
Journal of Physics: Conference Series

OPEN ACCESS

NanoPSE: Nanoscience Problem Solving
Environment for atomistic electronic structure of
semiconductor nanostructures
To cite this article: Wesley B Jones et al 2005 J. Phys.: Conf. Ser. 16 038

 

View the article online for updates and enhancements.

Related content
Predicting the electronic properties of 3D,
million-atom semiconductor nanostructure
architectures
A Zunger, A Franceschetti, G Bester et al.

-

A Software Package for Toolpath
Generation and Process Simulation of
Incremental Sheet Forming
Michael C Elford, Jaro Hokkanen and
Andrew J E Stephan

-

Diagnosis diagrams for passing signals on
an automatic block signaling railway
section
E Spunei, I Piroi, C P Chioncel et al.

-

Recent citations
Optical gain characteristics of staggered
InGaN quantum wells lasers
Hongping Zhao and Nelson Tansu

-

This content was downloaded from IP address 73.88.72.176 on 24/07/2020 at 01:32

https://doi.org/10.1088/1742-6596/16/1/038
http://iopscience.iop.org/article/10.1088/1742-6596/46/1/040
http://iopscience.iop.org/article/10.1088/1742-6596/46/1/040
http://iopscience.iop.org/article/10.1088/1742-6596/46/1/040
http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012179
http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012179
http://iopscience.iop.org/article/10.1088/1742-6596/1063/1/012179
http://iopscience.iop.org/article/10.1088/1757-899X/294/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/294/1/012013
http://iopscience.iop.org/article/10.1088/1757-899X/294/1/012013
http://dx.doi.org/10.1063/1.3407564
http://dx.doi.org/10.1063/1.3407564
https://googleads.g.doubleclick.net/pcs/click?xai=AKAOjsvTdVjg_L2CFpmb2jBGRWa5eDQlaG6WW-LRG4xa1-Sgptu3VkFtJmGJRA4eevq1bZm2t9z9FBw3PoIVp0v7bfRFNhxuB6ivFtyDpxzC2jgrJQ6lm_TQrCA_m8Chi_9X0zVjNtdSbOi6hUBBlTEyh6G_aEK-VVreJEoXSbGbguORlQdY9dvuFxqgYNtudgErNRU4FOtD6bsMZN0GP_SOF6YZQXVdWokHFuFqpRa1qd_grfPFjH0m&sig=Cg0ArKJSzJSQc3LNgRaN&adurl=http://iopscience.org/books


NanoPSE: Nanoscience Problem Solving

Environment for atomistic electronic structure of

semiconductor nanostructures

Wesley B Jones1, Gabriel Bester1, Andrew Canning2, Alberto
Franceschetti1, Peter A Graf1, Kwiseon Kim1, Julien Langou3,
Lin-Wang Wang2, Jack Dongarra3 and Alex Zunger1

1 National Renewable Energy Laboratory, Golden, Colorado 80401, U.S.A.
2 Lawrence Berkeley National Laboratory, Berkeley, California 94720, U.S.A.
3 Innovative Computing Laboratory, Department of Computer Science, The University of
Tennessee, Knoxville, Tennessee 37996-3450, U.S.A.

E-mail: wesley jones@nrel.gov

Abstract. Researchers at the National Renewable Energy Laboratory and their collaborators
have developed over the past ∼10 years a set of algorithms for an atomistic description of the
electronic structure of nanostructures, based on plane-wave pseudopotentials and configuration-
interaction. The present contribution describes the first step in assembling these various codes
into a single, portable, integrated set of software packages. This package is part of an ongoing
research project in the development stage. Components of NanoPSE include codes for atomistic
nanostructure generation and passivation, valence force field model for atomic relaxation,
code for potential field generation, empirical pseudopotential method solver, strained linear
combination of bulk bands method solver, configuration interaction solver for excited states,
selection of linear algebra methods, and several inverse band structure solvers. Although not
available for general distribution at this time as it is being developed and tested, the design
goal of the NanoPSE software is to provide a software context for collaboration. The software
package is enabled by fcdev, an integrated collection of best practice GNU software for open
source development and distribution augmented to better support FORTRAN.

1. Introduction
Through the Nanoscience Theory grant solicitation, LAB-03-17, our collaboration of physicists,
computational scientists and mathematicians is funded under the grant entitled, “Predicting the
Electronic Properties of 3D, Million-Atom Semiconductor Nanostructure Architectures.” This
includes the investigation of the electronic structure of quantum dots [1]-[18] and solving the
inverse band structure problem [19, 20]. To solve this problem we cast the inverse problem as
an optimization problem and run the forward solvers (i.e., “direct” nanostructure calculations)
many times in an automated fashion controlled by an optimization algorithm. NanoPSE was
born out of the need to automatically and robustly call the forward solvers along with the
requirement to have a standard set of codes. Its design is expected to lead to a software package
architecture that will enable collaboration among a diverse group of researchers. NanoPSE is not
available for general distribution at this time as it is part of a research project in the development

Institute of Physics Publishing Journal of Physics: Conference Series 16 (2005) 277–282
doi:10.1088/1742-6596/16/1/038 SciDAC 2005

277© 2005 IOP Publishing Ltd



stage. A description of the NanoPSE software, software architecture and supporting software is
the subject of this paper.

In Section 2 we briefly summarize the original codes that are included in the NanoPSE
software package. Section 3 describes the design of the NanoPSE software package and Section
4 describes the supporting software for the package, fcdev, based on GNU autotools [21].

2. NanoPSE Components
The most important pieces of the NanoPSE software distribution are the physics codes and
mathematical algorithms contained in the package. In the present context we cannot give
due justice to the physics problems that may be addressed or the complexity and range
of applicability of the underlying algorithms. Here, we simply give references, a very brief
description of the components contained in the NanoPSE software package and name the
supporting libraries required.

2.1. Generation of atomic coordinates, shapes and its surface passivation (NanoStruct)
NanoPSE currently contains two codes for generating atomic coordinates and shapes of complex
nanostructures and an algorithm for placing surface passivant atoms on these structures. These
replace the previous passivation codes of [1].

2.2. Relaxation of atomic coordinates via Valence Force Field (VFF)
Keating’s VFF was applied to atomic relaxation in alloys in 1984 by Martins and Zunger [2].
This two-parameter potential was generalized to more parameters first by Silverman et al. [3]
and by Fu et al. [4]. The algorithm of calculating the relaxation was developed by J. Kim et al.
[5] and by K. Kim et al. [6]. To calculate the relaxed atomic positions the strain energy in the
system is minimized and the positions are obtained starting from their ideal tetrahedral-bonded
configuration. Examples of applications are given in [6, 7].

2.3. Constructing a screened pseudopotential
The original “Empirical Pseudopotential Method” (EPM) is modified by deriving it from LDA,
following empirical adjustments to overcome the “LDA errors” [8]. The codes performing this
are not incorporated yet into NanoPSE. A library of potentials is being constructed.

2.4. Solving the plane-wave pseudopotential Schrödinger equations via the Folded Spectrum
Method (FSM)
To solve the Schrödinger equation, for the single particle eigenvalues using a fixed empirical
pseudopotential we use the folded spectrum method [9] parallelized in [10]. The combination
of the use of the empirical pseudopotential method with the folded spectrum method to solve
for electronic states near conduction and valence band edges of the nanostructure allows million
atom systems to be addressed. Examples of applications are given in [11, 12].

2.5. Solving the plane-wave pseudopotential Schrödinger equation via the Strained Linear
Combination of Bulk Bands (SLCBB) Method
In the SLCBB method [13] the Schrödinger equation is solved non-self-consistently like, in the
previous case, but the wave functions are expanded using a basis of strained Bloch functions
calculated from Bulk materials. The method has been developed further by S. Nair et al. [14].
The advantage of this method is a strongly reduced size of the basis and a sub-linear scaling.
The computational cost of the method mainly scales with the complexity of the system, not its
size. Examples of applications are given in [15, 16].

278



2.6. Coulomb and exchange matrix elements and the configuration interaction calculation for
excited states (MX)
Once the single-particle Schrödinger equation has been solved using methods 2.4 and 2.5, the
ensuing single particle energies and wave functions are used to construct the basis set for the
configuration interaction (CI) Hamiltonian. This requires the calculation of four-point Coulomb
and exchange integrals between single-particle wave functions. The CI Hamiltonian is then
iteratively diagonalized to obtain the electronic excited states (e.g. excitons, multi excitons,
etc.) of the nanostructure [17]. Examples of applications are given in [18].

2.7. Inverse band structure solver
The inverse band structure problem [19] (i.e. for a given band structure, find the corresponding
atomic configuration) is cast as an optimization problem and solved via a hierarchical parallel
genetic algorithm [20]. This code uses a number of components recast as subroutines solving the
forward problem (i.e. for a given atomic configuration, find the corresponding band structure)
many times to find the optimal solution. Applications are given in [20].

2.8. Selection of iterative methods for eigenvalue computation
Interior eigenvalue problems are one of the common difficult mathematical problems that
SLCBB and PESCAN need to solve [22]. Solvers to address these problems will need to
feature: speed, robustness, accuracy, parallel distributed memory, a common API based on
reverse communication, spectral transformation for interior eigenvalues, block algorithm, use of
preconditioner for acceleration of the convergence, focus on the Hermitian case, and modified
structure of the matrix when the k-point is 0. The most promising candidate to improve upon
currently implemented FSM solvers is the LOBPCG method.

2.9. Supporting software and libraries
The following supporting libraries are called by NanoPSE: FFTW, BLAS, LAPACK, ARPACK,
HDF5, PGAPACK and MPI.

3. NanoPSE Software Package Design
The NanoPSE software package was implemented to enable the optimization solvers to more
easily interact with the forward solvers and allow for more rapid implementation of different
types of optimization problems. The design has proven useful for the latter case and in addition
contains the current standard version of codes and helps enable collaboration among the current
researchers and code developers. The properties that have made this possible are as follows:

• A comprehensive software context;
• Integration with a revision control system, the concurrent version system (CVS);
• Division of the software and responsibility into software components enforced by CVS;
• Portability to many architectures, including the development environment;
• Ease of integration and maintenance of new software components via the fcdev framework;
• Integration into a software management system (i.e. modules) for ease of developer and

end user interaction with multiple revisions.

A comprehensive software context is a collection of all of the software needed to solve a
problem or a set of problems with clearly defined interfaces to software not contained in the
collection. In our case an interface is simply defined by the application-programming interface
(API) of the supporting libraries. Having a clear comprehensive software context, at least as a
base, distinctly defines the details of investigations that are immediately possible and separable
from larger, more interesting questions concerning physics and math algorithms.

279



NanoPSE is stored in CVS. The revision control system starts by helping code developers on
a day-to-day basis more rapidly develop codes, enables the tracking of regressions, and allows
the NanoPSE software manager to more easily ensure the integrity of a release.

NanoPSE is separated into components. Each component is a software package unto itself
so that it may be licensed, tested and released individually. With each component is associated
a primary contributing researcher who is either responsible for the code or contributed to the
code. The separation of components is enforced via UNIX permissions within CVS so that only
a subset of the researchers may make changes to a component. Each component, however, is
integrated into the NanoPSE hierarchy so that an end user may configure, make, and install all
or a subset of the NanoPSE components easily.

NanoPSE is ported to a number of architectures and, due to the inherent portability enabled
by fcdev, should be easily ported to other platforms when the need arises. The uniform build
environment allows us to more easily adapt to new architectures by identifying and addressing
issues once and having the solution easily propagate to all of the application codes. Currently
the NanoPSE software distribution is known to run on IA32-Linux, AMD64-Linux, IA64-Linux,
MAC OS X, IBM AIX, and SGI Irix. The entire software package may be built, a subset of the
software package may be built or the entire software package minus a subset may be built. This
enables porting specific components individually to new architectures and allows developers to
concentrate on their own software.

The ease with which new software components are integrated into and tested for the overall
architecture allows for a software distribution manager to manage specific components that
cannot be managed directly by the developers who have contributed or are responsible for a
component. This is enabled by fcdev.

The ease with which NanoPSE and fcdev integrate into a software management system such
as modules [23], enhanced with pkg-config, allows for the support and testing of new versions
of NanoPSE as well as new revisions of libraries. With automatic query and configuration via
pkg-config, we are able to load one set of modules, build and test the software, and compare
against the same software built with a different set of loaded modules. In addition, end users
are more easily able to load a module with one version of NanoPSE and test against a different
version of NanoPSE.

The properties of the NanoPSE software distribution described above have helped us in a
number of ways and at the same time have not increased the net burden on the researchers.
In some cases the system has helped collaborators with an incomplete knowledge of the whole
system, enhance the system and have their enhancements tested. This includes the work to the
individual codes to make them more portable and ported to various architectures. Without the
software context and components provided by NanoPSE, linking the forward solvers together
for optimization — especially with support for hierarchical parallelism — would be virtually
impossible. Thus, the NanoPSE software distribution design has enabled a broader set of
problems to be investigated using the inverse band structure method than might otherwise
have been the case.

4. Fcdev
The GNU Autotools — autoconf, automake, libtool — provide a foundational mechanism for
developers to construct source code software distributions. These tools are widely used in the
open source community and define the de-facto standard software distribution development
environment in the Linux open source community.

Once constructed, software distributions based on GNU autotools have a number of
characteristics that make them very desirable. First, the near universal use of open source
software distributions based on these tools makes knowledge about these tools easy to obtain,
either via in house staff expertise or external web based knowledge. Second, the software

280



distributions can be made such that installation across the platform spectrum is possible,
including Linux, Unix, MAC and Windows. Third, the installation process can be easy or
at a minimum diagnosable via the first characteristic.

The problems with these tools for scientific software development are twofold. The first is
that the support of the tools for FORTRAN is minimal, archaic, and/or not integrated across
the toolset. Autoconf-2.58 and later is the partial exception. The second is a lack of ease of use
and access to implementation specifics, especially when it comes to using FORTRAN. We have
addressed the first by creating fcdev and the second by creating fcdeveg, examples of fcdev for
the beginner.

Fcdev is an integrated collection of best practice GNU software for open source development
and distribution including autoconf, automake, libtool and pkg-config. This software is
augmented to better support FORTRAN by enhancing the underlying development software
packages and includes extra tools, e.g. fcdep, and fcdeveg. fcdeveg is designed such that it
integrates well with a revision control system such as CVS and with a software management
system such as modules [23].

Fcdev has the following software components: 1) Autoconf-2.58, 2) Automake-1.7.6 :
modified, 3) Libtool-1.4.3, 4) Pkgconfig-0.15.2: modified, 5) Fcdep-0.1.1, 6) Fcdeveg-0.1.0, 7)
M4-1.4 (or equivalent) : usually already installed. We worked with the autoconf developers
to include desired features for support of FORTRAN and follow their conventions, such that
autoconf-2.58 does not need to be modified for our use.

Fcdev and fcdeveg have the following features:

• Ease of creation of FORTRAN distributions from many FORTRAN source files
• Support for industry standard preprocessing via the C preprocessor with fixed form

extension, .F and .fpp and free form extensions, .F90 and .f90pp
• Support for industry standard extensions of fixed form, .f and free form, .f90
• Automatic dependency resolution of FORTRAN90 modules: fcdep.pl
• Automatic library API compiling and linking resolution: pkg-config −−variable=FCFLAGS
−−variable=FCLIBS

• Automatic with environmental variable override for most features such as specification of
compilers and library linking

• Examples for the features in full software distribution form
• Macros and environmental variable settings for Linux-IA32, Linux-IA64, Linux-AMD64,

IBM AIX, SGI Irix, MAC OS X
• Integrated compatibility with CVS or other revision control system
• Integrated compatibility with modules or other software management system

Although not complete, especially with respect to our prototype support for configuration
of C preprocessing of FORTRAN files in automake, fcdev contains all of the pieces for, is a
context for, and represents another step toward enabling computational scientists who support
FORTRAN applications to more easily use GNU autotools for creating and maintaining software
distributions.

This work was supported by U.S. DOE-SC-ASCR-MICS through LAB-03-17 Theory
Modeling in Nanoscience Initiative under Contract No. DE-AC36-99GO10337.

References
[1] Wang L-W and Zunger A 1996 Studies in Surface Science and Catalysis vol 103 ed P V Kamat and D Meisel

(Amsterdam, Elsevier Science) p 161
[2] Martins J L and Zunger A 1984 Phys. Rev. B 30 R6217
[3] Silverman A, Zunger A, Kalish R and Adler J 1995 Phys. Rev. B 51 10795

281



[4] Fu H, Ozolins V and Zunger A 1998 Phys. Rev. B 59 2881
[5] Kim J, Wang L-W and Zunger A 1998 Phys. Rev. B 57 R9408; Wang L-W, Kim J and Zunger A 1999 Phys.

Rev. B 59 5678
[6] Kim K, Kent P R C, Zunger A and Geller C B 2002 Phys. Rev. B 66 045208
[7] Shumway J, Williamson A J, Zunger A, Passaeso A, DeGiorgi M, Cingolani R, Catalano M and Crozier P

2001 Phys. Rev. B 64 125302
[8] Wang L-W and Zunger A 1995 Phys. Rev. B 51 17398; Fu H and Zunger A 1997 Phys. Rev. B 55 1642
[9] Wang L-W and Zunger A 1994 J. Chem. Phys. 100 2394

[10] Canning A, Wang L-W, Williamson A J and Zunger A 2000 J. Comput. Phys. 160 29
[11] Fu H and Zunger A 1997 Phys. Rev. B 56 1496; Fu H and Zunger A 1998 Phys. Rev. Lett. 80 5397
[12] Franceschetti A, Williamson A J and Zunger A 2000 J. Phys. Chem. B 104 3398
[13] Wang L-W and Zunger A 1999 Phys. Rev. B 59 15806
[14] Bester G, Nair S and Zunger A, submitted to Phys. Rev. B, Rapid Communications.
[15] Shumway J, Franceschetti A and Zunger A 2001 Phys. Rev B 63 155316
[16] Bester G and Zunger A 2003 Phys. Rev. B 68 073309
[17] Franceschetti A, Fu H, Wang L-W and Zunger A 1999 Phys. Rev. B 60 1819
[18] Franceschetti A and Zunger A 2000 Phys. Rev. B 62 2614; Williamson A J, Franceschetti A and Zunger A

2000 Europhysics Lett. 53 59; Reboredo F, Franceschetti A and Zunger A 1999 App. Phys. Lett. 75 2972
[19] Franceschetti A and Zunger A 1999 Nature 402 60
[20] Kim K, Graf P A and Jones W B 2005 J. Comput. Phys. 208 735; Dudiy S and Zunger A (In preparation)
[21] Vaughan G V, Elliston B, Tromey T and Taylor I L 2000 GNU Autoconf, Automake, and Libtool (Pearson

Education) 1st ed.
[22] Tomov S, Langou J, Canning A, Wang L-W and Dongarra J 2005 Proc. of 5th Int. Conf. on Computational

Sciences (ICCS), Atlanta, GA, Part III. Springer’s Lecture Notes in Computer Science, LNCS-3516, p 317
[23] Furlani J L 1991 Proc. of the 5th Large Installation Systems Admin. Conf. (LISA V), San Diego, CA p 141

282


