
Access 02 Summer 2005

A
not-so-
simple

matter of
software

Access 03 Summer 2005

An Expert Opinion

When we try to assess how much progress we have
made in computational modeling and simulation, recalling some
history about the related approaches of experiment and theory
can help keep things in perspective. For example, we can trace
the systematic use of experiment back to Galileo in the early
seventeenth century. Yet for all the incredible successes it
enjoyed over its first three centuries, the experimental method
arguably did not fully mature until the elements of good design
and practice were finally analyzed and described in detail by R.
A. Fisher and others in the first half of the twentieth century. In
that light, it seems clear that while computational science has
had many remarkable youthful successes, it is still at a very
early stage in its growth.

Many of us today who want to hasten that growth
believe that the most progressive steps in that direction require
much more community focus on the vital core of computational
science: software and the mathematical models and algorithms
it encodes. Of course the widespread obsession with hardware is
understandable. No one who helps administer the TOP500
Supercomputer Sites project, as I do, can claim to be immune to
it. But when it comes to advancing the cause of computational
modeling and simulation as a new part of the scientific method,
there is no doubt that its complex software ecosystem must take
center stage.

At the application level the science has to be captured
in mathematical models, which in turn are expressed algorithmi-
cally and ultimately encoded as software. Accordingly, on typical
projects the majority of the funding goes to support this trans-
lation, which over its course requires intimate collaboration
among domain scientists, computer scientists, and applied
mathematicians. This process also relies on a large infrastructure
of mathematical libraries, protocols, and system software that
has taken years to build up and that must be maintained, port-
ed, and enhanced for many years to come if the value of the
application codes that depend on it are to be preserved and
extended. The software that encapsulates all this time, energy,
and thought routinely outlasts (usually by years, sometimes by
decades) the hardware it was originally designed to run on, as
well as the individuals who designed and developed it.

Thus the life of computational science revolves around
a multifaceted software ecosystem. But today there is (and
should be) a real concern that this ecosystem, including all of
its complexities, is not ready for the major challenges that will
soon confront the field. Domain scientists now want to create
much larger, multidimensional applications in which a variety of

previously independent models are coupled together, or even
fully integrated. They hope to be able to run these applications
on petascale systems with tens of thousands of processors, to
extract all performance that these platforms can deliver, to
recover automatically from the processor failures that regularly
occur at this scale, and to do all this without sacrificing good
programmability. This vision of computational science contains
numerous unsolved and exciting problems for the software
research community. Unfortunately, it also highlights aspects of
the current software environment that are either immature,
underfunded, or both, as Douglass Post and Lawrence Votta
recently pointed out in Physics Today.

Advancing to the next stage of growth for computa-
tional simulation and modeling will require us to solve basic
research problems in computer science and applied mathematics
even as we create and promulgate a new paradigm for the
development of scientific software. To make progress on both
fronts simultaneously will require a level of sustained, interdisci-
plinary collaboration among the core research communities that,
in the past, has only been achieved by forming and supporting
research centers dedicated to such a common purpose. A
stronger effort is needed by both government and the research
community to embrace such a broad vision.

I believe that the time has come for the leaders of the
computational science movement to focus their energies on cre-
ating such software research centers to carry out this indispen-
sable part of the mission. The NCSA community has always been
in the vanguard of efforts to catalyze and organize precisely
these kinds of interdisciplinary research partnerships that we
now require to transform the future of scientific software. I
have every confidence that this community stands ready to step
up again to this momentous new effort.

Jack Dongarra is university distinguished professor of computer
science in the Computer Science Department at the University of
Tennessee. He also holds the title of distinguished research staff
in the Computer Science and Mathematics Division at Oak Ridge
National Laboratory and is an adjunct professor in the Computer
Science Department at Rice University. He specializes in numeri-
cal algorithms in linear algebra, parallel computing, use of
advanced computer architectures, programming methodology,
and tools for parallel computers. He is executive editor of the
Cyberinfrastructure Technology Watch, a publication of the NSF-
funded Cyberinfrastructure Partnership.

