
Scalable Fault Tolerant MPI: Extending the
recovery algorithm

Graham E. Fagg, Thara Angskun, George Bosilca, Jelena Pjesivac-Grbovic,
and Jack J. Dongarra

Dept. of Computer Science, 1122 Volunteer Blvd., Suite 413, The University of
Tennessee, Knoxville, TN 37996-3450, USA

1 Abstract

Abstract. Fault Tolerant MPI (FT-MPI)[6] was designed as a solution
to allow applications different methods to handle process failures beyond
simple check-point restart schemes. The initial implementation of FT-
MPI included a robust heavy weight system state recovery algorithm
that was designed to manage the membership of MPI communicators
during multiple failures. The algorithm and its implementation although
robust, was very conservative and this effected its scalability on both
very large clusters as well as on distributed systems. This paper details
the FT-MPI recovery algorithm and our initial experiments with new
recovery algorithms that are aimed at being both scalable and latency
tolerant. Our conclusions shows that the use of both topology aware
collective communication and distributed consensus algorithms together
produce the best results.

2 Introduction

Application developers and end-users of high performance computing systems
have today access to larger machines and more processors than ever before. Ad-
ditionally, not only the individual machines are getting bigger, but with the
recently increased network capacities, users have access to higher number of
machines and computing resources. Concurrently using several computing re-
sources, often referred to as Grid- or Metacomputing, further increases the num-
ber of processors used in each single job as well as the overall number of jobs,
which a user can launch.

With increasing number of processors however, the probability, that an ap-
plication is facing a node or link failure is also increasing. The current de-facto
means of programming scientific applications for such large and distributed sys-
tems is via the message passing paradigm using an implementation of the Mes-
sage Passing Interface (MPI) standard [10, 11]. Implementations of MPI such as
FT-MPI [6] are designed to give users a choice on how to handle failures when
they occur depending on the applications current state.

The internal algorithms used within FT-MPI during failure handling and
recovery are also subject to the same scaling and performance issues that the rest



of the MPI library and applications face. Generally speaking, failure is assumed
to be such a rare event that the performance of the recovery algorithm was
considered secondary to its robustness. The system was designed originally for
use on LAN based Clusters where some linear performance was acceptable at up
to several hundred nodes, its scaling is however become an issue when FT-MPI is
used on both larger MPP which are becoming more common and when running
applications in a Meta/Grid environment.

This paper describes current work on FT-MPI to make its internal algorithms
both scalable on single network (MPP) systems as well as more scalable when
running applications across the wide area on potentially very high latency links.

This paper is ordered as follows: Section 3 detailed related work in fault
tolerent MPIs, collective communication and distributed algorithms, section 4
details HARNESS/FT-MPIs architecture and the current recovery algorithm,
section 5 the new methods togther with some initial experiment results (including
transatlantic runs) and section 6 the conclusions and future work.

3 Related work

Work on making MPI implementations both fault tolerant and scalable can
be split into the different categories based on the overall goals, either usually
fault tolerance or scalablity [8] but rarely both. On the scalability front, related
work includes both collective communication tuning and the development of
distributed consensus algorithms though various schemes.

Most other fault tolerant MPI implementations support checkpoint and restart
models, with or with various levels of message logging to improve performance.
Coordinated checkpoint restart versions of MPI include: Co-Check MPI [12],
LAM/MPI[14]. MPICH-V [4] uses a mix of uncoordinated check-pointing and
distributed message logging. More relevant work includes: Starfish MPI [1] which
uses low level atomic communications to maintain state and MPI/FT [2] which
provides fault-tolerance by introducing a central co-ordinator and/or replicating
MPI processes. Using these techniques, the library can detect erroneous mes-
sages by introducing a voting algorithm among the replicas and can survive
process-failures. The drawback however is increased resource requirements and
partially performance degradation. Finally, the Implicit Fault Tolerance MPI
project MPI-FT [9] supports several master-slave models where all communica-
tors are built from grids that contain ’spare’ processes. These spare processes
are utilized when there is a failure.

Starfish and MPI-FT are interesting in that they use classical distributed
system solutions such as atomic communications and replication [17] to solve
underlying state management problems.



4 Current Algorithm and Architecture of Harness and
FT-MPI

FT-MPI was built from the ground up as an independent MPI implementation
as part of the Department of Energy Heterogeneous Adaptable Reconfigurable
Networked SyStems (HARNESS) project [3]. HARNESS provides a dynamic
framework for adding new capabilities by using runtime plug-ins. FT-MPI is
one such plug-in. A number of HARNESS services are required both during
startup, failure-recovery and shutdown. This services are built in the form of
plug-ins that can also be compiled as standalone daemons. The ones relevant to
this work are:

– Spawn and Notify service. This service is provided by a plug-in which allows
remote processes to be initiated and then monitored. The service notifies
other interested processes when a failure or exit of the invoked process occurs.
The notify message is either sent directly to all other MPI tasks directly
or more commonly via the Notifier daemon which can provide additional
diagnostic information if required.

– Naming services. These allocate unique identifiers in the distributed envi-
ronment for tasks, daemons and services (which are uniquely addressable).
The name service also provides temporary internal system (not application)
state storage for use during MPI application startup and recovery, via a
comprehensive record facility.

An important point to note is that the Spawn and Notify Service together with
the Notifier daemons are responsible for delivering Failure/Death events. When
the notifier daemon is used it forces an ordering on the delivery of the death
event messages, but it does not impose a time bounding other than that provided
by the underlying communication system SNIPE [7]. i.e. it is best effort, with
multiple retries. Processes can be assumed to be dead when either their Spawn
service detects their death (SIGCHLD etc), another MPI process cannot contact
them or their Spawn service is unreachable.

It is useful to know what exactly the meaning of state is. The state in the
context of FT-MPI is which MPI processes make up the MPI Communicator
MPI COMM WORLD. In addition, the state also contains the process connec-
tion information, i.e. IP host addresses and port numbers etc. (FT-MPI allows
processes the right to migrate during the recovery, thus the connection informa-
tion can change and needs to be recollected). The contact information for all
processes is stored in the Name Service, but during the recovery each process
can receive a complete copy of all other processes contact information, reducing
accesses to the Name Service at the cost of local storage within the MPI runtime
library.

Current Recovery Algorithm The current recovery algorithm is a multistage
algorithm that can be viewed as a type of conditional ALL2ALL communication
based on who failed and who recovered. The aim of the algorithm is to build a



new consistent state of the system after a failure is detected. The algorithm itself
must also be able to handle failures during recovery (i.e. recursive failures). The
overall design is quite simple, first we detect who failed and who survived, then
we recover processes (if needed), verify that the recovery proceeded correctly,
build a new consistent state, disseminate this new state and check that the new
state has been accepted by all processes. The following is a simple outline:

– State Discovery (initial)
– Recovery Phase
– State Discovery (verification if starting new processes or migration)
– New State Proposal
– New State Acceptance
– Continue State if accepted, or restart if not accepted

The current implementation contains the notion of two classes of partici-
pating processes within the recovery; Leaders and Peons. The leader tasks are
responsible for synchronization, initiating the Recovery Phase, building and dis-
seminating the new state atomically. The peons just follow orders from the lead-
ers. In the event that a peon dies during the recovery, the leaders will restart the
recovery algorithm. If the leader dies, the peons will enter an election controlled
by the name service using an atomic test and set primitive. A new leader will be
elected, and this will restart the recovery algorithm. This process will continue
until either the algorithm succeeds or until everyone has died.

As mentioned previously the delivery of the death events is ordered but not
time bounded. This is the reason why the Initial and verification State Discovery
and New State Acceptance phases exist. The leader processes cannot rely on only
the death events to know the current state of the system. In the case of bust
failures, the death events may not all arrive at the same time. A consequence
of this could be that the leader recovers only a single failed process and either
completes the algorithm only to immediately have to restart it, or it discovers at
the end of a recovery that the one of processes in the final state has also failed.
The Acceptance phase prevents some processes from receiving the New State
and continuing, while other processes receive a late death event and then restart
the recovery process. This is essential as the recovery is collective and hence
synchronizing across MPI COMM WORLD and must therefore be consistent.

Implementation of current algorithm Each of the phases in the recovery
algorithm are implemented internally by the Leaders and Peons as a state ma-
chine. Both classes of processes migrate from one state to another by sending or
receiving messages (i.e. a death event is receiving a message). The Leader pro-
cesses store a copy of the state in the Name Service. This assists new processes
in finding out what to do in the case that they were started after a particular
state has already been initialized.

The State Discovery phase is implemented by the Leader telling all Peons
that they need to send him an acknowledgment message (ACK). The Peons reply
back to the Leader by sending a message which contains their current contact



information, thus combining two messages into one slightly larger message. The
Leader then waits for the number of replies plus the number of failures (m) plus
one (for themselves) to equal the number of total processes (n) in the origi-
nal MPI COMM WORLD. As the recovery system does not have any explicit
timeouts, it relies on the conservation of messages, i.e. no ACK or death event
messages are lost.

The Recovery phase involves the leaders using their copy of the current state
and then building a new version of MPI COMM WORLD. Depending on the
FT-MPI communicator mode [6] used this could involve rearranging processes
ranks or spawning new processes. The phase starts with the Leaders telling
their existing Peons to WAIT via a short message broadcast. (This is an artifact
left over from an earlier version that used polling of the Name Service). If new
processes are started, they discover from the Name Service that they need to
ACK the Leaders, without the Leaders needing to send the ACK requests to the
new processes directly. After this the Leaders again perform a State Discovery
to ensure that any of the new (and current) processes have not since failed. If
no new processes are required, the Leaders build the new state and then move
to the New State Proposal phase.

The New State Proposal phase is where the Leaders propose the new state
to all other processes. During the Acceptance phase, all processes get the chance
to reject the new state. This currently only occurs if they detect the death of a
processes that is included in the new state otherwise they automatically accept
it. The Leader(s) collect the votes and if ALL voted YES it sends out a final
STATE OK message. Once this message has started to be transmitted, any
further failures are IGNORED until a complete global restart of the algorithm
by the Leader entering State Discovery phase again. This is implemented by
associating each recovery with a unique value (epoch) assigned atomically by
the Name Service. A Peon may detect the failure of a process, but will follow
instructions from the Leaders, in this case STATE OK. The failure will however
still be stored and not lost. This behavior prevents some processes from exiting
the recovery while other processes continue to attempt to recover again.

Cost of current algorithm The current algorithm can be broken down into a
number of linear and collective communication patterns. This then allows us to
both model and then predict the performance of the algorithm for predetermined
conditions such as a burst of m failures.

– Discovery phases can be viewed and as a small message broadcast (request
ACK) followed by a larger message gather (receive ACK).

– Recovery phase is first a small message broadcast (WAIT) followed by a
series of sequential message transfers between the Leader, Spawn & Notify
service, Name Server etc to start any required new processes.

– New State Proposal phase is a broadcast of the complete state (larger mes-
sage).

– New State Acceptance phase is a small message reduce (not a gather).
– OK State phase is a small message broadcast.



Assuming a time per operation of Top(n) where n is the participants (includ-
ing the root), the current algorithm would take:

Ttotal = Tbcast ack(n-m) + Tgather ack(n-m) + Tbcast wait(n-m) + Tspawn(m)
+ Tbcast ack(n) + Tgather ack(n) + Tbcast state(n) + Treduce accept(n) +
Tbcast ok(n)

As some message sizes are identical for a number of operations we can replace
them with an operator based solely on their message size. Also if we assume that
n¿m (which typically is true as we have single failures) we can simplify the cost
to:

Ttotal = 4 Tbcast small(n) + 2 Tgather large(n) + Tspawn(m) + Tbcast large(n)
+ Treduce small(n)

The initial implementation for LAN based systems used simple linear fault
tolerant algorithms, as any collective communication had to be fault tolerant
itself. Take for example the initial ACK broadcast. The Leader only potentially
knows who some of the failed tasks might be, but the broadcast cannot deadlock
if unexpected tasks are missing.

Assuming the cost of spawning is constant, and that all operations can be
performed using approximately n messages then the current algorithm could be
further simplified if we consider the time for sending only small Tsmall or larger
messages Tlarge to:

Ttotal = 5n Tsmall + 3n Tlarge + Tspawn or O(8n)+Tspawn

5 New scalable methods and experimental results

The aim of any new algorithm and implementation is to reduce the total cost
for the recovery operation on both large LAN based systems as well for Grid
and Metacomputing environments where the FT-MPI application is split across
multiple clusters (from racks to continents).

Fault Tolerant Tuned Collectives. The original algorithm is implemented by
a number of broadcast, gather and reduce operations. The first obvious solution
is to replace the linear operations by tuned collective operations using a variety
of topologies etc. This we have done using both binary and binomial trees. This
work was not trivial for either the LAN or wide area cases simply due to the fault
tolerant requirements placed on the operations being able to handle recursive
failures (i.e. nodes in any topology disappearing unexpectedly). This has been
achieved by the development of self healing tree/mesh topologies. Under normal
conditions they operate by passing message as expected in static topologies. In
the case of a failures they use neighboring nodes to reroute the messages.

Figure 1 shows how the original algorithm performs when using various com-
binations of linear and tuned FT-collectives. As can be expected the tree based
(Binary Tree (Tr) / Binomial Tree (Bm)) implementations out performed the
Linear (Li) versions. The results also clearly show that the implementation is
more sensitive to the performance of the broadcast operations (Bc) than the
gather/reduce (Ga) operations. This is to be expected as the previous section



showed that algorithm contains five broadcasts verses three gather/reduce oper-
ations. The best performing implementation used a binary tree broadcast and a
linear gather, although we know this not to be true for larger process counts [13].

LAN Recovery Time

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0 5 10 15 20 25 30

Number of nodes

T
im

e
 (

S
e

c
o

n
d

s
)

BcLi-GaLi

BcLi-GaTr

BcLi-GaBm

BcTr-GaLi

BcTr-GaTr

BcTr-GaBm

BcBm-GaLi

BcBm-GaTr

BcBm-GaBm

Fig. 1. Recovery time of the original algorithm when using various combinations of
tuned collective operations

Multi-Zone Algorithms. For the wide area we have taken two approaches.
The first is to arrange the process topologies so that they minimize the wide
area communication, much the same as Magpie [16].

The second is to develop a multi-zone algorithm. This is where there is a
leader process per zone. The lowest MPI ranked Leader becomes the master
leader for the whole system. This leader synchronizes with the other zone leaders,
who in turn execute the recovery algorithm across their zones. Unfortunately this
algorithm does not benefit us much more than the latency sensitive topology
algorithms due to the synchronizing nature of the New State Proposal and New
State Acceptance phases, unless there are additional failures during the recovery.

Figure 2 shows how the original algorithm and the new multi-zone algorithm
performs when executed between two remote clusters of various sizes. One clus-
ter is located at the University of Tennessee USA, and the other is located at the
University of Strasbourg France. A size of eight refers to four nodes at each site.
The labels SZ indicate Single-Zone and MZ indicates Multi-Zone algorithms.
Single-Zone Linear is the normal algorithm without modification, which per-
formed badly as expected. Single-Zone Tree1 is the single leader algorithm but
using a binary tree where the layout of the process topology reducing the number
of wide area hops. This algorithm performs well. Single-Zone Tree2 is the single
leader algorithm using a binary tree topology where no changes have been made
to the layout to avoid wide area communication. Multi-Zone Linear is a multi



leader algorithm using linear collectives per zone, and Multi-Zone OpColl uses
the best FT-tuned collective per zone. The two multi-zone algorithms perform
best, although the node count is so low that it hides any advantage of the in-
ternal tree collectives within each individual zone. Overall the multi-zone tuned
collective method perform the best as expected.

WAN Recovery Time

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10 12 14 16 18

Number of nodes

T
im

e
 (

S
e
c
o

n
d

s
)

SZ+Linear

SZ+Tree1

SZ+Tree2

MZ+Linear

MZ+OptColl

Fig. 2. Recovery time of various algorithms operating across a very high latency link

6 Conclusions and future work

The current FT-MPI recovery algorithm is robust but also heavyweight at ap-
proximately O(8n) messages. Although FT-MPI has successfully executed fault
tolerant applications on medium sized IBM SP systems of up to six hundred
processes its recovery algorithm is not scalable or latency tolerant. By using a
combination of fault tolerant tree topology collective communications and a more
distributed multi-coordinator (leader) based recovery algorithm, these scalability
issues have been overcome.

Work is continuing on finding better distributed coordination algorithms and
reducing the amount of state exchanged at the final stages of recovery. This is
the first stage in moving FT-MPIs process fault tolerant model into the ultra
scale arena. A latter stage will involve taking FT-MPIs recovery algorithm and
adding it to the community Open MPI implementation [15].

Acknowledgments. This material is based upon work supported by the De-
partment of Energy under Contract No. DE-FG02-02ER25536 and 8612-001-
0449 through a subcontract from Rice University No. R7A827-792000. The NSF
CISE Research Infrastructure program EIA-9972889 supported the infrastruc-
ture used in this work.



References

1. A. Agbaria and R. Friedman. Starfish: Fault-tolerant dynamic mpi programs on
clusters of workstations. In In 8th IEEE International Symposium on High Perfor-
mance Distributed Computing, 1999.

2. R. Batchu, J. Neelamegam, Z. Cui, M. Beddhua, A. Skjellum, Y. Dandass, and
M. Apte. Mpi/ftTM: Architecture and taxonomies for fault-tolerant, message-
passing middleware for performance-portable parallel computing. In In Proceedings
of the 1st IEEE International Symposium of Cluster Computing and the Grid held
in Melbourne, Australia., 2001.

3. Beck, Dongarra, Fagg, Geist, Gray, Kohl, Migliardi, K. Moore, T. Moore, Pa-
padopoulous, Scott, and Sunderam. HARNESS:a next generation distributed virtual
machine. Future Generation Computer Systems, 15, 1999.

4. G. Bosilca, A. Bouteiller, F. Cappello, S. Djilali, G. Fédak, C. Germain, T. Hérault,
P. Lemarinier, O. Lodygensky, F. Magniette, V. Néri, and A. Selikhov. MPICH-
v: Toward a scalable fault tolerant MPI for volatile nodes. In SuperComputing,
Baltimore USA, November 2002.

5. G. Burns and R. Daoud. Robust MPI message delivery through guaranteed re-
sources. In MPI Developers Conference, June 1995.

6. G. E. Fagg, A. Bukovsky, and J. J. Dongarra. HARNESS and fault tolerant MPI.
Parallel Computing, 27:1479–1496, 2001.

7. G. E. Fagg, K. Moore, and J. J. Dongarra. Scalable networked information pro-
cessing environment (SNIPE). Future Generation Computing Systems, 15:571–582,
1999.

8. R. L. Graham, S.-E. Choi, D. J. Daniel, N. N. Desai, R. G. Minnich, C. E. Ras-
mussen, L. D. Risinger, and M. W. Sukalski. A network-failure-tolerant message-
passing system for terascale clusters. In ICS. New York, USA, June. 22-26 2002.

9. S. Louca, N. Neophytou, A. Lachanas, and P. Evripidou. Mpi-ft: Portable fault
tolerance scheme for MPI. In Parallel Processing Letters, Vol. 10, No. 4, 371-382
, World Scientific Publishing Company., 2000.

10. Message Passing Interface Forum. MPI: A Message Passing Interface Standard,
June 1995. http://www.mpi-forum.org/.

11. Message Passing Interface Forum. MPI-2: Extensions to the Message Passing In-
terface, July 1997. http://www.mpi-forum.org/.

12. G. Stellner. Cocheck: Checkpointing and process migration for MPI. In Proceed-
ings of the 10th International Parallel Processing Symposium (IPPS ’96), Honolulu,
Hawaii, 1996.

13. S. S. Vadhiyar, G. E. Fagg, and J. J. Dongarra. Performance modeling for self-
adapting collective communications for MPI. In LACSI Symposium. Springer, El-
dorado Hotel, Santa Fe, NM, Oct. 15-18 2001.

14. Sriram Sankaran and Jeffrey M. Squyres and Brian Barrett and Andrew Lums-
daine and Jason Duell and Paul Hargrove and Eric Roman. The LAM/MPI Check-
point/Restart Framework: System-Initiated Checkpointing. In LACSI Symposium.
Santa Fe, NM. October 2003.

15. E. Gabriel and G.E. Fagg and G. Bosilica and T. Angskun and J. J. Dongarra J.M.
Squyres and V. Sahay and P. Kambadur and B. Barrett and A. Lumsdaine and R.H.
Castain and D.J. Daniel and R.L. Graham and T.S. Woodall. Open MPI: Goals,
Concept, and Design of a Next Generation MPI Implementation. In Proceedings
11th European PVM/MPI Users’ Group Meeting, Budapest, Hungry, 2004.

16. Thilo Kielmann and Rutger F.H. Hofman and Henri E. Bal and Aske Plaat and
Raoul A. F. Bhoedjang. MagPIe: MPI’s collective communication operations for
clustered wide area systems. In ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming (PPoPP’99), 34(8), pp131–140, May 1999.

17. Andrew S. Tanenbaum and Maarten van Steen. Distributed Systems: Principles
and Paradigms, Prentice Hall, 2002.


