
A Fault-Tolerant Communication Library for Grid
Environments

Edgar Gabriel, Graham E Fagg, Antonin Bukovsky, Thara Angskun,

and Jack J Dongarra

 Innovative Computing Laboratory,

Department of Computer Science, Suite 413, 1122 Volunteer Blvd.,
University of Tennessee, Knoxville, TN-37996-3450, USA.

and
Computer Science and Mathematics Division

Oak Ridge National Laboratory
Oak Ridge, TN

{egabriel, fagg, tone, angskun, dongarra}@cs.utk.edu

Abstract

With increasing numbers of processors and applications running in virtual Grid environments,
application level fault-tolerance is getting more of an important issue. This paper presents the semantics
of a fault tolerant version of the Message Passing Interface, the de-facto standard for communication in
scientific applications, which gives applications the possibility to recover from a node or link error and
continue execution in a well defined way. The architecture of FT-MPI, an implementation of MPI using
the semantics presented above as well as some tools supporting end-users during the application
development step with FT-MPI are presented. Furthermore, a performance comparison of FT-MPI to
the most relevant MPI-libraries for point-to-point benchmarks and the High Performance Linpack
Benchmark, is shown.

1. Introduction

With increasing quality of the local, national and international networks, users have access higher
quantities and to more powerful machines than ever in human history. While accessing and using these
computing systems is straightforward for smaller number of machines, it becomes for larger numbers a
science of its own: the Grid. The Grid is generally seen as a concept for coordinated resource sharing in
virtual organizations, combining the resources of several institutions based on the demands of the
application and just for the lifetime of the application.

Applications running on several machines can use various methods for data exchange between the
processes. File transfer (e.g. FTP, SCP, GridFTP[20]), socket-based communication or RPC-like systems
are just some examples. For scientific applications, the MPI[5][8] specification is meanwhile a widespread
de-facto standard. Therefore it is not surprising, that several MPI-implementations optimized for Grid-
environments are currently available (MPICH-G2[15], PACX-MPI[16], Stampi[17], MPI_Connect[18],
and MagPIe[19]).

One problem that none of these implementations handle, is how to proceed when one or several processes
become unavailable during runtime. This might happen because a machine or a node has crashed or is not
reachable or because of networking problems. In fact, with increasing numbers of processors on both,
single machines and in distributed Grid-environments, increasing numbers of applications will have to face
node-failures. MPI in its current specification gives the user the choice between two possibilities how to
handle a failure. The first one, the default mode, is to immediately abort the application. The second
possibility is to hand the control back to the user application (if possible) without guaranteeing, that any
further communication can occur. The latter mode mainly has the purpose of giving the application the

possibility to close all files properly, write maybe a per-process based checkpoint etc., before exiting the
application.

This situation is however unsatisfactory. Not only are for each aborted MPI application possibly large
numbers of CPU hours wasted and lost, but also for very long running and security relevant applications
this might not be an option at all. The relevance of this problem can also be seen by the numerous efforts
in this area , e.g. FT-MPI[13], MPI/FT[21], MPI-FT[6], MPICH-V[11], LA-MPI[22].

In this paper we would like to present the concept and the current status of FT-MPI, a fault-tolerant version
of MPI developed at the University of Tennessee, Knoxville. Furthermore, we would like to do a detailed
comparison of FT-MPI to the most relevant, most recent, non fault-tolerant MPI implementations. The
structure of the paper is like follows. In section 2 we compare FT-MPI to related project in the area of fault-
tolerant MPI libraries. In section 3 we present then the semantics, the concept and some tools for FT-MPI.
Section 4 focuses on the performance comparison of FT-MPI with other MPI libraries for point-to-point
benchmarks as well as for complex applications. Section 5 finally presents the current status of FT-MPI and
presents the ongoing work in this area.

2. Related work

The methods supported by various project can be split into two classes: those supporting check-point/roll-
back technologies, and those using replication techniques. The first method attempted to make MPI
applications fault tolerant was through the use of check-pointing and roll back. Co-Check MPI [2] from the
Technical University of Munich being the first MPI implementation built that used the Condor library for
check-pointing an entire MPI application. Another system that also uses check-pointing but at a much
lower level is StarFish MPI [3]. Unlike Co-Check MPI, Starfish MPI uses its own distributed system to
provide built in check-pointing.

MPICH-V[11] from Universit´e de Paris Sud, France is a mix of uncoordinated check-pointing and
distributed message logging. The message logging is pessimistic thus they guarantee that a consistent state
can be reached from any local set of process checkpoints at the cost of increased message logging. MPICH-
V uses multiple message storage (observers) known as Channel Memories (CM) to provide message
logging. Process level check-pointing is handled by multiple servers known as Checkpoint Servers (CS).
The distributed nature of the check pointing and message logging allows the system to scale, depending on
the number of spare nodes available to act as CM and CS servers.

LA-MPI[22] is a fault-tolerant version of MPI from the Los Alamos National Laboratories. Its main target
is not to handle process failures, but to provide reliable message delivery between processes in presence of
bus, networking cards and wire-transmission errors. To achieve this goal, the communication layer is split
into two parts, a Memory and Message Management Layer, and a Send and Receive Layer. The first one is
responsible for resubmitting lost packets or choosing a different route, in case the Send and Receive Layer
reports an error.

MPI/FT[21] provides fault-tolerance by introducing a central co-ordinator and/or replicating MPI
processes. Using these techniques, the library can detect erroneous messages by introducing a voting
algorithm among the replicas and can survive process-failures. The drawback however is increased
resource requirements and partially performance degradation.

The project closest to FT-MPI known to the author is the Implicit Fault Tolerance MPI project MPI-FT [6]
by Paraskevas Evripidou of Cyprus University. This project supports several master-slave models where all
communicators are built from grids that contain ‘spare’ processes. These spare processes are utilized when
there is a failure. To avoid loss of message data between the master and slaves, all messages are copied to
an observer process, which can reproduce lost messages in the event of any failures. This system appears
only to support SPMD style computation and has a high overhead for every message and considerable
memory needs for the observer process for long running applications.

FT-MPI has much lower overheads compared to the above check-pointing and message replication
systems, and thus much higher potential performance. These benefits do however have consequences. An
application using FT-MPI has to be designed to take advantage of its fault tolerant features as shown in the
next section, although this extra work can be trivial depending on the structure of the application. If an
application needs a high level of fault tolerance where node loss would equal data loss then the application
has to be designed to perform some level of user directed check-pointing. FT-MPI does allow for atomic
communications much like Starfish, but unlike Starfish, the level of correctness can be varied on for
individual communicators. This provides users the ability to fine tune for coherency or performance as
system and application conditions dictate. An additional advantage of FT-MPI over many systems is that
check-pointing can be performed at the user level and the entire application does not need to be stopped
and rescheduled as with process level check-pointing.

3. FT-MPI

This section presents the extended semantics used by FT-MPI, the architecture of the library as well as
some details about the implementation. Furthermore, we present tools which are supporting the application
developer when using FT-MPI are presented.

3.1. FT-MPI Semantics

Current semantics of MPI indicate that a failure of a MPI process or communication causes all
communicators associated with them to become invalid. As the standard provides no method to reinstate
them, we are left with the problem that this causes MPI_COMM_WORLD itself to become invalid and
thus the entire MPI application will grid to a halt.

FT-MPI extends the MPI communicator states from {valid, invalid} to a range {FT_OK, FT_DETECTED,
FT_RECOVER, FT_RECOVERED, FT_FAILED}. In essence this becomes {OK, PROBLEM, FAILED},
with the other states mainly of interest to the internal fault recovery algorithm of FT_MPI. Processes also
have typical states of {OK, FAILED} which FT-MPI replaces with {OK, Unavailable, Joining, Failed}.
The Unavailable state includes unknown, unreachable or “we have not voted to remove it yet” states.
A communicator changes its state when either an MPI process changes its state, or a communication within
that communicator fails for some reason.

On detecting a failure within a communicator, that communicator is marked as having a probable error.
Immediately as this occurs the underlying system sends a state update to all other processes involved in that
communicator. If the error was a communication error, not all communicators are forced to be updated, if it
was a process exit then all communicators that include this process are changed. How the system behaves
depends on the communicator failure mode chosen by the application. The mode has two parts, one for the
communication behavior and one for the how the communicator reforms if at all.

3.1.1 Communicator and communication handling

Once a communicator has an error state it can only recover by rebuilding it, using a modified version of
one of the MPI communicator build functions such as MPI_Comm_{create, split or dup}. Under these
functions the new communicator will follow the following semantics depending on its failure mode:

• SHRINK: The communicator is reduced so that the data structure is contiguous. The ranks of the
processes are changed, forcing the application to recall MPI_COMM_RANK.

• BLANK: This is the same as SHRINK, except that the communicator can now contain gaps to be
filled in later. Communicating with a gap will cause an invalid rank error. Note also that calling
MPI_COMM_SIZE will return the extent of the communicator, not the number of valid processes
within it.

• REBUILD: Most complex mode that forces the creation of new processes to fill any gaps until the
size is the same as the extent. The new processes can either be places in to the empty ranks, or the

communicator can be shrank and the remaining processes filled at the end. This is used for
applications that require a certain size to execute as in power of two FFT solvers.

• ABORT: Is a mode which affects the application immediately an error is detected and forces a
graceful abort. The user is unable to trap this. If the application need to avoid this they must set all
communicators to one of the above communicator modes.

Communications within the communicator are controlled by a message mode for the communicator which
can be either of:

1. NOP: No operations on error. I.e. no user level message operations are allowed and all simply
return an error code. This is used to allow an application to return from any point in the code to a
state where it can take appropriate action as soon as possible.

2. CONT: All communication that is NOT to the affected/failed node can continue as normal.
Attempts to communicate with a failed node will return errors until the communicator state is
reset.

3.1.2 Point to Point versus Collective correctness

Although collective operations pertain to point to point operations in most cases, extra care has been taken
in implementing the collective operations so that if an error occurs during an operation, the result of the
operation will still be the same as if there had been no error, or else the operation is aborted.

Broadcast, gather and all gather demonstrate this perfectly. In Broadcast even if there is a failure of a
receiving node, the receiving nodes still receive the same data, i.e. the same end result for the surviving
nodes. Gather and all-gather are different in that the result depends on if the problematic nodes sent data to
the gatherer/root or not. In the case of gather, the root might or might not have gaps in the result. For the
all2all operation, which typically uses a ring algorithm it is possible that some nodes may have complete
information and others incomplete. Thus for operations that require multiple node input as in gather/reduce
type operations any failure causes all nodes to return an error code, rather than possibly invalid data.
Currently an addition flag controls how strict the above rule is enforced by utilizing an extra barrier call at
the end of the collective call if required.

3.1.3 Application view

The library provides the application a possibility to recover from an error, restructure itself and continue
with the execution. However, the application has to take some steps itself to handle an error properly. Two
possibilities are offered by FT-MPI:

• The user discovers any errors from the return code of any MPI call, with a new fault indicated by
MPI_ERR_OTHER. Details as to the nature and specifics of an error are available though the
cached attributes interface in MPI.

• The user can register a new error-handler at the beginning of the simulation, which is than called
by the MPI-library in case an error occurs. Using this mechanism, the user hardly needs to change
any code.

The error-recovery function of the application has to perform two phases: first, all non-local information
needs to be reestablished (e.g. all communicators derived from another communicator, which has an
erroneous processes needs to be re-created). Second, the application needs to resume from a well defined
state in the application.

3.2 Architecture of FT-MPI and HARNESS

FT-MPI was built from the ground up as an independent MPI implementation as part of the Department of
Energy Heterogeneous Adaptable Reconfigurable Networked SyStems (HARNESS) project[1]. One of the
aims of HARNESS was to provide a framework for distributed computing much like PVM[29] previously.
A major difference between PVM and HARNESS is the formers monolithic structure verses the latter’s
dynamic plug-in modularity. To provide users of HARNESS instant application support, both a PVM and

an MPI plug-in were envisaged. As the HARNESS system itself was both dynamic and fault tolerant (no
single points of failure), then it became possible to build a MPI plug-in with added capabilities such as
dynamic process management and fault tolerance.

Figure 1 illustrates the overall structure of a user level application running under the FT-MPI plug-in, and
HARNESS system. The following subsections briefly outline the design of FT-MPI and its interaction with
various HARNESS system components.

Figure 1. FT-MPI Architecture

3.2.1 FT-MPI architecture

As shown in figure 1 the FT-MPI system itself is built in a layering fashion. The upper most layer deals
with the handling of the MPI-1.2 specification API and MPI objects. The next layer deals with data
conversion/marshalling (if needed), attribute and record storage, and various lists. Details of the highly
tuned buffer management and derived data type handling can be found in [13]. FT-MPI also implements a
number of tuned MPI collective routines, which are further discussed in [14]. The lowest layer consists of
the FT-MPI runtime library (FTRTL), which is responsible for interacting with the OS via the HARNESS
user level libraries (HLIB). The FTRTL layer provides the facilities that allow for dynamic process
management, system level naming of MPI tasks, message handling during the entire fault to recovery cycle.
The HLIB layer interacts with HARNESS system during both startup, fault to recovery cycle, and
shutdown phases of execution. The HLIB also provides the interfaces to the dynamic process management
and redirection of application IO. The SNIPE[4] library provides the inter-node communication of MPI
message headers and data. To simplify the design of the FTRTL, SNIPE only delivers whole messages
atomically to the upper layers. During a recovery from failure, SNIPE uses in channel system flow control

messages to indicate the current state of message handling (such as accepting connections, flushing
messages or in-recovery).

It is important to note that the FTRTL shown in figure 1 gets notification of failures from both the point to
point communications libraries as well as from the HARNESS layer. In the case of communication errors,
the notify is usually started by the communication library detecting a point to point message not being
delivered to a failed party rather than the failed parties OS layer detecting the failure. The FTRTL is
responsible for notifying all tasks of errors as they occur by injecting notify messages into the send
message queues ahead of user level messages.

3.2.2 OS support and the HARNESS G_HCORE

The General HARNESS CORE (G_HCORE) is a daemon that provides a very lightweight infrastructure
from which to build distributed systems. The capabilities of the G_HCORE are exploited via remote
procedure calls (RPCs) as provided by the user level library (HLIB). The core provides a number of very
simple services that can be dynamically added to [1]. The simplest service is the ability to load additional
code in the form of a dynamic library (shared object) known as a plug-in, and make this available to either
a remote process or directly to the core itself. Once the code is loaded it can be invoked using a number of
different techniques such as:

• Direct invocation: the core calls the code as a function, or a program uses the core as a runtime
library to load the function, which it then calls directly itself.

• Indirect invocation: the core loads the function and then handles requests to the function on behalf
of the calling program, or, it sets the function up as a separate service and advertises how to access
the function.

An application built for HARNESS might not interact with the host OS directly, but could instead install
plug-ins that provide the required functionality. The handling of different OS capabilities would then be left
to the plug-in developers, as is the case with FT-MPI.

3.2.3 G_HCORE services for FT-MPI

Services required by FT-MPI break down into two main categories:
• Spawn and Notify service. This service is provided by a plug-in which allows remote processes to

be initiated and then monitored. The service notifies other interested processes when a failure or
exit of the invoked process occurs. The notify message is either sent directly to all other MPI tasks
or via the FT-MPI Notifier daemon which can provide additional diagnostic information if
required.

• Naming services. These allocate unique identifiers in the distributed environment for tasks,
daemons and services (which are uniquely addressable). The name service also provides
temporary state storage for use during MPI application startup and recovery, via a comprehensive
record facility.

Currently FT-MPI can be executed in one of two modes. As the plug-in mode described above when
executing as part of a HARNESS distributed virtual machine, or in a slightly lighter weight configuration
with the spawn-notify service as a standalone daemon. This latter configuration loses the benefits of any
other available HARNESS plug-ins, but is better suited for clusters that only execute MPI jobs. No matter
which configuration is used, one name-service daemon, plus one either of the GHCORE daemon or one
startup daemon per node is needed for execution.

3.3 Tools for FT-MPI

Several tools developed simultaneously with FT-MPI for both fault-tolerant and non fault-tolerant usage
are supporting FT-MPI. First, a console has been developed which provides a command line interface for

adding or removing a host from the current virtual machine. Providing the similar commands to its PVM
counterpart, the user is able to determine both runtime information from the VM, in addition to how many
application processes are currently executing. The console is therefore an essential tool especially for large
configurations. A graphical front-end to the console implemented in Java further enhances the user-
friendliness of the HARNESS and FT-MPI environment (see figure 2).

Figure 2. Screenshot of the Java-GUI for the console showing nameservice, startup-daemons and

application processes

Second, the tracing library MPE [27] has been ported to work with FT-MPI. Using MPE, the user can
generate tracefiles of its applications running with FT-MPI, which than can be analyzed using a visualizer
such as jumpshot [26]. Performance analysis tools like jumpshot are for the development and tuning of
parallel applications an important building block, since they guide the user to performance problems and
bottlenecks in his parallel application. The user can however use MPE and jumpshot in a transparent
manner only if his application is terminating correctly, since the tracefile is only written at the finalize step.

4. Performance comparison to non fault-tolerant MPI libraries

In this section we would like to compare the performance of FT-MPI to the performance achieved with the
the most widely used, non fault-tolerant MPI implementations. These are MPICH [25](version 1.2.5) and
LAM[28] (version 6.5.9). Additionally, we are also using the beta-version of the new MPICH2 library
(version 0.9.3). All tests were performed on a PC-cluster consisting of 16 nodes, each node having two 2.4
GHz Pentium IV processors. A Gigabit Ethernet network connects the nodes.

4.1 Point-to-point performance tests

The first set of benchmarks were using the mpptest – testsuite [24], available with the MPICH distribution.
We conducted three different tests, a short-message test (0-1024 bytes), a test for medium size messages (0-
128Kbytes) and a long message test (0-2Mbytes) for determining the maximum achievable bandwidth.
Figure 3 presents the results for the short message test. The fastest library for short-messages was LAM,
followed by MPICH2. FT-MPI is between MPICH2 and MPICH 1.2.5 for small messages.

For medium size messages, the ranking of the libraries is changing at around 20 Kbyte messages. LAM and
MPICH1.2.5 become from this point on around 10% slower than MPICH2 and FTMPI. As a consequence,
MPICH2 and FT-MPI show the best performance also for long-messages, achieving a bandwidth of around

67 Mbytes/second on the Gigabit Ethernet connection (FT-MPI), respectively 65 Mbytes/second
(MPICH2).

Figure 3: Performance results for all MPI libraries for short-messages (left) and long messages (right).

4.2 Results for High Performance Linpack (HPL)

In this section we would like to present the performance results achieved with the High Performance
Linpack Benchmark [7] as a representative of a complex end-user application. From the many optimization
possibilities and performance parameters, which can be used to tune HPL, we chose a single test case and
modified a single parameter, the block-size. Changing the block-size in HPL has not only an effect on the
data distribution, but also on the message sizes sent. Therefore, by modifying this parameter, we can show,
which MPI-library is achieving the best results for different block-sizes/message lengths.

The tests were conducted for a problem size of 6000, using 4 processes. Table 1 shows the results of our
measurements. Up to the block-size of 80, FT-MPI is second in all tests, just MPICH2 is achieving better
performance than FT-MPI. For block-sizes larger than 80, FT-MPI and MPICH1.2.5 are nearly equal. The
overhead of FT-MPI compared to the according fastest library is between 2% and 5%, which is moderate
taking into account, that FT-MPI is offering additional functionality compared to the other libraries. In the
following, we would like to focus on three testcases, using block-sizes of 48, 80 and 240.

Blocksize FT-MPI MPICH 1.2.5 LAM 6.5.9 MPICH 2 - 0.9.3
16 25.25 sec 28.84 sec 25.78 sec 24.97 sec
32 20.51 sec 20.61 sec 20.78 sec 19.90 sec
48 28.00 sec 28.16 sec 28.31 sec 27.43 sec
80 18.18 sec 18.18 sec 18.50 sec 17.41 sec

128 22.96 sec 22.86 sec 23.03 sec 22.07 sec
160 18.97 sec 18.89 sec 19.24 sec 18.03 sec
240 20.05 sec 19.88 sec 20.28 sec 19.09 sec

Table 1. Execution time of HPL with different bocksizes and MPI libraries

There are two effects which are relevant for the communication performance of HPL. On one hand, there is
a large number of small messages (0-4KB), which is independent of the block-size. The most relevant short
messages are occurring 6000 times per test. On the other hand, we have increasing message-sizes and
decreasing number of messages for increasing block-sizes, as shown in Table 2. While the overall amount
of data remains roughly constant, the number of messages decreases with increasing block-size, and the
messages get longer. Thus, while FT-MPI shows a good performance for long messages (as shown in

section 4.1), it still suffers from a higher latency than MPICH-2. This is probably the reason for the higher
execution time of FT-MPI. LAM is slower compared to FT-MPI, probably mainly because of its limited
performance for large messages. The performance of FT-MPI and MPICH1.2.5 are comparable for large
block sizes, however, FT-MPI has an advantage for smaller block-sizes.

Blocksize No. of msg. >20 KB No. of msg. >100 KB No. of. msg. > 1 MB
48 142 811 27
80 53 476 73
240 12 57 132

Table 2. Number of large messages for different block-sizes.

5. Conclusions

FT-MPI is an attempt to provide application programmers with different methods of dealing with failures
within MPI application than just check-point and restart. It is hoped that by experimenting with FT-MPI,
new applications methodologies and algorithms will be developed to allow for both high performance and
the survivability required by both unreliable GRIDs and the next generation of terra-flop and beyond
machines. FT-MPI in itself is already proving to be a useful vehicle for experimenting with self-tuning
collective communications, distributed control algorithms, various dynamic library download methods and
improved sparse data handling subsystems, as well as being the default MPI implementation for the
HARNESS project.

FT-MPI implements currently the full MPI 1.2 specification as well as several sections of the MPI-2
document. Furthermore, FT-MPI has full tool-support for both normal MPI features such as profiling and
debugging via MPE, as well as additional support for fault-tolerance. The first major release will be
available end second quarter 2003. Future work in the FT-MPI library system will concentrate on
developing a number of drop-in library templates or skeletons to simplify the construction of fault tolerant
applications.

6. References

1. Beck, Dongarra, Fagg, Geist, Gray, Kohl, Migliardi, K. Moore, T. Moore, P. Papadopoulous, S. Scott, V.
Sunderam, "HARNESS: a next generation distributed virtual machine", Journal of Future Generation
Computer Systems, (15), Elsevier Science B.V., 1999.

2. G. Stellner, “CoCheck: Checkpointing and Process Migration for MPI”, In Proceedings of the International
Parallel Processing Symposium, pp 526-531, Honolulu, April 1996.

3. Adnan Agbaria and Roy Friedman, “Starfish: Fault-Tolerant Dynamic MPI Programs on Clusters of
Workstations”, In the 8th IEEE International Symposium on High Performance Distributed Computing,
1999.

4. Graham E. Fagg, Keith Moore, Jack J. Dongarra, "Scalable networked information processing environment
(SNIPE)", Journal of Future Generation Computer Systems, (15), pp. 571-582, Elsevier Science B.V., 1999.

5. Marc Snir, Steve Otto, Steven Huss-Lederman, David Walker and Jack Dongarra. MPI- The Complete
Reference. Volume 1, The MPI Core, second edition (1998).

6. Soulla Louca, Neophytos Neophytou, Adrianos Lachanas, Paraskevas Evripidou, “MPI-FT: A portable fault
tolerance scheme for MPI”, Proc. of PDPTA ’98 International Conference, Las Vegas, Nevada 1998.

7. S. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G.
Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. Scalapack: A linear algebra library for message-
passing computers. In Proceedings of 1997 SIAM Conference on Parallel Processing, May 1997.

8. William Gropp, Ewing Lusk, and Rajeev Thakur , “Using MPI-2: Advanced Features of the Message Passing
Interface”, MIT Press, 1st Edition, Feburary 2000.

9. F. Berman, A. Chen, K. Cooper, J. Dongarra, I. Foster, D. Gannon, L. Johnsson, K. Kennedy, C. Kesselman,
J. Mellow-Crummey, D. Reed, L. Torczon, and R.Wolski, “The GrADS Project”, International Journal of
High Performance Computing Applications, Vol 15(4), pp. 327-344, Sage Science Press, Winter 2001.

10. I. Foster and C. Kesselmann, The GRID: Blueprint for a new computing infrastructure, Morgan Kaufmann,
San Francisco, 1999.

11. George Bosilca, Aurelien Bouteiller, Franck Cappello, Samir Djilali, Gilles Fedak, Cecile Germain, Thomas
Herault, Pierre Lemarinier, Oleg Lodygensky, Frederic Magniette, Vincent Neri, Anton Selikhov, “MPICH-
V: Toward a Scalable Fault Tolerant MPI for Volatile Nodes”, In Proceedings of SuperComputing 2002.
IEEE, Nov.,2002.

12. Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith, PETSc 2.0 Users Manual
Argonne National Laboratory, ANL-95/11 - Revision 2.0.29, 2000.

13. Graham Fagg, Antonin Bukovsky, and Jack Dongarra, HARNESS and Fault Tolerant MPI, Parallel
Computing, Volume 27, Number 11, pp 1479-1496, October 2001, ISSN 0167-8191

14. Sathish S. Vadhiyar, Graham E. Fagg, and Jack J. Dongarra, Performance Modeling for Self Adapting
Collective Communications for MPI, LACSI Symposium 2001, October 15-18, Eldorado Hotel, Santa
Fe,NM.

15. N. Karonis, B. Toonen, and I. Foster, MPICH-G2: A Grid-Enabled Implementation of the Message Passing
Interface, Journal of Parallel and Distributed Computing, to appear 2003.

16. Edgar Gabriel, Michael Resch, and Roland Ruehle, Implementing MPI with Optimized Algorithms for
Metacomputing, in Anthony Skjellum, Purushotham V. Bangalore, Yoginder S. Dandass, ‘Proceedings of the
Third MPI Developer’s and User’s Conference’, MPI Software Technology Press, Starkville, Mississippi,
1999.

17. T. Imamura, Y. Tsujita, H. Koide, H. Takemiya, An Architecture of Stampi: MPI library on a cluster of
parallel computers, in J. Dongarra, P. Kacsuk, N. Podhorszki (Eds.) ‘ Recent Advances in Parallel Virtual
Machine and Message Passing Interface’, Lecture Notes in Computer Science vol. 1908, pp. 200-207,
Springer, Berlin 2000.

18. G.E. Fagg, K. S. London, J. J. Dongarra, MPI_Connect: Managing heterogeneous MPI application
interoperation and process control, in V. Alexandrov, J. Dongarra (Eds.), ‘Recent Advances in
Parallel Virtual Machine and Message Passing Interface’, Lecture Notes in Computer Science vol.
1947, pp. 93-96, Springer, Berlin, 1998.

19. T. Kielmann, R.F.H. Hofman, H.E. Bal, MagPIe: MPI’s collective communication operations for
clustered wide area systems, ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming (PPOPP’99), pp.131-140, ACM, 1999.

20. W. Allcock, J. Bester, J. Bresnahan, A. Chervenak, L. Liming, S. Meder, S.Tuecke, GridFTP
Protocol Specification, GGF GridFTO Working Group Document, September 2002.

21. R. Batchu, J. Neelamegam, Z. Cui, M. Beddhua, A. Skjellum, Y. Dandass, and M. Apte, MPI/FT:
Architecture and taxonomies for fault-tolerant, message-passing middleware for performance-
portable parallel computing, in Proceedings of the 1st IEEE International Symposium of Cluster
Computing and the Grid, held in Melbourne, Australia, 2001.

22. Richard L. Graham, Sung-Eun Choi, David J. Daniel, Nehal N. Desai, Ronald G. Minnich, Craig
E. Rasmussen, L. Dean Risinger and Mitchel W. Sukalski, A Network-Failure-Tolerant Message-
Passing System For Terascale Clusters, ICS02, June 22-26, 2002, New York, New York, USA.

23. William Gropp and Ewing Lusk, Fault Tolerance in MPI Programs, to appear in Journal of High
Performance Computing and Applications, 2003.

24. William Gropp and Ewing Lusk, Reproducible measurements of MPI performance characteristics,
in Jack Dongarra, Emilio Luque, Tom Margalef (Eds.), ‘Recent Advances in Parallel and Virtual
Machine and Message Passing Interface’, Lecture Notes in Computer Science vol. 1697, Springer,
Berlin 1999.

25. W. Gropp, E. Lusk, N. Doss, and A. Skjellum, A high-performance, portable implementation of
the MPI message passing interface standard, Parallel Computing, 22(6):789-828, September 1996.

26. Performance Visualization for Parallel Programs, World Wide Web: http://www-
unix.mcs.anl.gov/perfvis/software/

27. User’s Guide for MPE: Extentions for MPI Programs, World Wide Web : http://www-
unix.mcs.anl.gov/mpi/mpich/docs/mpeman/mpeman.html

28. G. Burns, R. Daoud, Robust MPI Message Delivery Through Guaranteed Resources, MPI
Developers Conference, University of Notre Dame, June 1995.

29. G. Geist, J. Kohl, R. Manchel, and P. Papadopolous, New Features of PVM 3.4 and Beyond, PVM
Euro User’s Group Meeting, pp. 1-10, September, 1995.

