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Abstract — Error correction codes defined over real-
number and complex-number fields have been studied and
recognized as useful in many applications. However, most
real-number and complex-number codes in literature are
quite suspect in their numerical stability. In this paper,
we introduce a class of numerically stable real-number and
complex-number codes that are based on random generator
matrices over real-number and complex-number fields.
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I. INTRODUCTION

Error correction codes are often defined over finite fields.
However, in some applications, error correction codes defined
over finite fields do not work. Instead, codes defined over real-
number and complex-number fields have to be used to detect and
correct errors. For example, in algorithm-based fault tolerance
[4] [12] [13] [15] and fault tolerant dynamic systems [10], to
provide fault tolerance in computing, data are first encoded us-
ing error correction codes and then algorithms are redesigned
to operate (using floating point arithmetic) on the encoded data.
Due to the impact of the floating point operation on the binary
representation of these encoded data, codes defined over finite
fields do not work. But codes defined over real-number and
complex-number fields can be used to protect errors in com-
puting by taking advantage of certain relationships, which only
exist when real-number (or complex-number) codes are used,
among the output data of the redesigned algorithms.

However, most real-number and complex-number codes in
literature are quite suspect in their numerical stability. Error cor-
rection procedures in most error correction codes involve solv-
ing linear system of equations. In computer real-number and
complex-number arithmetic where no computation is exact due
to round-off errors, it is well known [9] that, in solving a linear
system of equations, a condition number of

�����
for the coeffi-

cient matrix leads to a loss of accuracy of about � decimal digits
in the solution. In the generator matrices of most existing real-
number and complex-number codes, there exist ill-conditioned
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sub-matrices. Therefore, in these codes, when certain error pat-
terns occur, an ill-conditioned linear system of equations has to
be solved in the error correction procedure, which can cause the
loss of precision of possibly all digits in the recovered numbers.

The numerical issue of the real-number and complex-number
codes has been recognized and studied in some literature. In
[4], Vandermonde-like matrix for the Chebyshev polynomi-
als was introduced to relieve the numerical instability prob-
lem in error correction for algorithm-based fault tolerance. In
[7] [8] [11] [14], the numerical properties of the Discrete Fourier
Transform codes were analyzed and methods to improve the nu-
merical properties were also proposed. To some extent, these ef-
forts have alleviated the numerical problem of the real-number
and complex-number codes. However, they did not obtain the
numerical stability we achieve in this paper.

In this paper, we introduce a class of numerically stable
real-number and complex-number codes that are based on ran-
dom generator matrices over real-number and complex-number
fields. This paper is organized as follows: Section II speci-
fies the error correction problem we focus on. Section III dis-
cusses the impact of round-off errors on error correction. A nu-
merical example illustrating how most existing real-number and
complex-number codes may fail to correct errors is given in Sec-
tion IV. In Section V, we first study the properties of random ma-
trices and then introduce our real-number and complex-number
codes. In Section VI, our codes are compared with most existing
real-number and complex-number codes.

II. PROBLEM SPECIFICATION

Let ���
	������������������������������ � denote the original infor-
mation, and !"��	#!$�%��!��%����������!�&'���(�) & , where *+�-,/.10 ,
denote the encoded information with redundancy. 2 is a * by
, real or complex matrix. The original information � and the
encoded information ! are related through

!3��24�5� (1)

Our problem is: how to choose the matrix 2 such that, after
any no more than 0 erasures in the elements of the encoded
information ! , a good approximation of the original information
� can still be reconstructed from ! ?

We stress here once more that, in some fault tolerant comput-
ing applications, error correction codes defined over finite fields



do not work and real-number (or complex-number) codes have
to be used to correct errors. In this paper, we are discussing real-
number and complex-number codes. Therefore, in this problem
specification, all arithmetic operations are over real-number (or
complex-number) field.

III. THE IMPACT OF FINITE PRECISION ARITHMETIC ON

ERROR CORRECTION IN REAL AND COMPLEX FIELDS

Assume there are at most 0 elements of ! lost, then there
are at least , elements of ! available. Let � denote the set of
indexes of any , available elements of ! . Let !�� denote a sub-
vector of ! consisting of the , available elements of ! whose
indexes are in � . Let 2�� denote a sub-matrix of 2 consisting of
the , rows whose indexes are in � . Then, from (1), we can get
the following relationship between � and ! � :

! � ��2 � �5� (2)

When the matrix 2�� is singular, there are infinite number of
solutions to (2). But, if the matrix 2�� is non-singular, then (2)
has one and only one solution, which is the original information
vector � . Therefore, in order to be able to recover the original
information � , the sub-matrix 2�� has to be non-singular.

However, due to the finite precision representation of the real
and complex numbers in the computational hardware, there are
round-off errors in almost all calculations. Therefore, unlike in
finite-field codes, in real-number and complex-number codes,
we could only get an approximation �� of the original � by solv-
ing (2).

The accuracy of the reconstructed �� can be measured by the
relative error � ���	�� � �� � � � �

If the relative error is
����
�

, then we say the solution �� is accurate
to � decimal digits [1].

The principal methods for solving (2) are Gaussian elimina-
tion with partial pivoting and QR factorization. From [16], we
know that the relative error of the computed solution �� can be
bounded by � ���	�� � �� � � � ���� 	��5��� �
where � denotes the machine epsilon.

In practice, the function
� 	��5� is often small and can be ig-

nored. Therefore, in solving (2), a condition number of
� ���

for 2�� leads to a loss of accuracy of approximately � decimal
digits in the solution �� . Hence, in order to reconstruct a good
approximation of the original information � , 2�� has to be well-
conditioned.

Actually, for any , by , sub-matrix 2 � of 2 , there is a
erasure pattern of ! which requires to solve a linear system with
2 � as the coefficient matrix to reconstruct an approximation of
the original � .

Therefore, to guarantee that a reasonably good approximation
of � can be reconstructed after any no more than 0 erasures in
! , the generator matrix 2 must satisfy: any , by , sub-matrix
of 2 is well-conditioned.

IV. EXISTING CODES IN LITERATURE

In this section, we briefly review some commonly used codes
in literature and give an example to illustrate how these codes
may fail to reconstruct a reasonably good approximation of the
original information.

In the commonly used real-number and complex-number
codes in literature, the generator matrices include: Vander-
monde matrix (Vander) [10], Vandermonde-like matrix for
the Chebyshev polynomials (Chebvand) [4], Cauchy matrix
(Cauchy), Discrete Cosine Transform matrix (DCT), Discrete
Fourier Transform matrix (DFT) [8]. These generator matri-
ces all contain ill-conditioned sub-matrices. Therefore, in these
codes, when certain error patterns occur, an ill-conditioned lin-
ear system has to be solved to reconstruct an approximation of
the original information, which can cause the loss of precision
of possibly all digits in the recovered numbers.

To better understand the numerical properties of these real-
number or complex-number codes, we give an example to
demonstrate how inaccurate these codes may reconstruct the
original data � in some erasure patterns.

Example 1: Suppose � � 	 � � � � � ��������� � ��� and the length of
� is , � � � �

. 2 is a
���%�

by
�����

generator matrix. ! � 24� is
a vector of length 120. Suppose ! � , where � � � � � � ����� ������� ���%� ,
are lost. We will use ! � , where � � � � � ������� � � � , to reconstruct �
through solving (2) .

Table 1: The recovery accuracy of the existing codes for the
erasure pattern in Example 1.

Name
� 	#2���� � � 
"!�#�%$�%���%$ Accurate digits

Vander 3.7e+218 2.4e+153 0
Chebvand Inf 1.7e+156 0
Cauchy 5.6e+17 1.4e+03 0
DCT 1.5e+17 2.5e+02 0
DFT 2.0e+16 1.6e+00 0

Most generator matrices in literature have parameters. In or-
der to carry on numerical calculations, in this example, we fix
some parameters( these parameters do not affect the properties
of the matrix we need fundamentally ) and list the expression of
the generator matrices we used:& Vander: 2 �('�	�) . � � �+*,* 
"-�
 �/. ����*10 �+*,* .& Chebvand: 2 � 	�243 
 �%	��5��� ����*10 �+*,* , where 243 
 � is the

chebyshev polynomial of degree �5� �
.

& Cauchy : 2 �76 �398 -;: ����*10 �+*<* .

& DCT : 2 � 6�= �
���<*?>A@�BDC�E � - 8 ��F�3�<G<* : � �<*10 �+*<* , where if) � � ��� � �

, and if )IH� � ��� � �
.

& DFT : 2 � 6KJ 
� $MLN $ O 3 - : ���<*P0��Q*,* , where � �SR � � .



In Table 1, we list the name of each generator matrix, the
condition number of the resulted 2 � from the example erasure
pattern, the relative error of the recovered � and how many deci-
mal digits are accurate in the recovered � . All data are calculated
using MATLAB. There are about 16 accurate digits in the orig-
inal representation of � ( i.e. the machine precision ��� ��� 
 ���
in MATLAB.)

From Table 1, we can see none of these codes is able to re-
construct the original data � with an accuracy of even only

�
decimal digit. Actually, for any burst erasures of

� �
elements in

! , none of the above codes could reconstruct an acceptable � .

V. REAL AND COMPLEX NUMBER CODES BASED ON

RANDOM MATRICES

In this section, we propose a class of new codes that are able
to reconstruct a very good approximation of the original infor-
mation with high probability regardless of the erasure patterns
in the encoded information. In subsection A, we define some
notations and unify some concepts. In subsection B, we briefly
review some important properties of the condition number of
random matrices. In subsection C, we investigate the properties
of the condition number of pseudo random matrices experimen-
tally. In section D, we introduce our real-number and complex-
number codes based on random matrices.

A. Definitions and Notions
We will assume that most readers are familiar with the basic

terms and ideas from probability and numerical analysis. we
then need only a few definitions.

Definition 1 ,(	�� ��� � � denotes the Normal Distribution with
mean � and variance � � �
Definition 2

�
,1		� ��� � � denotes the distribution of � . !�� , where

� and ! are independent and identically distributed ,(		� �
� � � .
Definition 3 2"	�� �<�5� denotes an ��� � matrix, where the � �
elements are independent and identically distributed ,1	 � � � � .

Definition 4
�
2 	�� ���5� denotes an ��� � matrix, where the � �

elements are independent and identically distributed
�
, 	 � � � � .

Definition 5 Given a square matrix  , the condition number
�

of  is defined as
� � �  � � � �  
 � � � . The scaled condition

number
���

of  is defined as
��� � �  ��� � �  
 � � � .

B. Condition Number of Random Matrices from Standard
Normal Distribution

In solving a linear system, the large condition number of the
coefficient matrix implies the loss of accuracy, and the logarithm
of the condition number is an estimation of how many digits
might be lost in the solution. Therefore, in this sub-section, we
mainly focus on the probability that the condition number of a
random matrix is large and the expectation of the logarithm of
the condition number.

Theorem 1 Let
�

denote the condition number of 2"	�� �<�5� , ����
, and ��� �

, then
� � ��� �� ��� 	 � ����� ��� � � � �� � (3)

Moreover,  
		! @#" 	 � ��� �$! @%" 	��5� .'& . � - � (4)

where &(� � � � �*) , +��%) -#,.- � - � � ,

Proof The inequality (3) is from Theorem 1 of [2]. The formula
(4) can be obtained from Theorem 7.1 of [5].

Lemma 2 Let
� �

denote the condition number of
�
2"	�� �<�5� , and� ���

denote the scaled condition number of
�
2"	�� ���5� , then� ���

R � � � � � � ��� � (5)

Proof The inequality (5) can be found in standard textbooks
such as [9].

Theorem 3 Let
� �

denote the condition number of
�
2"	�� ���5� , and�/� R � , then

� � 0 � � �� �21 - $ 
 � � � 	 � � ����� � � � 6 � � �� � : - $ 
 � � (6)

Moreover,  
		! @#" 	 � � ��� �$! @%" 	��5� .'& . � - � (7)

where &(� � � 3%4 � , +��%) -#,.- � - � � ,

Proof From Lemma 2, we get� 	 � � �R � �5��� � � 	 � � �5��� � � 	 � �6� �5��� � (8)

From Corollary 3.2 in [6], we have� 	 � � � �5��� � � � 6 � � �� � : - $ 
 � � (9)

Therefore,

� 	 � ���R � �7��� � � 	 � ��� � R �8��� � � � 0 � � �� �21 - $ 
 �
� (10)

The inequality (6) can be obtained from (8), (9) and (10). The
formula (4) can be obtained from Theorem 7.2 of [5].

C. Experiment on Pseudo Random Matrices
In sub-section B, we have proved some bounds and asymp-

totic properties for random matrices. However, in error cor-
rection practice, all random numbers used are pseudo random
numbers, which have to be generated through a random number
generator.

In this sub-section, we investigate experimentally the proper-
ties of the condition number of pseudo random matrices. All
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Figure 1: The density functions of the condition numbers of
2"	 ����� � ��� � � and

�
2"	 � � � � ����� � .

random numbers we used are generated from the MATLAB
pseudo random number generators. An , � , real pseudo
random matrix from standard normal distribution is generated
by 2"	#,)� , � = randn(N,N). An , � , complex pseudo ran-
dom matrix from standard normal distribution is generated by�
2"	#,)� , � = randn(N,N) + R � � * randn(N,N).

Figure 1 shows the empirical probability density functions of
the condition numbers of 2"	 � � � � ����� � and

�
2"	 ��� � � � � � � . From

these density functions, we know that most pseudo random ma-
trices have very small condition numbers. And, for the same
matrix size, the tail of the condition number for a complex ran-
dom matrix is thinner than that of a real one.

In Table 2, we give the proportion(can be explained as prob-
ability) of the

� � �
by

� � �
MATLAB pseudo random matrices

whose condition numbers are large. The data are based on
1,000,000 sample pseudo random matrices from the standard
normal distribution.

Table 2: The proportion of the
�����

by
�����

MATLAB pseudo
random standard normal matrices whose condition number is
large.

2"	 ����� � ��� � �
�
2"	 � � � � ����� �� 	 � � � � � � 0.97869 0.97788� 	 � � � � � � 0.19211 0.03758� 	 � � � � G � 0.01955 0.00041� 	 � � � ��� � 0.00201 0.00000� 	 � � � � � � 0.00021 0.00000� 	 � � � ��� � 0.00003 0.00000� 	 � � � ��� � 0.00000 0.00000

We have also tested some other random matrices. Experi-

ments show a lot of other random matrices, for example, uni-
formly distributed pseudo random matrices, also have small con-
dition numbers with high probability. For random matrices of
non-normal distribution, we will report our experiments and
some analytical proofs of their condition number properties in
a further coming paper.

D. Real and Complex Number Codes Based on Random Ma-
trices

In this sub-section, we propose a class of new codes that are
able to reconstruct a very good approximation of the original
information with very high probability regardless of the erasure
patterns in the encoded information.

In the real number case, we propose to use 2"	 * � , � or uni-
formly distributed * by , matrices with mean 0 ( denote as
� 	 * ��, � ) as our generator matrices 2 . In the complex num-
ber case, we propose to use

�
2"	 * ��, � or uniformly distributed

* by , complex matrices with mean 0 ( denote as
�� 	 * � , � )

as our generator matrices 2 .
Take the real-number codes based on random matrix

2"	 * ��, � as an example. Since each element of the gener-
ator matrix 2"	 * ��, � is a random number from the standard
normal distribution, so each element of any , �), sub-matrix
	 2 � � � 0 � of 2"	 * ��, � is also a random number from the stan-
dard normal distribution. According to the condition number
results in sub-section B and C, the probability that the condition
number of 	#2 � � � 0 � is large is very small. Hence, any , by ,
sub-matrix 	#2�� ����0�� of 2 is well-conditioned with very high
probability. Therefore, no mater what erasure patterns occur,
the error correction procedure is numerically stable with high
probability.

We admit that our real-number and complex-number codes
are not perfect. Due to the probability approach we used, the
drawback of our codes is that, no matter how small the proba-
bility is, there is a probability that a erasure pattern may not be
able to be recovered accurately.

However, compared with the existing codes in literature, the
probability that our codes fail to recover a good approximation
of the original information is negligible (see section VI for de-
tail). Moreover, in the error correction practice, we may first
generate a set of pseudo random generator matrices and then
test each generator matrix until we find a satisfied one.

VI. COMPARISON WITH EXISTING CODES

To demonstrate that our codes are able to reconstruct a very
good approximation of the original information � , we use our
codes to recover the example erasure in section IV and com-
pare the accuracy of the recovered � with that in section IV. The
generator matrices of our codes are constructed using MATLAB
pseudo random number generator. Table 3 shows how each of
our generator matrices is generated. Table 4 compares the re-
covery accuracy of our codes for the example erasure in section
IV with that of the existing codes.

Table 4 shows our codes are able to reconstruct the origi-
nal information � with much higher accuracy than the existing



Table 3: The generator matrices 2 of our codes in Example 1

Name MATLAB command to generate 2
RandN randn(120,100)
RandN-C randn(120,100) + � * randn(120,100)
RandU rand(120,100) - 0.5
RandU-C rand(120,100) - 0.5 + � * (rand(120,100) - 0.5)

Table 4: The recovery accuracy of different codes for the erasure
pattern in Example 1

Name
� 	#2 � � �%� 
"!� � $�%�#� $ Accurate digits

Vander 3.7e+218 2.4e+153 0
Chebvand Inf 1.7e+156 0
Cauchy 5.6e+17 1.4e+03 0
DCT 1.5e+17 2.5e+02 0
DFT 2.0e+16 1.6e+00 0
RandN 7.5e+2 3.8e-14 14
RandN-C 4.5e+2 6.8e-14 14
RandU 8.6e+2 3.7e-14 14
RandU-C 5.7e+2 2.6e-14 14

codes. The reconstructed � from all existing codes we tested
in Example 1 lost all of their 16 effective digits. However, the
reconstructed � from the codes we proposed in last section lost
only about 2 effective digits.

The condition number of a sub-matrix is directly related with
the accuracy of recovery, In Table 5, we compare the proportion
of 100 by 100 sub-matrices whose condition number is larger
than

� � �
, where � ��� �
� ��4 � and

� �
, for different kind of genera-

tor matrices of size 150 by 100. Our generator matrices are de-
fined in Table 3. Other generator matrices are defined in Section
IV. All results in Table 5 are calculated using MATLAB based
on 1,000,000 randomly (uniformly) selected sub-matrices.

From Table 5, we can see, of the 1,000,000 randomly selected
sub-matrices from any of our random generator matrices, there
are 0.000% sub-matrices whose condition number is larger than�����

. However, for all existing codes in literature that we have
tested, there are at least 21.644% sub-matrices whose condition
number is larger than

� � �
. Therefore, the numerical properties

of our codes are much more stable than the existing codes we
have tested.

VII. CONCLUSION

In this paper, we have introduced a class of numerically stable
error correction codes defined over real-number and complex-
number fields. Our new codes are based on random generator
matrices over real-number and complex-number fields. We have
demonstrated that our codes are numerically very stable com-
pared with the existing codes in literature.

Table 5: Percentage of 100 by 100 sub-matrices (of a 150 by 100
generator matrix) whose condition number is larger than

� ���
.

Name
� � � � G � � � � � � � ��� � � � � � �+*

Vander 100.000% 100.000% 100.000% 100.000%
Chebvand 100.000% 100.000% 100.000% 100.000%
Cauchy 100.000% 100.000% 100.000% 100.000%
DCT 96.187% 75.837% 48.943% 28.027%
DFT 92.853% 56.913% 21.644% 5.414%
RandN 1.994% 0.023% 0.000% 0.000%
RandN-C 0.033% 0.000% 0.000% 0.000%
RandU 1.990% 0.018% 0.000% 0.000%
RandU-C 0.036% 0.000% 0.000% 0.000%
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