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Abstract 

With increasing numbers of processors and applications running in virtual Grid environments, 
application level fault-tolerance is getting more of an important issue. This paper presents the semantics 
of a fault tolerant version of the Message Passing Interface, the de-facto standard for communication in 
scientific applications, which gives applications the possibility to recover from a node or link error and 
continue execution in a well defined way. The architecture of FT-MPI, an implementation of MPI using 
the semantics presented above as well as some tools supporting end-users during the application 
development step with FT-MPI are presented. Furthermore, a performance comparison of FT-MPI to 
the most relevant MPI-libraries for point-to-point benchmarks and the High Performance Linpack 
Benchmark, is shown. 

 
1. Introduction 

 
With increasing quality of the local, national and international networks, users have access higher 
quantities and to more powerful machines than ever in human history.  While accessing and using these 
computing systems is straightforward for smaller number of machines, it becomes for larger numbers a 
science of its own: the Grid.  The Grid is generally seen as a concept for coordinated resource sharing in 
virtual organizations, combining the resources of several institutions based on the demands of the 
application and just for the lifetime of the application. 
 
Applications running on several machines can use various methods for data exchange between the 
processes. File transfer (e.g. FTP, SCP, GridFTP[20]), socket-based communication or RPC-like systems 
are just some examples. For scientific applications, the MPI[5][8] specification is meanwhile a widespread 
de-facto standard. Therefore it is not surprising, that several MPI-implementations optimized for Grid-
environments are currently available (MPICH-G2[15], PACX-MPI[16], Stampi[17], MPI_Connect[18], 
and MagPIe[19]). 
 
One problem that none of these implementations handle, is how to proceed when one or several processes 
become unavailable during runtime. This might happen because a machine or a node has crashed or is not 
reachable or because of networking problems. In fact, with increasing numbers of processors on both, 
single machines and in distributed Grid-environments, increasing numbers of applications will have to face 
node-failures. MPI in its current specification gives the user the choice between two possibilities how to 
handle a failure. The first one, the default mode, is to immediately abort the application.  The second 
possibility is to hand the control back to the user application (if possible) without guaranteeing, that any 
further communication can occur. The latter mode mainly has the purpose of giving the application the 



possibility to close all files properly, write maybe a per-process based checkpoint etc., before exiting the 
application. 
 
This situation is however unsatisfactory. Not only are for each aborted MPI application possibly large 
numbers of CPU hours wasted and lost, but also for very long running and security relevant applications 
this might not be an option at all.  The relevance of this problem can also be seen by the numerous efforts 
in this area , e.g. FT-MPI[13], MPI/FT[21], MPI-FT[6], MPICH-V[11], LA-MPI[22]. 
 
In this paper we would like to present the concept and the current status of FT-MPI, a fault-tolerant version 
of MPI developed at the University of Tennessee, Knoxville.  Furthermore, we would like to do a detailed 
comparison of FT-MPI to the most relevant, most recent, non fault-tolerant MPI implementations. The 
structure of the paper is like follows. In section 2 we compare FT-MPI to related project in the area of fault-
tolerant MPI libraries. In section 3 we present then the semantics, the concept and some tools for FT-MPI. 
Section 4 focuses on the performance comparison of FT-MPI with other MPI libraries for point-to-point 
benchmarks as well as for complex applications. Section 5 finally presents the current status of FT-MPI and 
presents the ongoing work in this area. 
 
2. Related work 
 
The methods supported by various project can be split into two classes: those supporting check-point/roll-
back technologies, and those using replication techniques. The first method attempted to make MPI 
applications fault tolerant was through the use of check-pointing and roll back. Co-Check MPI [2] from the 
Technical University of Munich being the first MPI implementation built that used the Condor library for 
check-pointing an entire MPI application.  Another system that also uses check-pointing but at a much 
lower level is StarFish MPI [3]. Unlike Co-Check MPI, Starfish MPI uses its own distributed system to 
provide built in check-pointing.  
 
MPICH-V[11] from Universit´e de Paris Sud, France is a mix of uncoordinated check-pointing and 
distributed message logging. The message logging is pessimistic thus they guarantee that a consistent state 
can be reached from any local set of process checkpoints at the cost of increased message logging. MPICH-
V uses multiple message storage (observers) known as Channel Memories (CM) to provide message 
logging. Process level check-pointing is handled by multiple servers known as Checkpoint Servers (CS). 
The distributed nature of the check pointing and message logging allows the system to scale, depending on 
the number of spare nodes available to act as CM and CS servers. 
 
LA-MPI[22] is a fault-tolerant version of MPI from the Los Alamos National Laboratories. Its main target 
is not to handle process failures, but to provide reliable message delivery between processes in presence of 
bus, networking cards and wire-transmission errors. To achieve this goal, the communication layer is split 
into two parts, a Memory and Message Management Layer, and a Send and Receive Layer. The first one is 
responsible for resubmitting lost packets or choosing a different route, in case the Send and Receive Layer 
reports an error. 
 
MPI/FT[21] provides fault-tolerance by introducing a central co-ordinator and/or replicating MPI 
processes. Using these techniques, the library can detect erroneous messages by introducing a voting 
algorithm among the replicas and can survive process-failures. The drawback however is increased 
resource requirements and partially performance degradation. 
 
The project closest to FT-MPI known to the author is the Implicit Fault Tolerance MPI project MPI-FT [6] 
by Paraskevas Evripidou of Cyprus University. This project supports several master-slave models where all 
communicators are built from grids that contain ‘spare’ processes. These spare processes are utilized when 
there is a failure. To avoid loss of message data between the master and slaves, all messages are copied to 
an observer process, which can reproduce lost messages in the event of any failures. This system appears 
only to support SPMD style computation and has a high overhead for every message and considerable 
memory needs for the observer process for long running applications.  
 



FT-MPI has much lower overheads compared to the above check-pointing and message replication 
systems, and thus much higher potential performance. These benefits do however have consequences. An 
application using FT-MPI has to be designed to take advantage of its fault tolerant features as shown in the 
next section, although this extra work can be trivial depending on the structure of the application. If an 
application needs a high level of fault tolerance where node loss would equal data loss then the application 
has to be designed to perform some level of user directed check-pointing. FT-MPI does allow for atomic 
communications much like Starfish, but unlike Starfish, the level of correctness can be varied on for 
individual communicators. This provides users the ability to fine tune for coherency or performance as 
system and application conditions dictate. An additional advantage of FT-MPI over many systems is that 
check-pointing can be performed at the user level and the entire application does not need to be stopped 
and rescheduled as with process level check-pointing.  

3. FT-MPI  

This section presents the extended semantics used by FT-MPI, the architecture of the library as well as 
some details about the implementation. Furthermore, we present tools which are supporting the application 
developer when using FT-MPI are presented. 
 
3.1.   FT-MPI Semantics 
 
Current semantics of MPI indicate that a failure of a MPI process or communication causes all 
communicators associated with them to become invalid. As the standard provides no method to reinstate 
them, we are left with the problem that this causes MPI_COMM_WORLD itself to become invalid and 
thus the entire MPI application will grid to a halt. 
 
FT-MPI extends the MPI communicator states from {valid, invalid} to a range {FT_OK, FT_DETECTED, 
FT_RECOVER, FT_RECOVERED, FT_FAILED}. In essence this becomes {OK, PROBLEM, FAILED}, 
with the other states mainly of interest to the internal fault recovery algorithm of FT_MPI. Processes also 
have typical states of {OK, FAILED} which FT-MPI replaces with {OK, Unavailable, Joining, Failed}. 
The Unavailable state includes unknown, unreachable or “we have not voted to remove it yet” states. 
A communicator changes its state when either an MPI process changes its state, or a communication within 
that communicator fails for some reason.  
 
On detecting a failure within a communicator, that communicator is marked as having a probable error. 
Immediately as this occurs the underlying system sends a state update to all other processes involved in that 
communicator. If the error was a communication error, not all communicators are forced to be updated, if it 
was a process exit then all communicators that include this process are changed.  How the system behaves 
depends on the communicator failure mode chosen by the application. The mode has two parts, one for the 
communication behavior and one for the how the communicator reforms if at all. 
 
3.1.1 Communicator and communication handling 
 
Once a communicator has an error state it can only recover by rebuilding it, using a modified version of 
one of the MPI communicator build functions such as MPI_Comm_{create, split or dup}. Under these 
functions the new communicator will follow the following semantics depending on its failure mode:  

• SHRINK: The communicator is reduced so that the data structure is contiguous. The ranks of the 
processes are changed, forcing the application to recall MPI_COMM_RANK. 

• BLANK: This is the same as SHRINK, except that the communicator can now contain gaps to be 
filled in later. Communicating with a gap will cause an invalid rank error. Note also that calling 
MPI_COMM_SIZE will return the extent of the communicator, not the number of valid processes 
within it. 

• REBUILD: Most complex mode that forces the creation of new processes to fill any gaps until the 
size is the same as the extent. The new processes can either be places in to the empty ranks, or the 



communicator can be shrank and the remaining processes filled at the end. This is used for 
applications that require a certain size to execute as in power of two FFT solvers. 

• ABORT: Is a mode which affects the application immediately an error is detected and forces a 
graceful abort. The user is unable to trap this. If the application need to avoid this they must set all 
communicators to one of the above communicator modes. 

 
Communications within the communicator are controlled by a message mode for the communicator which 
can be either of: 

1. NOP: No operations on error. I.e. no user level message operations are allowed and all simply 
return an error code. This is used to allow an application to return from any point in the code to a 
state where it can take appropriate action as soon as possible. 

2. CONT: All communication that is NOT to the affected/failed node can continue as normal. 
Attempts to communicate with a failed node will return errors until the communicator state is 
reset. 

 
3.1.2 Point to Point versus Collective correctness 
 
Although collective operations pertain to point to point operations in most cases, extra care has been taken 
in implementing the collective operations so that if an error occurs during an operation, the result of the 
operation will still be the same as if there had been no error, or else the operation is aborted. 
 
Broadcast, gather and all gather demonstrate this perfectly. In Broadcast even if there is a failure of a 
receiving node, the receiving nodes still receive the same data, i.e. the same end result for the surviving 
nodes. Gather and all-gather are different in that the result depends on if the problematic nodes sent data to 
the gatherer/root or not. In the case of gather, the root might or might not have gaps in the result. For the 
all2all operation, which typically uses a ring algorithm it is possible that some nodes may have complete 
information and others incomplete. Thus for operations that require multiple node input as in gather/reduce 
type operations any failure causes all nodes to return an error code, rather than possibly invalid data. 
Currently an addition flag controls how strict the above rule is enforced by utilizing an extra barrier call at 
the end of the collective call if required. 
 
3.1.3 Application view 
 
The library provides the application a possibility to recover from an error, restructure itself and continue 
with the execution. However, the application has to take some steps itself to handle an error properly. Two 
possibilities are offered by FT-MPI: 
 

• The user discovers any errors from the return code of any MPI call, with a new fault indicated by 
MPI_ERR_OTHER. Details as to the nature and specifics of an error are available though the 
cached attributes interface in MPI. 

• The user can register a new error-handler at the beginning of the simulation, which is than called 
by the MPI-library in case an error occurs. Using this mechanism, the user hardly needs to change 
any code. 

 
The error-recovery function of the application has to perform two phases: first, all non-local information 
needs to  be reestablished (e.g. all communicators derived from another communicator, which has an 
erroneous processes needs to be re-created). Second, the application needs to resume from a well defined 
state in the application. 
 
3.2 Architecture of FT-MPI and HARNESS 
 
FT-MPI was built from the ground up as an independent MPI implementation as part of the Department of 
Energy Heterogeneous Adaptable Reconfigurable Networked SyStems (HARNESS) project[1]. One of the 
aims of HARNESS was to provide a framework for distributed computing much like PVM[29] previously. 
A major difference between PVM and HARNESS is the formers monolithic structure verses the latter’s 
dynamic plug-in modularity. To provide users of HARNESS instant application support, both a PVM and 



an MPI plug-in were envisaged. As the HARNESS system itself was both dynamic and fault tolerant (no 
single points of failure), then it became possible to build a MPI plug-in with added capabilities such as 
dynamic process management and fault tolerance. 
 
Figure 1 illustrates the overall structure of a user level application running under the FT-MPI plug-in, and 
HARNESS system. The following subsections briefly outline the design of FT-MPI and its interaction with 
various HARNESS system components. 

Figure 1. FT-MPI Architecture 

3.2.1 FT-MPI architecture 

As shown in figure 1 the FT-MPI system itself is built in a layering fashion. The upper most layer deals 
with the handling of the MPI-1.2 specification API and MPI objects. The next layer deals with data 
conversion/marshalling (if needed), attribute and record storage, and various lists. Details of the highly 
tuned buffer management and derived data type handling can be found in [13]. FT-MPI also implements a 
number of tuned MPI collective routines, which are further discussed in [14]. The lowest layer consists of 
the FT-MPI runtime library (FTRTL), which is responsible for interacting with the OS via the HARNESS 
user level libraries (HLIB). The FTRTL layer provides the facilities that allow for dynamic process 
management, system level naming of MPI tasks, message handling during the entire fault to recovery cycle. 
The HLIB layer interacts with HARNESS system during both startup, fault to recovery cycle, and 
shutdown phases of execution. The HLIB also provides the interfaces to the dynamic process management 
and redirection of application IO. The SNIPE[4] library provides the inter-node communication of MPI 
message headers and data. To simplify the design of the FTRTL, SNIPE only delivers whole messages 
atomically to the upper layers. During a recovery from failure, SNIPE uses in channel system flow control 



messages to indicate the current state of message handling (such as accepting connections, flushing 
messages or in-recovery).  
 
It is important to note that the FTRTL shown in figure 1 gets notification of failures from both the point to 
point communications libraries as well as from the HARNESS layer. In the case of communication errors, 
the notify is usually started by the communication library detecting a point to point message not being 
delivered to a failed party rather than the failed parties OS layer detecting the failure. The FTRTL is 
responsible for notifying all tasks of errors as they occur by injecting notify messages into the send 
message queues ahead of user level messages.  

3.2.2 OS support and the HARNESS G_HCORE 

The General HARNESS CORE (G_HCORE) is a daemon that provides a very lightweight infrastructure 
from which to build distributed systems. The capabilities of the G_HCORE are exploited via remote 
procedure calls (RPCs) as provided by the user level library (HLIB). The core provides a number of very 
simple services that can be dynamically added to [1]. The simplest service is the ability to load additional 
code in the form of a dynamic library (shared object) known as a plug-in, and make this available to either 
a remote process or directly to the core itself. Once the code is loaded it can be invoked using a number of 
different techniques such as: 

• Direct invocation: the core calls the code as a function, or a program uses the core as a runtime 
library to load the function, which it then calls directly itself. 

• Indirect invocation: the core loads the function and then handles requests to the function on behalf 
of the calling program, or, it sets the function up as a separate service and advertises how to access 
the function. 

 
An application built for HARNESS might not interact with the host OS directly, but could instead install 
plug-ins that provide the required functionality. The handling of different OS capabilities would then be left 
to the plug-in developers, as is the case with FT-MPI. 

3.2.3 G_HCORE services for FT-MPI 

Services required by FT-MPI break down into two main categories: 
• Spawn and Notify service. This service is provided by a plug-in which allows remote processes to 

be initiated and then monitored. The service notifies other interested processes when a failure or 
exit of the invoked process occurs. The notify message is either sent directly to all other MPI tasks 
or via the FT-MPI Notifier daemon which can provide additional diagnostic information if 
required. 

• Naming services. These allocate unique identifiers in the distributed environment for tasks, 
daemons and services (which are uniquely addressable). The name service also provides 
temporary state storage for use during MPI application startup and recovery, via a comprehensive 
record facility. 

 
Currently FT-MPI can be executed in one of two modes. As the plug-in mode described above when 
executing as part of a HARNESS distributed virtual machine, or in a slightly lighter weight configuration 
with the spawn-notify service as a standalone daemon. This latter configuration loses the benefits of any 
other available HARNESS plug-ins, but is better suited for clusters that only execute MPI jobs. No matter 
which configuration is used, one name-service daemon, plus one either of the GHCORE daemon or one 
startup daemon per node is needed for execution.  
 
3.3 Tools for FT-MPI 
 
Several tools developed simultaneously with FT-MPI for both fault-tolerant and non fault-tolerant usage 
are supporting FT-MPI. First, a console has been developed which provides a command line interface for 



adding or removing a host from the current virtual machine. Providing the similar commands to its PVM 
counterpart, the user is able to determine both runtime information from the VM, in addition to how many 
application processes are currently executing.  The console is therefore an essential tool especially for large 
configurations. A graphical front-end to the console implemented in Java further enhances the user-
friendliness of the HARNESS and FT-MPI environment (see figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Screenshot of the Java-GUI for the console showing nameservice, startup-daemons and 

application processes 
 
Second, the tracing library MPE [27] has been ported to work with FT-MPI. Using MPE, the user can 
generate tracefiles of its applications running with FT-MPI, which than can be analyzed using a visualizer 
such as jumpshot [26].  Performance analysis tools like jumpshot are for the development and tuning of 
parallel applications an important building block, since they guide the user to performance problems and 
bottlenecks in his parallel application.  The user can however use MPE and jumpshot in a transparent 
manner only if his application is terminating correctly, since the tracefile is only written at the finalize step.  
 
4. Performance comparison to non fault-tolerant MPI libraries 
 
In this section we would like to compare the performance of FT-MPI to the performance achieved with the 
the most widely used, non fault-tolerant MPI implementations.  These are MPICH [25](version 1.2.5) and 
LAM[28] (version 6.5.9). Additionally, we are also using the beta-version of the new MPICH2 library 
(version 0.9.3). All tests were performed on a PC-cluster consisting of 16 nodes, each node having two 2.4 
GHz Pentium IV processors. A Gigabit Ethernet network connects the nodes. 

4.1 Point-to-point performance tests 

The first set of benchmarks were using the mpptest – testsuite [24], available with the MPICH distribution. 
We conducted three different tests, a short-message test (0-1024 bytes), a test for medium size messages (0-
128Kbytes) and a long message test (0-2Mbytes) for determining the maximum achievable bandwidth. 
Figure 3 presents the results for the short message test. The fastest library for short-messages was LAM, 
followed by MPICH2. FT-MPI is between MPICH2 and MPICH 1.2.5 for small messages.  
 
For medium size messages, the ranking of the libraries is changing at around 20 Kbyte messages. LAM and 
MPICH1.2.5 become from this point on around 10% slower than MPICH2 and FTMPI. As a consequence, 
MPICH2 and FT-MPI show the best performance also for long-messages, achieving a bandwidth of around 



67 Mbytes/second on the Gigabit Ethernet connection (FT-MPI), respectively 65 Mbytes/second  
(MPICH2). 

 
 

Figure 3: Performance results for all MPI libraries for short-messages (left) and long messages (right). 

4.2   Results for High Performance Linpack (HPL) 

In this section we would like to present the performance results achieved with the High Performance 
Linpack Benchmark [7] as a representative of a complex end-user application. From the many optimization 
possibilities and performance parameters, which can be used to tune HPL, we chose a single test case and 
modified a single parameter, the block-size. Changing the block-size in HPL has not only an effect on the 
data distribution, but also on the message sizes sent. Therefore, by modifying this parameter, we can show, 
which MPI-library is achieving the best results for different block-sizes/message lengths. 
 
The tests were conducted for a problem size of 6000, using 4 processes.  Table 1 shows the results of our 
measurements. Up to the block-size of 80, FT-MPI is second in all tests, just MPICH2 is achieving better 
performance than FT-MPI. For block-sizes larger than 80, FT-MPI and MPICH1.2.5 are nearly equal. The 
overhead of FT-MPI compared to the according fastest library is between 2% and 5%, which is moderate 
taking into account, that FT-MPI is offering additional functionality compared to the other libraries. In the 
following, we would like to focus on three testcases, using block-sizes of 48, 80 and 240.  
 
 

Blocksize FT-MPI MPICH 1.2.5 LAM 6.5.9 MPICH 2 - 0.9.3 
16 25.25 sec 28.84 sec 25.78 sec 24.97 sec 
32 20.51 sec 20.61 sec 20.78 sec 19.90 sec 
48 28.00 sec 28.16 sec 28.31 sec 27.43 sec 
80 18.18 sec 18.18 sec 18.50 sec 17.41 sec 

128 22.96 sec 22.86 sec 23.03 sec 22.07 sec 
160 18.97 sec 18.89 sec 19.24 sec 18.03 sec 
240 20.05 sec 19.88 sec 20.28 sec 19.09 sec 

 
Table 1. Execution time of HPL with different bocksizes and MPI libraries 

 
There are two effects which are relevant for the communication performance of HPL. On one hand, there is  
a large number of small messages (0-4KB), which is independent of the block-size. The most relevant short 
messages are occurring 6000 times per test. On the other hand, we have increasing message-sizes and 
decreasing number of messages for increasing block-sizes, as shown in Table 2. While the overall amount 
of data remains roughly constant, the number of messages decreases with increasing block-size, and the 
messages get longer. Thus, while FT-MPI shows a good performance for long messages (as shown in 



section 4.1), it still suffers from a higher latency than MPICH-2.  This is probably the reason for the higher 
execution time of FT-MPI. LAM is slower compared to FT-MPI, probably mainly because of its limited 
performance for large messages. The performance of FT-MPI and MPICH1.2.5 are comparable for large 
block sizes, however, FT-MPI has an advantage for smaller block-sizes. 
 

Blocksize No. of msg. >20 KB No. of msg. >100 KB No. of. msg. > 1 MB 
48 142 811 27 
80 53 476 73 
240 12 57 132 

 
Table 2. Number of large messages for different block-sizes. 

 
 
5.   Conclusions 
 
FT-MPI is an attempt to provide application programmers with different methods of dealing with failures 
within MPI application than just check-point and restart. It is hoped that by experimenting with FT-MPI, 
new applications methodologies and algorithms will be developed to allow for both high performance and 
the survivability required by both unreliable GRIDs and the next generation of terra-flop and beyond 
machines. FT-MPI in itself is already proving to be a useful vehicle for experimenting with self-tuning 
collective communications, distributed control algorithms, various dynamic library download methods and 
improved sparse data handling subsystems, as well as being the default MPI implementation for the 
HARNESS project.   
 
FT-MPI implements currently the full MPI 1.2 specification as well as several sections of the MPI-2 
document. Furthermore, FT-MPI has full tool-support for both normal MPI features such as profiling and 
debugging via MPE, as well as additional support for fault-tolerance. The first major release will be 
available end second quarter 2003. Future work in the FT-MPI library system will concentrate on 
developing a number of drop-in library templates or skeletons to simplify the construction of fault tolerant 
applications. 
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