the total execution time spent on that property and, thus, allows the
correlation of different properties in a single view.

EXPERT organizes the performance properties in a hierarchy. The upper levels of the hierarchy
(i.e., those that are closer to the root) correspond to more general behavioral aspects such as time
spent in MPI functions. The deeper levels correspond to more specific situations such as time lost
due to blocking communication. Figure 2 shows the hierarchy of predefined performance properties
based on time measurements that are supported by the current version (2.2) of EXPERT. It also
supports hierarchical analysis based on hardware counter metrics [ 14].

The set of performance properties consists of two types. The first type, which constitutes the upper
layers of the hierarchy and which is indicated by white boxes, is based on summary information in-
volving, for example, the total execution times of special MPI routines, which could also be provided
by a profiling tool. However, the second type, which constitutes the lower layers of the hierarchy and
which is indicated by gray boxes, involves idle times that can only be determined by comparing the
chronological relation between individual events. A detailed description of the properties for MPI-1
and OpenMP can be found in [ 9]. In the following, the new set of properties for MPI-2 RMA and
SHMEM are presented. An exact mathematical definition of the new properties can be found in [ 13].
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5.1. MPI-2 RMA Performance Properties
The performance properties for MPI-2 RMA are of course part of EXPERT’s overall hierarchy for

MPI (see Figure 2, upper part) under the categories Communication and Synchronization. The upper
part of the RMA Synchronization property tree captures how much execution time is spent on the dif-
ferent MPI-2 synchronization methods Fence, Locks, and Active Target, and on Window Management
functions which also contain synchronization because of their collective nature.
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Figure 1. Execution pattern for MPI-2 general active target synchronization.

The first three compound events Wait at Create, Wait at Free, and Wait at Fence simply cover
the time spent on waiting in front of these collective operations. The severity for each process
is defined by the time from starting the operation until the last participating process arrives. The
remaining compound events are related to communication scenarios where general active target
synchronization is used. A typical execution sequence is shown in Figure 1. The performance
property Early Wait is associated with processes providing access to an RMA window (e.g., the
middle process in Figure 1) and describes the wasted time waiting for the accesses to complete. The
severity is the time spent in MPI Win wait until the last participating process indicates the end
of the accesses by a call to MPI Win complete (indicated by the interval EW in the figure). The
subproperty Late Complete is associated with the subinterval of this waiting time from the end of the
last RMA transfer operation (e.g., the put operation by the upper process in the figure) to the start of
the last MPI Win complete call (marked with LC). The property Late Post describes the situation
where a call to MPI Win start blocks because the corresponding exposure epoch has not started
yet (which is initiated by a MPI Win post call). As severity we use here the time spent blocked
until the start of the post call (see interval LP in the figure). On MPI implementations where these
synchronization calls are non-blocking, in a similar situation the first RMA transfer call would block.
In this case, we call the property Early Transfer. It is a subproperty of RMA Communication as the
blocking occurs during a communication call.

5.2. SHMEM Performance Properties
The performance properties for the SHMEM programming paradigm are modeled after the corre-

sponding properties for MPI (see Figure 2, lower part). The higher level of the SHMEM property
hierarchy again captures how much execution time is spent on different parts of the SHMEM pro-
gramming model. It is either Communication, divided into collective and RMA, or Synchronization
which is broken down to Barrier, Point-to-Point, Init/Exit, or Memory Management. The compound
patterns Late Broadcast, Wait at NxN, Wait at Barrier, and Lock Competition are defined exactly like
the corresponding MPI or OpenMP properties.
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6. Conclusion and Future Work

We defined two event models describing the dynamic behavior of parallel applications involving
RMA transfers. The basic model can be used for RMA implementations with blocking behavior,
that is, vendor-specific one-sided communication libraries like SHMEM or language extension like
Co-Array Fortran and Unified Parallel C (UPC). For MPI, we defined an extended event model that
reflects the user-visible behavior as specified by the MPI-2 standard. We also defined RMA-related
performance properties which represent inefficient behavior of RMA communication and synchro-
nization. We implemented an extension to the KOJAK performance analysis toolset to instrument and
trace applications based on MPI-2 and SHMEM communication and synchronization and to analyze
the collected traces using the EXPERT automatic trace analysis component of KOJAK.
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