
1

Improvements in the Efficient Composition of
Applications Built using a Component-based

Programming Environment
Thomas Eidson, Victor Eijkhout, Jack Dongarra

I. I NTRODUCTION

As computational science has evolved, applications are
being developed that focus on more complex problems [1], [2].
This often results in the use of a set of element applications,
that focus on a relatively narrow aspect, to build composite
applications that are more complex in scope. This often
requires for the various codes that make up the composite
application to be executed on several computers located on
a heterogeneous network of computers. These codes may be
stand-alone executables or they may be a library of functions
(or objects for object-oriented languages). These codes are
often created by multiple developers, so efficient code sharing
and good portability are often important requirements. The use
of software component technology is viewed as one approach
for developing a software development environment, or frame-
work, that supports the development of such applications [3],
[4], [5], [6].

Systems based on software components generally focus on
the interface design of the user code packaged as a component
based on some specification [7]. A framework can then be
developed that supports the efficient integration of such com-
ponents into a composite application. Often, a framework in-
cludes a registry service which catalogs available components
along with appropriate information, or metadata, for use of
those components. These systems can make the development
of composite applications easier.

The software component model is sometimes viewed as
providing a similar ease of use as that found with electronic
components for audio systems and personal computers. This
analogy has some merit, but there is a key difference. The
functionality provided at each electronic component interface
is limited to a few standards with new specification evolving
slowly. In the computational science arena, especially at the
research end of the spectrum, interfaces need to be very
flexible as testing different ideas is often done. But even more
important, the compatibility of a software component to a com-
posite application can strongly depend on the internal behavior
of that component. Determining if a software component is
sufficiently compatible can require a great deal of testing and
even modifying the composite application.

This research was supported in part by NSF NGS program under grant
ACI-0203984 and in part by the AMS/MICS office of the DOE under contract
DE-AC05-00OR22725 with UT-Battelle, LLC.

Old Dominion University, Norfolk, VA
University of Tennessee, Knoxville TN 37996

Our research [8] is focused on the development of a
component-based framework that supports components with
improved programming flexibility and with behavioral analysis
capability. [9] In this paper, we will outline the approach that
we are developing in these two areas. An important part of a
programming system with such capabilities is the method by
which information describing the programming characteristics
of a software component is managed. This information is
often packaged separately from the user code that expresses
the primary algorithm of the component. It is referred to as
metadata. In this paper, one focus will be on describing the
metadata designs behind the prototypes that we are developing.
Additionally, aspect-oriented programming (AOP) concepts
will be used to motivate the design of a framework that
supports better application modularity (or using an AOP term,
better separation of concern) [10], [11].

II. A PPLICATION COMPOSITION

One of the most important requirements of a well-designed
application is that it be organized into appropriate modular
units. Such a modular design is useful for a number of reasons,
with the most important being that the code is typically easier
for the developer and others to understand. But a modular
design does not guarantee that the application is sufficiently
easy and efficient to modify. As mentioned above, composite
applications that are developed to study new phenomena need
good modification flexibility. Developers will need to modify
each code elements to determine the best algorithms. They
might also need to combine code elements in a variety of
different configurations. This means that the design of each
element’s behavior and its interfaces must support flexible
composability requirements. Such applications may be used
by groups and on a variety of platforms, so flexibility is also
needed to support different user preferences.

Such flexibility starts with the design of the modular units.
Most scientific applications are focused on computing algo-
rithms that model some physical problem, and the code that
directly implements those algorithms can be viewed as the
primary aspect of the application. In the following discussion,
this code will be referred to as the application ‘tasks’. A
well-designed task should typically compute a clearly defined
segment of the overall application. Ideally, the task code would
display a sense of completeness. Specifically, the algorithm
being implemented would be relatively easy to discern from
viewing the code. This would mean that the behavior of any



2

function calls should be able to be described in a succinct
manner. However, modeling science can result in complex
coding requirements where optimization and correctness de-
mands result in code that is not so clearly designed. In some
cases data can be very large, so a single copy must often be
shared with different tasks in the application. This can result
in compromises in coding style for some tasks that do not
produce the optimum clarity. In other cases, the data has to
be moved outside the scope of the task: written to a file, sent
as a message, or passed as a function argument. For various
reasons, the coding of such data transfers often results in
intertwined code. This intertwined code can result in a loss
of clarity in understanding the primary aspect of the task and
make it more difficult to make code changes. This data transfer
code can be though of as one type of secondary aspect of the
user code.

The result is that a great deal of scientific applications are
difficult to port to other machines, share with other users, and
integrate with other applications. The developers want to focus
on developing the best tasks (where they have expert skills)
and not be distracted with the design of the secondary tasks.
While object-oriented programming has provided some con-
structs which help, much more needs to be done. The research
being discussed herein is focused on developing programming
techniques that promote the development of applications with
good portability characteristics which can be more easily
shared with others and integrated into composite applications.
The emphasis will be on supporting a programming style
where the primary tasks and the secondary aspects can be
managed separately.

A. Distributed Computing Aspects

It can be a subjective decision as to what code is character-
ized as part of the primary tasks and what code is associated
with secondary aspects. With this caveat, one example of
a secondary aspect is the modification of a straight-forward
implementation to give better performance for a particular
compiler or hardware architecture. Another example is error
handling code that allows an application to close gracefully
rather than crashing when an error occurs. However, a large
group of aspects deal with communication of data between
different tasks as discussed in the previous section. Programs
written for distributed environments usually include a large
number of these type of aspects. The approach discussed below
will focus on these data communication aspects.

As computer hardware technology evolved, distributed com-
puting became an alluring option. At the expensive end, special
purpose machines need to be shared by users located at
different sites. At the less expensive end, there is an increasing
number of underutilized machines with a useful performance
level. However, to be useful, it is usually necessary that the
application be distributed over a number of machines, and
distributed applications can be difficult to develop and manage.
Distributed applications involve more resources than a single
machine application and the result is more secondary aspects
which are required to manage these resources. For a single
machine application, the main secondary aspect is managing

input/output to files. For a distributed application, the appli-
cation not only needs to use files but it needs to know where
the tasks are that use them, how those tasks are grouped into
executables, where those executables are located, and other
information not relevant to the single machine environment.
Multiple copies of data and code are often needed. Error
handling and debugging are more difficult.

B. DIST Programming Model

The DIST Programming Model was a first attempt at man-
aging these distributed computing aspects [12], [13]. The DIST
Programming Model evolved as part of the development of a
general programming framework for the development of large,
distributed, composite applications. The primary user code was
encapsulated as a Task Programming Component. The other
coding aspects were encapsulated into other Programming
Components.

1) A Task Programming Componentmaps to the basic task
concept described above. It is the primary abstraction
that encapsulates user-written code. The user code could
be single-threaded, multi-threaded, or data-parallel. A
popular approach to designing programming systems is
package task code as a software component.

2) A Context Programming Componentis defined as a
collection of tasks and data packaged for execution
and interaction with other tasks. A Unix process is an
example. It is often convenient to design a context as
a server that can dynamically load tasks and create
memory to store data values.

3) A Memory Programming Componentis used to manage
user defined datasets that need to be shared with other
tasks in the same context. By managing the primary
copy of shared data outside the scope of a task, each
task gains portability. This eliminates ownership of the
data as a composability problem. Clearly, appropriate
synchronization must be part of the design. Both copy
and direct access (via pointers) techniques can be made
available to support parallel usage and performance
requirements.

4) A Platform Programming Componentencapsulates one
or more computers managed as a single entity that is
connected via a network to other platforms. A Platform
is managed as part of a site (essentially, a local area
network with some shared file systems). In addition to
describing the details of a physical or virtual computer,
the Platform includes information about file systems,
resource schedulers, and potentially other site resources.

5) An External Programming Componentencapsulates
software systems and hardware devices outside the scope
of a context where data can be sent to or received from.
The primary example is a file.

6) An Event Programming Componentis used to defined
synchronization signals that are shared by different
tasks.

Each Programming Component type encapsulates a physical
or conceptual entity that needs explicit management in a
distributed application. Associated with each Programming



3

Component type are a set of methods to manage that entity and
a set of metadata to allow one to configure different entities
of that same type. The entities can be specific or virtual.
For example, a specific Platform definition would describe a
specific computer and specify its network address. A virtual
definition would give requirements that a scheduling system
could satisfy at runtime. Framework methods are designed
to provide the basic distributed computing requirements. For
a Context instance, this includes starting and stopping the
associated executable code. For a Task instance, this includes
starting and stopping user methods or functions along with
moving input and output arguments between the Contexts
where the calling and the called code reside. For a Memory
instance, methods are needed to move data between a Memory
instance and a Task instance, as well as between two Memory
instance which might be in different Contexts.

For each Programming Component type, one or more
definitions can be defined via metadata and named. The
names of these Programming Component definitions are then
used with framework methods in user code to identify each
particular definition. In the user code, an instance of a partic-
ular Programming Component definition can be created and
named. Framework methods associated with that Programming
Component type can then be executed on that instance ob-
ject. A framework compatible with the DIST Programming
Model will execute these methods and provide any underlying
distributed computing functionality. Because of the choice of
Programming Component types and the associated metadata,
a framework can be designed to provide this distributed
computing functionality with a good degree of efficiency.

III. A PPLYING ASPECT-ORIENTED PROGRAMMING

CONCEPTS

A. Aspect-Oriented Programming

The DIST Programming Model supports a programming
style with good composability and portability characteristics.
An application that uses DIST has much of the distributed
programming detail removed from internal locations in the
task code and located in metadata files where it can be more
easily managed. However, specific Programming Component
methods still were dispersed in the user code and portability
still needed improvement.

For example, a task might be developed to use an External
Programming Component to write data to a file. When shared
in another application, this task might be required to send
the data as a message to another task. The task would then
need to be modified. It is such a modification that generates
the concern. Often when such modifications are made, the
primary aspects of the tasks are accidentally altered. The
debugging process then needs to be repeated and this can be
very expensive.

As mentioned above, it would be much better if the primary
and secondary aspects could be managed separately. For code
correctness and performance reasons, this can be difficult.
Therefore, the different aspects are often programmed in a
cross-cutting style. Managing these cross-cutting concerns
is just one example of the programming problems that are

being addressed by a area of research which is referred to
as Aspect-Oriented Programming (AOP) [10], [11]. An AOP-
based system would manage the task and aspect code sepa-
rately to support efficient code development and modification.
A programming and execution framework would support the
interweaving of the task and aspect code so that correct and
efficient execution would result. This interweaving could occur
during compilation or at runtime or both.

B. The Nautilus Framework

In the Nautilus project, AOP concepts are being used to
extend the DIST Programming Model. The focus is on re-
placing the use of Programming Component methods that are
specific to each Programming Component type with generic
methods. When the methods for the various Programming
Component types are analyzed, it can be observed that they all
involve importing or exporting data and defining functionality
requests that need to be executed outside the scope of that task.
The portability and flexibility concerns, mentioned above, are
directly related to how much of the detail of each external
request is hard-coded inside the task.

A generic method approach is being incorporated into the
DIST model to minimize those details. Many import/export
operations involve moving data. At the point where the request
is passed to the execution system, the data is passed by
specifying it in terms of task variables which take the form of
pointers or memory addresses. [This is even true when data is
passed-by-value. The execution system just uses the memory
addresses to make a copy of the data in that case.] An alternate
approach would be to organize any data that needs to be passed
out of the scope of the task into datasets. Each dataset would
consist of a set of elements. Each element would consist of
an array of variables of a single base data type along with
a label (i.e, a string variable). The task would create such
datasets, name them, and expose their memory addresses to
the framework as part of a registration process. This would
be allow data references to be passed to any execution system
or framework as labels rather than memory addresses when
done as part of a request for external functionality. This
supports a distributed execution environment since labels can
be understood by executing code in different memory address
spaces (i.e., different processes). It also supports the use of
AOP concepts. Aspect code can be written that executes
secondary aspects outside the scope of the primary task. The
framework would intertwine the execution of the aspect and
the primary task code in an appropriate manner. The aspect
code would just execute on data provided by the task at some
appropriate point. The use of labels to specify the desired data
to be used by the aspect allows for a more flexible system to
be designed.

The user task needs to define and to communicate these
appropriate points to the framework. In the AOP literature,
such points are referred to as join points. In Nautilus, they
are just framework methods that passes a unique label to
the framework to identify a location in the user algorithm.
Separate aspect code can then be generated that maps a
desired operation and any associated dataset labels to each



4

join point label. An AOP implementation would vary from
such a simple mapping to a more complex approach where
conditional statements are included.

A set of join point and dataset definition methods could
be enough. But, this would require that all data access
synchronization be specified as part of the definition maps
for a join point. By adding lock and unlock functionality
to the dataset design, it is anticipated that a more flexible
programming system will result. Both approaches will be tried
in the Nautilus prototype being built.

The implementation will initially take two forms. The base
form will be a set of framework aspect methods that can be
configured by the application developer using metadata. This
will provide the simple mapping functionality described above.
The programmer will provide a list of mapping instructions
that specify the name of methods to execute at each join point
along with the name of the datasets to use with those methods.
For more complex functionality, such as conditional execution
of an aspect at a join point, an aspect method library will be
developed. This library will allow the user to write an aspect
code that would typically run in parallel with the primary task.
For example, this user aspect code would interject appropriate
operations at each join point in the task code.

C. Discussion

Historically, all information requests needed to augment
the primary computations of a user task have been done
with some type of procedure call. In most languages, these
procedure calls and any associated data were passed to an
executing framework (the operating system in most cases) as
some type of pointer. This has proved to be a very efficient
programming and execution approach in single machine envi-
ronments. But for distribute environments, pointers generally
cannot be passed from one executable to another. Essentially,
the request on one machine needs to be put in a form that
can be shipped to the target machine and then translated back
to form where the code on that target machine can execute
the desired procedure. One approach is to use an interface
definition language(IDL) and define any needed functions or
methods in this ‘super-language’ so that an IDL compiler can
generate appropriate code for used in the calling and the called
executable [5].

The approach described below supports applications that
need a solution that a more flexible approach to code inte-
gration. Consider the follow form:

<output dataset label> =
framework_method (<function label>,

<input dataset label>)

The ‘framework method’ represents a small set of traditional
style procedure calls that could be used to request any func-
tionality that is executed outside the scope of a task. The
specific functionality could be expressed by the<function
name> argument. It would just be a portable label (i.e, a
string variable). Just as was the case for data describe above,
the use of a label rather a function pointer has advantages for
implementing framework that support distributed computing

and aspect-oriented programming. The use of separate datasets
for input and output arguments makes it clear what data needs
to be moved.

For applications that include a large number of function
calls with a variety of different arguments, one might think that
this would result in maintaining a large number of datasets.
One might need to create or modify a dataset for each remote
request. However, the framework could be designed to support
argument formats. Using argument formats a super dataset
could be programmed that contained the input arguments (and
even the output arguments) for a set of functions. The metadata
for each function could include the name of an argument
format. The argument format would specify those element
labels needed for the input and output arguments of that
function. Aspect code could be used to select different element
labels for the same function at different join points. The user
task could be written in a relatively generally style. External
metadata could then provide the specificity to complete the
application. The advantage is that a task can be more easily
modified to test different options or to be integrated in other
applications.

The design being developed in the Nautilus framework
is exploring many of the possibilities suggested above. The
target ‘framework methods’ will include the join point concept
along with support for dataset management and usage. The
design will include all the original DIST system Programming
Components and framework methods. But, the implementation
being built will support the execution of these methods as
aspect code triggered by execution of a join point located in
the task code. In many cases, the distributed computing func-
tionality can be requested by creating a simple metadata file.
For example, a metadata file could contain a list of Contexts,
each with an associated Platform. This list would specify a
set of executables along with the machine on which to start
that executable or a procedure to determine that machine. The
metadata could also specify a set of Tasks to pre-load (so that
the executable defined by a Context could dynamically link
to a object library). Other metadata information could specify
that files be pre-staged to designated Platforms (actually to a
file system associated with the machine represented by that
Platform). Such aspect metadata could be used to initialized
the remote executables of a distributed application. Alternately,
it could be triggered by a single execution of a join point
to start additional resources. This is just one example of
where the extension of the DIST model using AOP concepts
can generate an application with significant programming
flexibility.

Ultimately, it is believed that the proposed approach will
result in a programming style that supports a high degree of
programming clarity. When a developer writes a task, they
will focus on the coding of the primary algorithm along with
defining datasets and join points to support any potential
sharing of data with another task. This is similar to what
a user does when a function call is inserted into the task.
The difference will be that the user will focus more on data
exchanges and the timing of those exchanges rather than the
behavior of how that data is created or used outside the scope
of the task being created at that moment. That data exchange



5

may be done by the execution of a local or remote task at
runtime, but it could also be done by reading or writing a file
(or some equivalent entity). This decision of how the data
will be exchanged can more easily be delayed because of
the programming flexibility that results from an AOP-based
framework design. This will be particularly important when
the choice of the specific remote task requires a behavioral
analysis technique were data needs to be collected by running
several candidate tasks in the target application to see which
is more suitable. This is the type of analysis discussed in the
Behavioural metadata section below.

The above approach should be viewed as an experiment in
new programming techniques rather than as a prototype for
a new language. The basic goal of an AOP system, a better
modular application design, is clearly desirable. The ultimate
value of AOP will depend on whether practical approaches
can be implemented. While programming each aspect of a
system separately has conceptual merit, it can also lead to
disaster. Most experienced programming are aware of many
cases where a high-level programming choice did not give the
expected result when the compiler translated that high-level
instructions and integrated them with the other parts of the
application.

For this reason, the approach taken is not to develop just a
set of high-level instructions that implement aspect weaving
in a black-box mode. For a few simple cases, framework
methods will provide aspect weaving capability. For the more
complex cases, the emphasis is to implement support for the
programmer to develop their own aspect weaving code. Once
the value and practicality of aspect weaving is learned, more
sophisticated language approaches can be implemented.

Clearly, there will be some negatives to this approach. As
the initial implementations will all be done using runtime li-
braries, execution efficiency may suffer. However, the potential
exists for the some of proposed techniques (along with ideas
from other AOP research) to be integrated into compilation
systems. Ideally, new languages could be developed that better
support distributed computing and aspect-oriented program-
ming.

IV. B EHAVIORAL METADATA

Our proposed programming framework can also govern the
insertion of numerical capabilities into application compo-
nents. This process is not straightforward, since often there are
several numerical algorithms that will realize the same input-
output specification, but do so with radically different degrees
of efficiency. Deciding on the right algorithm is therefore of
tremendous importance. Unfortunately, the optimal choice is
inherently intractable, depending in complicated ways on the
problem data, and in practice we can only hope to make a
good enough choice. Even this more modest aim is one that
is difficult to automate. For small-scale projects the proper
choice of numerics involves extensive experimentation, and
for larger-scale projects often a numericist is included on the
payroll to arrive at an efficiently executing application.

Recent experiments have shown that this degree of human
intervention can be considerably lessened, by employing non-
numerical data analysis techniques in the field of solving

systems of linear equations by iterative methods. Work by
Bhowmick et al [14], [15] uses statistical techniques to con-
struct multi-methods, ranking iterative methods in some order
of reliability, an idea that was used in the LinSol package [16]
but only based on heuristic reasoning there. A more dynamic
approach, basing the ranking of methods on the properties
of the input data, was taken by Xuet al [17] and Eijkhout
and Fuentes [18]. Experiments by Eijkhout and Fuentes have
shown this approach of applying non-numerical techniques to
numerical decision making to be especially promising.

Our development of behavioral metadata in the program-
ming framework is intended to support such approaches.

A. Components and interfaces in numerical decision making

In the traditional way of calling numerical libraries straight
from the application code, the only defined interface is that of
the problem data. Typically this is stored in some sparse matrix
format and using arrays for any vectors passed. However,
implicitly there is at least one more interface. Many numerical
routines take parameters that control their inner workings,
such as the restart parameter in GMRES, the ordering of a
direct LU factorization, or the number of fill-in levels in an
ILU preconditioner. Absent any decision-making support, such
settings are supplied by the programmer. In our notion of a
framework we want to move to a scenario where these settings
are programmatically supplied. A component supplying these
parameters could additionally make the decision which of a
number of available algorithms to instantiate in the context of
the current problem.

This component, which we will call an ‘(Intelligent)
Switch’, has two interfaces, one on the side of the numerics,
and one on the application side. For now we will largely be
concerned with the latter; we will address the former in future
research.

The Intelligent Switch is concerned with dynamic numer-
ical decision making. For this, the application-side interface
accepts minimally the problem data. This, however would put
the burden of the problem analysis on the Switch, which is not
the appropriate place for it. Rather, we posit the existence of
Analysis Modules which accept the problem data (or subsets
thereof) and return metadata: higher level descriptions of the
problem data. Since this kind of metadata is of a higher level
than strictly describing the data, and is intended to influence
the numerics of the application, we call this ‘behavioral
metadata’.

B. Behavioral metadata

Behavioral metadata is different in nature from the metadata
described in the earlier part of this paper, and from the usual
notion of metadata as giving a full description of problem data.
We envision two kinds of behavioral metadata:

1) Information that is derived from the problem data, such
as matrix norms or estimates of the operator spectrum,
and

2) Information that is known to the generating application,
but which typically does not get included in the problem



6

data, such as the nature of the discretization scheme
used.

We will devote a few words to both categories.
1) Derived metadata:There is a lot of information about

problem data that could conceivably be useful to numerical
software, such as information about the structure of the
problem, or spectral information about the operator. (See
section IV-C for discussion of our initial core categories of
derived metadata.) Some of this information, such as structural
properties, can be derived from a matrix in time proportional
to the number of nonzero elements. Spectral data, on the other
hand, can not be found exactly in a time essentially less than
that required to solve the problem, so we have to resort to
heuristic estimates. In between these two categories lie such
data as the norm of the symmetric part of an operator, which is
moderately tricky to compute, especially in a parallel context.

Generation of derived metadata requires only the problem
data as input to the analysis modules; the metadata is then the
formal description of information passed from the analysis
modules to the switch component.

2) Application metadata:The second kind of behavioral
metadata does not consist of derivable data, but rather of
information that is normally lost in the interface between the
physics and numerics component. Typically examples are the
coordinates of grid points, which can be used for geometric
domain decomposition, or the nature of the finite element
discretization, which information can be used by multigrid
codes, or incomplete factorization routines.

In this case of application metadata, the analysis modules
do not derive the metadata, but rather perform at most a
translation. Both interfaces of the analysis module now use
behavioral metadata, though probably of different categories
on input from on output. (See below for a further explanation
of metadata categories.)

C. Core metadata categories

In [18] we described a storage format and API for dealing
with behavioral metadata. We also proposed a set of core
categories of metadata that we think will be useful in many
numerical linear algebra contexts. Here we briefly reiterate
these categories.

• In case we are dealing with problem data that is stored on
file, rather than in data structures, we can give informa-
tion about the file, such as to note if elements are sorted
by row or column.

• Often, in such contexts as nonlinear solves or time-
stepping methods, we are dealing with a family of matri-
ces that are based on the same sparsity structure. Thus,
we propose a category of metadata to deal purely with
structural issues.

• Next we distinguish between information that can be
computed exactly, and information that can only be
estimated. We posit a category of numerical metadata
(that is, dependent on actual values of matrix elements,
rather than just structure) that can be computed exactly,
and in a low time order, typically of the order of the
number of nonzero elements. This category contains such

information as matrix norms (although it should be noted
that the 2-norm and spectral radius are in general not easy
to compute) and amount of diagonal dominance. Matters
of symmetry, both noting whether a matrix is symmetric
and giving the norm of the symmetric and anti-symmetric
part, also belong in this category.

• Finally, we propose a category for spectral matrix data,
giving estimates for such quantities as the location of the
ellipse enclosing the spectrum, and the departure from
normality. Since the estimates given for these quantities
depend on the algorithm used to derive them, our meta-
data format has provisions for annotating the value with
the ‘signing authority’; see [18] for further details.

V. SUMMARY

In this paper, the efficient development of composite appli-
cations has been discussed with the focus being on the use
of software components to package the user code that is used
to build the composite applications. Because of the complex
nature of scientific applications, using software components in
a plug-and-play style is not so simple. The design of the soft-
ware components (or user tasks) and the frameworks used to
integrate them into a composite application need to support a
great deal of flexibility. This is needed to allow efficient experi-
mentation in the development of the application. Additionally,
frameworks need to assist the application developer beyond
just ensuring interface compatibility. Matching the internal
behavior of two user tasks that are coupled in a composite
application is equally important. While a completely automatic
behavioral analysis may never be a reality, frameworks can
include sub-systems that provide the user with insight as to
the compatibility of the integration of a task into a composite
application.

The goal of the research program described in this paper is
to address the above issues by applying several relatively new
techniques to explore the design of components, frameworks,
and the associated programming styles. Metadata is being used
extensively to describe various elements of an application
and a framework and software tools are being developed
that use this metadata to augment the execution of the user
tasks. Aspect-oriented programming concepts are being used
to support better modularity and portability in the design of
components and composite applications. Behavioral analysis
techniques are being used to further enhance portability by
including knowledge about the use of an task in its metadata.

REFERENCES

[1] R. Weston, J. Townsend, T. Eidson, and R. Gates, “A dis-
tributed computing environment for multidisciplinary design,” in5th
AIAA/NASA/USAF/ISSMO Symposium on Multiple Disciplinary Analysis
and Optimization, Panama City, Fl, September 1994.

[2] J. Stewart and H. Edwards, “The SIERRA framework for developing
advanced parallel mechanics applications,” inProceedings of First San-
dia Workshop on Large-Scale PDE-Constrained Optimization. Springer
Lecture Notes in Computational Science and Engineering, 2001.

[3] C. Szyperski,Component Software: Beyond Object-Oriented Program-
ming. Addison-Wesley, 1998.

[4] R. Armstrong, D. Gannon, A. Geist, K. Keahey, S. Kohn, L. McInnes,
S. Parker, , and B. Smolenski, “Towards a common component ar-
chitecture for high-performance scientific computing,” inEighth IEEE
International Symposium on High Performance Distributed Computing,
August 1999.



7

[5] J. Siegel,CORBA: Fundamentals and Programming. John Wiley and
Sons, 1996.

[6] R. Englander,Developing Java Beans. O’Reilly and Associates, Inc,
1997.

[7] “Common Component Architecture Forum webpage,” inhttp://www.cca-
forum.org, 2003.

[8] T. Eidson, J. Dongarra, and V. Eijkhout, “Applying aspect-orient pro-
gramming concepts to a component-based programming model,” in
Proceedings of 17th International Parallel & Distributed Processing
Symposium, April 2003.

[9] C. Cicalese and S. Rotenstreich, “Behavioral specification of distributed
software,”Computer, p. 46, July 1999.

[10] G. Kiczales and J. Lamping et. al., “Aspect-oriented programming,” in
Proceedings of the European Conference on Object-Oriented Program-
ming (OOPSLA), Finland. Springer-Verlag, June 1997.

[11] R. Filman and D. Friedman, “Aspect-oriented programming is quan-
tification and obliviousness,” inWorkshop on Advanced Separation of
Concerns, OOPSLA 2000, Minneapolis, October 2000.

[12] T. Eidson, “A programming environment for the development of large
scientific systems on a distributed computing network,” NASA Langley
Research Center, Hampton, VA, Tech. Rep. NASA SBIR 95 Phase 2
Final Report, Contract No. NAS1-97021 LaRC, March 1999.

[13] ——, “Implementation of wingbody/rlv application in lawe,” NASA
Langley Research Center, Hampton, VA, Tech. Rep. Objective 2 Final
Report, NASA LaRC PO: L10988, September 2000.

[14] S. Bhowmick, P. Raghavan, and K. Teranishi, “A combinatorial scheme
for developing efficient composite solvers,” inLecture Notes in Com-
puter Science, Eds. P. M. A. Sloot, C.J. K. Tan, J. J. Dongarra, A. G.
Hoekstra, Number 2330. Springer Verlag, Computational Science ICCS
2002, 2002, pp. 325–334.

[15] S. Bhowmick, L. McInnes, B. Norris, and P. Raghavan, “The role of
multi-method linear solvers in pde-based simulations,” inProceedings
of the 2003 International Conference on Computational Science and
its Applications, ICCSA 2003, Montreal, Canada May 18 - May 21,
2003, Lecture notes in Computer Science 2677, Editors V. Kumar, M. L.
Gavrilova C. J. K. Tan, and P. L’Ecuyer, 2003, pp. 828–839.

[16] H. Häfner, W. Scḧonauer, and R. Weiss, “The portable and parallel linear
solver package LINSOL,” inProceedings of the 4th European SGI/Cray
MPP Workshop, IPP R/46, Oct. 1998, pp. 242–251.

[17] S. Xu, E.-J. Lee, and J. Zhang, “An interim analysis report on precon-
ditioners and matrices,” University of Kentucky, Lexington; Department
of Computer Science, Tech. Rep. 388-03, 2003.

[18] V. Eijkhout and E. Fuentes, “A proposed standard for numerical meta-
data,” Innovative Computing Laboratory, University of Tennessee, Tech.
Rep. ICL-UT-03-02, 2003.


