
Performance Profiling and Analysis of DoD Applications Using PAPI and TAU

Shirley Moore, David Cronk, and Felix Wolf
University of Tennessee-Knoxville, Knoxville, TN

{shirley, cronk, fwolf}@cs.utk.ed

Avi Purkayastha
University of Texas at Austin, Austin, TX

avijit@tacc.utexas.edu

Patricia Teller, Robert Araiza, Maria Gabriela Aguilera, and Jamie Nava
University of Texas at El Paso, El Paso, TX

{pteller, raraiza, maguilera}@cs.utep.edu, jenava@utep.edu

Abstract

 Large scientific applications developed as recently as
five to ten years ago are often at a disadvantage in
current computing environments. Due to frequent
acquisition decisions made for reasons such as price-
performance, in order to continue production runs it is
often necessary to port large scientific applications to
completely different architectures than the ones on which
they were developed. Since the porting step does not
include optimizations necessary for the new architecture,
performance often suffers due to various architectural
features. The Programming Environment and Training
(PET) Computational Environments (CE) team has
developed and deployed different procedures and
mechanisms for collection of performance data and for
profiling and optimizations of these applications based on
that data. The paper illustrates some of these procedures
and mechanisms.

1. Introduction

 Developers and users of DoD applications running on
high performance computing (HPC) platforms need easy-
to-use tools for determining how well their applications
are performing and for analyzing and improving
application performance. Profile data, based on both time
and hardware counter data, can be collected to determine
the proportion of performance metrics that are attributable
to different program regions, allowing performance
analysis to focus where it will have the greatest effect and
to help identify code hot spots and performance
bottlenecks. Once problem areas are identified, detailed
tracing of the application can give further insight into
causes of the problems.
 The PET Computational Environments (PET CE)
team has developed and deployed mechanisms for
automated collection of performance data using the PAPI
cross-platform interface to hardware performance

counters[1], developed at the University of Tennessee, and
the TAU (Tuning Analysis and Utilities) performance tool
suite[2], developed at the University of Oregon. Users
need only make a couple of simple changes to their
application makefiles in order to have TAU automatically
instrument their parallel applications written in
FORTRAN 77/90/95 or C/C++ to collect profile and/or
trace data. The PAPI hardware metrics to be collected
can be specified at runtime by setting environment
variables. Once the instrumented application is run, the
resulting performance data can be viewed and analyzed
using the TAU command-line or graphical analysis tools,
the KOJAK automated performance analysis system that
uses a pattern matching approach to detect performance
bottlenecks[3], or multivariate statistical analysis tools
developed as part of the CE-KY4-002 project.
 The PET CE team has worked with the HPCMP
Benchmarking team to develop standard definitions for
different levels of performance data and a standard
database schema. A password-protected code profiling
database has been set up at the University of Tennessee.
Users may upload their performance data to this database
so that the data can be analyzed in collaboration with the
PET CE team. Alternatively, users can use the schema to
implement their own local code profiling database. The
TAU Performance Data Management Framework
(PerfDMF) tools[4] can be used to upload data to the
database and the analysis tools described above can be
used to retrieve and analyze data stored in the database.
 Systematic approaches towards collection and
analysis of performance data and subsequent
optimizations for a number of Department of Defense
(DoD) applications have been carried out as part of the
CE-KY4-003 Scalability and Performance Optimization
Team (SPOT) project. As HPC systems grow in size and
capability, they also continue to grow in complexity with
respect to processor, cache, and node design, creating
additional difficulties for code optimization on these
systems. The SPOT team has demonstrated a systematic
approach for profiling and optimizing large scientific

Proceedings of the Users Group Conference (DOD-UGC’05)
0-7695-2496-6/05 $20.00 © 2005 IEEE

applications in two application domains, showing how,
despite the new difficulties, application performance can
be optimal on different platforms.

2. Automated Collection of Performance
Data

 Application performance data are basically of two
types: profile data and trace data. Profile data provide
summary statistics for various metrics and may consist of
event counts or timing results, either for the entire
execution of a program or for specific routines or program
regions. In contrast, trace data provide a record of time-
stamped events that may include message-passing events
and events that identify entrance into and exit from
program regions, or more complex events such as cache
and memory access events. The DoD High Performance
Computing Modernization Program (HPCMP) has
defined the following levels of performance data:

Level 1 consists of whole program profile data
such as wall clock time, operation counts, and
counts of cache and memory accesses and
misses.

Level 2a consists of profile data broken down to
the routine level.

Level 2b consists of profile data broken down to
the loop and basic block and even statement

this proj

ular performance
met t

chan
1.

ets of metrics
ave been developed as part of this project.

. Performance Data Management.

levels.

Level 3 consists of time-dependent event traces.
 One goal of the CE-KY4-001 project was to
automate the collection of the various levels of
performance data. Such capability releases users from an
unreasonable burden, i.e., having to make extensive
changes to their codes in order to collect such data. A
related and frequently mentioned user requirement is that
data collection tools must be easy to use. Accordingly,

ect has resulted in the following tools:

A command-line utility called papiex for
collection of Level 1 profile data for unmodified
executables.

papiex has been developed as part of the PAPI
project[1]. It was originally written for Linux/x86 and
Linux/IA-64 systems. It uses library preloading to
automatically instrument an unmodified executable.
papiex can be used with both shared-memory and
message-passing parallel programs. It requires that the
system have support for library preloading and shared
libraries. Since IBM AIX systems do not support library
preloading, a wrapper was written for the native
hpmcount utility to emulate papiex on that platform.
Similarly, on the Cray X1, which does not support shared
libraries, a wrapper was written for the native pat_hwc
utility to emulate papiex on that platform. Thus, papiex
provides the capability of automated collection of Level 1
profile data on all major DoD platforms. Command-line

options are used to specify the partic
rics o be collected for a given run.

Scripts and utilities for using the TAU toolkit[3]

to perform automated source code
instrumentation for collection of Level 2a profile
data and Level 3 trace data.

 TAU uses the Program Database Toolkit (PDT) to
perform automated source code instrumentation at the
routine level for MPI programs. For OpenMP programs,
automated instrumentation may be done down to the

parallel region level using Opari. TAU support for

automated loop and basic block level instrumentation
using PDT is currently under development. Previous use

of TAU’s source code instrumentation required the user to
make a number of changes to the application makefile.
For the CE-KY4-001 project, a script called
TAUCOMPILER was developed that automates much of
this process. The user now needs only to make two small

ges to the application makefile:
Include the appropriate makefile file stub (e.g.,
makefile.tau-auto-mpi) which defines the
necessary constants and libraries, and
Precede the compiler or linker2. command with the
TAUCOMPILER command.

 The user can then compile and link in the usual
manner to produce a TAU-instrumented version of the
code. The particular performance metrics to be collected
(e.g., wall clock time, operation counts, counts of cache
and memory accesses or misses, TLB misses, etc.) are
specified at runtime by setting environment variables.
Scripts containing the settings for default s
h

3

 As users begin to collect large quantities of
performance data for their applications, they need a data
management system that can help organize the data,
preserve important metadata, and facilitate easy retrieval
and analysis. Towards this end, the PET CE team has
collaborated with the HPCMP benchmark team to define
a standard schema for the different levels of performance
data described above. For this project, TAU PerfDMF
was extended to support the HPCMP code profiling
schema. The TAU PerfDMF provides support for
managing multi-experiment performance data stored in an
underlying relational database.
 Entities in the schema include, for example,
Application, Experiment, and Trial. Since Oracle is used
for the Code Profiling Database at ERDC MSRC, Oracle
support also was added to TAU PerfDMF, which
previously supported only PostgresSQL and MySQL.
Metadata can be defined and performance data can be
uploaded to PerfDMF using either command-line utilities
or the graphical ParaProf parallel profile browser.
ParaProf also can be used to retrieve and analyze stored

Proceedings of the Users Group Conference (DOD-UGC’05)
0-7695-2496-6/05 $20.00 © 2005 IEEE

data. TAU PerfDMF not only supports uploading of TAU
profile data files, but also supports uploading of profile
data from other tools such as gprof, hpmcount, and mpiP.
Third-party analysis tools also may be interfaced to
PerfDMF. PerfDMF can be set up for individual use or
for use by groups who wish to share data. PerfDMF can
thus serve as the focal point for tool interoperability and

llaboration on application performance tuning.

 Analysis of
ardware Counter Data

e treated uniformly and, thus,
rov

nce functions were developed as part of this
proj

l

contained in a separate report
at was submitted for publication on the Online

Kn

Table 1. Principal component analysis of HYCOM
cellu) ha r data

Principal
Component Event

1 PM_CYCLES Total cycles and
instructions

co

4. Multivariate Statistical
H

 Once data have been uploaded to a performance
database, they can be retrieved and analyzed using a
variety of performance analysis tools, including the
multivariate statistical analysis tools developed as part of
the CE-KY4-002 project. Instrumentation of
contemporary applications to collect performance data
yields huge multidimensional data sets, the size of which
depends on the number of processors involved in the
execution, the number of instrumentation points, and the
number and type of monitored events. Multivariate
statistical techniques can help focus the user’s attention
on important metrics and show the distribution of those
metrics across parallel tasks and code regions.
Multivariate data are difficult to analyze and often need to
be simplified. Principal Component Analysis (PCA), for
example, reduces dimensionality by representing the data
as a linear combination of principal components and
eliminating those that contribute the least to the variance.
k-means clustering is a method for identifying groups of
similar data points that can b
p ides data reduction[5].
 Tools were developed to carry out statistical analysis
of both hardware counter data and communication data
for parallel applications. The hardware counter data to be
analyzed are assumed to be stored in a relational database.
Thus, as part of this project, a MATLAB-SQL connection
script was provided to facilitate MATLAB access to an
SQL database. Also provided, as part of the project, were
step-by-step directions that a user can follow to extract
required data from a MySQL database using the MySQL
query browser and then upload the extracted data file to
MATLAB. The data can be extracted using the script or
the necessary steps from either the ERDC MSRC
Counters Database or a TAU PerfDMF database that uses
the DoD HPCMP Code Profiling schema. Once the
hardware counter data for an execution of a parallel
application have been uploaded to MATLAB, all the
multivariate statistical analysis tools provided by the
MATLAB Statistics Toolbox can be applied. However,
in order to make it easy for non-experts to use
multivariate statistical analysis, the following MATLAB
convenie

ect:

findPrincipalCounters – finds the principal

components and the percentage of variance in the
data contributed by each and maps the principa
components back to the original counter events.

findPrincipalCountersAdvanced – finds the
principal components and the percentage of
variance in the data contributed by each and
maps the principal components back to the
original counter events. In addition, this
function returns a bitmap marking which events
map to each principal component.

findClusters – performs k-means clustering and
evaluates the clustering quality.

plotClusters – plots up to seven clusters that
were found by k-means clustering.

 The MATLAB multivariate statistical analysis tools
were used to analyze whole-program hardware
performance counter data collected for the HPCMP
benchmark codes COBALT, RF-CTH, OOCORE, and
HYCOM. The results of the analysis for HYCOM are
summarized below. Full details of the exact steps carried
out and the full results are
th

owledge Center (OKC).

(Mar s, O4, 256 rdware counte

Principal Contributing
Events

PM_INST_CMPL
,
PM_INST_DISP,

Explanation

PM_FXU_FIN,
LD_REF_L1,
ST_REF_L1

2 PM_FPU_ALL Floating-point
operations

PM_FPU0_FIN,
PM_FPU1_FIN,
PM_FPU_FDIV,
PM_FPU_FIN,
PM_FPU_FMA,
PM_FPU_STF

3 PM_LD_MISS_L1 Level 1 cache
misses

PM_ST_MISS_L
1,
INST_FETCH_C
YC,
L1_WRITE_CYC
,
PM_DTLB_MISS

4 PM_INST_FROM
_L3

P
P

M_ITLB_MISS,
M_BR_MPRED

_CR

5 PM_INST_FROM
_L2

6 PM_FPU_FSQRT PM_FPU_DENO
RM square root

Floating-point

7 PM_DTLB_MISS Data TLB misses

 All hardware counter data for multiple runs of an
application with the same configuration can be extracted
from the performance database. In this example,
hardware counter data for the HYCOM application
executed on the IBM POWER4 (Marcellus) with 256
processors, optimization level O4, and the large test case

Proceedings of the Users Group Conference (DOD-UGC’05)
0-7695-2496-6/05 $20.00 © 2005 IEEE

were extracted. Data collected for the same counter over
multiple runs were averaged. After eliminating a counter
with zero counts (loads from Level 3.5 cache), the counts
for 38 metrics (events) on 256 processors remained.
Using Principal Component Analysis, seven principal
components were found to account for 87 percent of the

PS), and the
oa

ed in
the execution of the program. The last column shows the
re

Table 2. Results of applying PCA for reduction of
dimensionality of hardware counte

ation

R
Number of

Events

variability in the data. These principal components may
be characterized as shown in Table 1.
 The analysis indicates that it may be possible to
characterize the performance of HYCOM using
representative counters from the above principal
components. Since these representative counters can be
allocated using three counter groups on the POWER4,
e.g., groups G27, G53, and G56, it would be possible to
capture the necessary data using three runs instead of the
six runs required to capture all 39 counters. These three
groups would also capture the data necessary to calculate
derived metrics such as cycles per instruction (CPI),
floating point operations per second (FLO
fl ting point to memory operation ratio (F:M), which
could then be compared across platforms.
 Table 2 summarizes the results of applying the same
methodology to the COBALT, RF-CTH, and OOCORE
applications, for which 39 events were originally
monitored. Column 2 shows the groups of events that
collect 90% of the variability in the data in a POWER4
system regardless of the number of processors involv

duced number of events that could be monitored.

r data

educed

Applic
POWER4

Hardware Groups

COBALT G3, G15, G27, G56 9

RF-CTH 6 5G3, G27, G5

OOCORE G3, G15, G20, G27, 10
G53, G56

. Performan5 ce Optimization of Scientific

CC Cray-Dell Linux
on

ntly by researchers from Sandia

ce it is validated by the dominance of
this function in the floating-point operations count, as
shown previously.

Applications

 Two strategic DoD scientific application projects, in
the Computational Chemistry and Material Sciences
(CCM) and Computational Electronics and Nano-
electronics (CEN) application domains, were chosen for
performance optimization. The PAPI and TAU tools
were used to profile the applications, and the performance
data were uploading to a PerfDMF Code Profiling
Database. The profiling helped identify code hotspots
and algorithmic bottlenecks. First-order code-rewrites
and (minor) algorithmic changes were then made
wherever feasible to allow for enhanced efficiency and
increased parallel scalability. Additional suggestions,

including those for major code-rewrites for improving
application performance, were passed on to the
application developers in a detailed developers’ guide
document. Both applications were built, profiled, and
optimized on the 512-node TA
L estar system, which consists of a mix of 3.06 and 3.2
GHz Xeon dual-processor nodes.
 For the study of a CCM application area, the open-
source (GPL licensing) molecular dynamics code
Socorro, was chosen. Socorro is a modular, object-
oriented code for performing self-consistent electronic-
structure calculations for fundamental understanding of
materials such as semiconductors and metals; it predicts
how these materials will behave under various conditions.
It was developed joi
National Laboratories, Vanderbilt University, and Wake
Forest University[6].

Socorro was profiled with PAPI (v3.0 beta2) using
TAU for source code instrumentation. The events for
which profiling information was obtained were floating-
point instructions and total cycles. In the following
figures, the relative percentages of the exclusive floating-
point operation count for each function are tabulated and
averaged over the number of processors on which the data
were obtained. In Figure 1, functions are listed in order
of decreasing magnitude for 16-processor runs. It can be
observed in this figure that the FFT_3D_SERIAL
INDEXED function executes the largest percentage of
floating-point operations at 51.6%, followed by
DIAGONALIZE_I at 27. The main computational
function inside DIAGONALIZE_I is zheev, which is a
LAPACK function computing all the eigenvalues and
optionally the eigenvectors of a complex Hermitian
matrix. Here, as the problem size remains fixed, each
processor does the computations due to zheev on the
same data, so the increased workload may represent the
overhead for the sum of that work. This issue needs to be
investigated further. The other PAPI profile information
obtained was the total number of cycles used by each
function. Figure 2 and Figure 3 show the percentage of
total cycles for each function averaged over runs on 16
and 128 processors, respectively. The interesting
observation from these figures is the increase in the
number of cycles used by MPI calls like MPI_Allreduce.
The percentage of this reduction function went from 6%
in a 16-processor run to about 25% in a 128-processor
run. Clearly the trend is likely to increase for runs on
larger numbers of processors. In general, this is to be
expected, since the synchronization overhead from using
collective operations like MPI_Allreduce is likely to
increase with additional processors. Simultaneously, the
average total cycle count of DIAGONALIZE_I increases
from 4% of total cycles in 16-processor runs to 12% of
total cycles in a 128-processor run. The latter observation
is not surprising, sin

Proceedings of the Users Group Conference (DOD-UGC’05)
0-7695-2496-6/05 $20.00 © 2005 IEEE

Figure 1. PAPI FP instructions per routine sorted by
exclusive count averaged over 16 processors

Figure 2. Total cycles per routine sorted by exclusive
count for a 16-processor run

Figure 3. Total cycles per routine sorted by exclusive
count for a 128-processor run

On the basis of profiling information, a number of
source changes were made and tested but further testing
and scalability tests are necessary. For reasons of brevity,
a few of the more important developer suggestions are
included here.

Since the zheev LAPACK function is a major
consumer of floating-point cycles with increases
in processor counts, an alternative approach is to
look at incorporation of a parallel mathematical
library, particularly for larger processor counts,
when the gains from parallel processing are
greater than the overhead of using it, particularly
when each processor has computations of
smaller and smaller granularity. The exact
processor count where such a crossover from a
serial to a parallel library has to occur needs to
be determined heuristically, at least at the initial
stages. One such option for consideration is
using parallel libraries for distributing the zheev

function operation. Adoption of a parallel
library would have a direct impact in reducing
the total cycles consumed by
DIAGONALIZE_I and thus reducing wall-
clock time or cycles.

Other areas of review and possible redesign,
based on the above profile information, are the
issues of synchronization and cycles consumed
that are raised from MPI_Allreduce and
MPI_Waitany calls, particularly for runs on
high processor counts. Clearly, review of the
parallel design is necessary and any subsequent
code changes affect the whole application’s
performance and not just that of a few
procedures; these would involve a nontrivial
effort. Towards this end, it is highly
recommended that the developers obtain and
view trace files.

For the CEN application domain, the open-source,
serial, three-dimensional (3-D) Finite Domain Time-
Difference (FDTD) code was used. It solves the time-
dependent Maxwell’s equation in curl form[7], based on
the method for the Perfectly Matched Layer (PML) for
the appropriate absorbing boundary conditions[8]. Since
this is a serial code, the primary profiling effort went into
finding the code hotspots and associated optimizations.
The porting of this code to a parallel version is currently
taking place but could not be completed in time for this
project. The serial version was built on the Lonestar
system with all compiler flags turned on.

Based on cache-miss profiling with PAPI, the code
listings in the calc_H* and calc_E* functions were
closely observed for possible optimization. These
functions update or compute the magnetic (or electric)
field for each cell in each of six coordinate combinations
i.e., x-y, y-x, x-z, z-x, y-z, and z-y. Each cell at a given
time-step is updated in a given direction for the current
iteration with information from the other directions from
the previous iteration. In code form, this transforms to
computations over a triply nested kji loop, where each of
i, j, and k are being referred to each Cartesian direction.
For 3-D statically stored C-arrays, this path for data
access is not the most optimal from a code optimization
standpoint, although it may be for FORTRAN arrays.
The loop orderings were changed to ijk and ikj, both of
which appeared to be an improvement over the given kji
data layout. The initial conjecture of the non-optimality
of the kji data ordering was validated from the cache-miss
results that were obtained. Although both of the ijk and
ikj data layout strategies were better than the kji layout,
the ijk layout is the most optimal. The improvements in
reducing L1 data cache misses were reflected in wall-
clock time (not shown here). The degree and order of
improvement are also a function of the number of time
steps. For example, for 1024 time steps, the wall-clock
time for the original code is 575 seconds, while using the
ijk strategy takes about 45 seconds. This is more than a

Proceedings of the Users Group Conference (DOD-UGC’05)
0-7695-2496-6/05 $20.00 © 2005 IEEE

10x improvement in run time. The code developers have
observed a similar improvement in the order of the wall-
clock time using the proposed source code enhancements
on different computer system architectures, but in general
the degree of improvement also depends on architectural
issues such as cache sizes as well as the capabilities of the
compiler and its use with relevant optimization flags.
Apart from the significant improvement in the original
serial version of the FDTD code obtained from the SPOT
optimization, there are a few other suggestions for
optimizations that should also be considered by the
developers for the 3-D FDTD code, such as strip-mining
for cache lengths, although they are not likely to lead to
improvements as dramatic as those obtained here. The
same loop ordering is recommended for the parallel port
of the code, since the data layout issues remain the same.

Acknowledgments

 This publication was made possible through support
provided by DoD High Performance Computing
Modernization Program (HPCMP) Programming
Environment and Training (PET) activities through
Mississippi State University under the terms of Contract
No. N62306-01-D-7110.

References

1. PAPI website, http://icl.cs.utk.edu/papi.

2. TAU website,
http://www.cs.uoregon.edu/research/paracomp/tau/.

3. Mohr, B. and F. Wolf, “KOJAK–A Tool Set for Automatic
Performance Analysis of Parallel Programs.” Proceedings of the
Euro-Par Conference, 2003, pp. 1301–1304.

4. Huck, K., A. Malony, R. Bell, and A. Morris, “Design and
Implementation of a Parallel Performance Data Management
Framework.” Proceedings of ICCP05, June 2005.

5. Ahn, D. and J. Vetter, “Scalable Analysis Techniques for
Microprocessor Performance Counter Metrics.” Proceedings of
the 2002 ACM/IEEE Conference on Supercomputing, IEEE
Computer Society Press, 2002, pp. 1–16.

6. Socorro web-page:
http://dft.sandia.gov/Socorro/mainpage.html.

7. Ayubi-Moak, J., S. Goodnick, S. Aboud, M. Saraniti, and S.
El-Ghazaly, “Coupling Maxwell’s Equations to Full Band
Particle-Based Simulators.” Journal of Computational
Electronics, 2, Dec 2003, pp.183–190.

8. Berenger, J., “Perfectly Matched Layer for the FDTD
Solution of Wave-structure Interaction Problems.” IEEE
Transactions on Antennas Propagat., 44, 1996, p. 110.

Proceedings of the Users Group Conference (DOD-UGC’05)
0-7695-2496-6/05 $20.00 © 2005 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

