
Iterative Solver Benchmark

Jack Dongarra, Victor Eijkhout, Henk van der Vorst

2001/01/14

1 Introduction

The traditional performance measurement for computers on scienti�c application
has been the Linpack benchmark [2], which evaluates the e�ciency with which
a machine can solve a dense system of equations. Since this operation allows for
considerable reuse of data, it is possible to show performance �gures a sizeable
percentage of peak performance, even for machines with a severe unbalance between
memory and processor speed.

In practice, sparse linear systems are equally important, and for these the question
of data reuse is more complicated. Sparse systems can be solved by direct or iterative
methods, and especially for iterative methods one can say that there is little or no
reuse of data. Thus, such operations will have a performance bound by the slower
of the processor and the memory, in practice: the memory.

We aim to measure the performance of a representative sample of iterative tech-
niques on any given machine; we are not interested in comparing, say, one pre-
conditioner on one machine against another preconditioner on another machine.
Therefore we have strict conformance tests on the results of the benchmark, ex-
plained below.

An earlier report on the performance of supercomputers on sparse equation solvers
can be found in [3].

2 Motivation

The sparse benchmark o�ers a small number of iterative methods, preconditioners
and storage schemes. Rather than implementing all known methods, we have cho-
sen those that have a performance representative of larger classes. More detailed
discussion will follow in section 4.

We want to stress from the outset that we did not aim to present the most sophisti-
cated method. Rather, by considering combinations of the representative elements
used in the benchmark a user should be able to get a good notion of the expected
performance of methods not included. Consistent with this philosophy, we terminate
each benchmark run after a �xed number of iterations, since we are not interested
in convergence speed: we solely measure the op rate per iteration.

1

As storage schemes we o�er diagonal storage, and compressed row storage. Both
of these formats represent typical matrices for three-dimensional �nite element or
�nite di�erence methods. The diagonal storage, using seven diagonals, is the natural
mode for problems on a regular (`brick') domain; the compressed row storage1 is the
natural storage scheme for irregular domains. Thus these choices are representative
for most single-variable physical problems.

The iterative methods provided are CG and GMRES. The plain Conjugate Gradi-
ents method is representative of all �xed-storage methods, including sophisticated
methods for nonsymmetric problems such as BiCGstab; the GMRES method repre-
sents the class of methods that have a storage demand that grows with the number
of iterations.

Each iterative method can be run unpreconditioned { which is computationally
equivalent to using a Jacobi preconditioner { or with an ILU preconditioner. For
the diagonal storage scheme a block Jacobi method is also provided; this gives
a good indication of domain decomposition methods. If these methods are used
with inexact subdomain solves, then the ILU preconditioner gives the expected
performance for these.

3 Structure of the benchmark

We have implemented a benchmark that constructs a test matrix and precondi-
tioner, and solves a linear system with them. Separate op counters and timers
are kept for the work expended in vector operations, matrix vector products, pre-
conditioner solves, and other operations involved in the iterative method. The op
counts and ops rates in each of these categories, as well as the overall ops rates,
are reported at the end of each run.

The benchmark comprises several storage formats, iterative methods, and precon-
ditioners. Together these form a representative sample of the techniques in typical
sparse matrix applications. We describe these elements in more detail in section 4.

We o�er a reference code, which is meant to represent a portable implementation
of the various methods, without any machine-speci�c optimisations. In addition to
this we supply a number of variants of the code that should perform better on
certain machines, and most likely worse on some others; see section 6.

3.1 Conformance of the benchmark

Since we leave open the possibility that a local implementer make fargoing changes
to the benchmark code (see section 3.2), every submission of benchmark results has
to be accompanied by proof that the local implementation conforms to the reference
code. For conformance testing we supply a script that matches the error norm in
the �nal iteration of a run (we stop the iteration after ten steps) to the value of
that error stored on �le.

This is a static test, and in practice it only allows changes to the reference code
that are not numerically signi�cant. In particular, it precludes an implementer from
replacing the preconditioner by a di�erent one. We justify this from our standpoint

1. Use of compressed column storage should give roughly the same performance.

2

that the benchmark is not a test of the best possible preconditioner or iterative
method, but rather of methods representative for a wider class with respect to
computer performance.

Since the benchmark includes ILU preconditioners, this static conformance test
would a priori seem to be biased against parallel implementations of the benchmark.
This point is further elaborated in section 5.

3.2 Benchmark reporting

An implementer of the benchmark can report performance results on various levels,
each next level encompassing all of the earlier options.

1. Using only compiler ags in the compilation of the reference code.
2. Using compiler directives in the source of the reference code.
3. Rewriting the reference code in such a way that any di�erences are solely in

a di�erent order of scheduling the operations.
4. Rewriting the reference code by replacing some algorithm by a mathemati-

cally equivalent formulation of the algorithm (that is: in exact arithmetic the
(intermediate) results should be the same).

The last two levels may or will in general inuence the numerical results, so results
from codes thus rewritten should be accompanied by proof that the speci�c realisa-
tion of the benchmark reproduces the reference results within a certain tolerance.

Each run of the benchmark code ends with a report on how many oating point
operations were performed in the various operations. Implementers should use these
numbers to do reporting (rather than using hardware op counters, for instance),
but they are free to substitute their own timers.

The benchmark comes with shell scripts that run a number of tests, and report both
best performance and asymptotic performance for the whole code and elements of
it. Asymptotic performance is determined by making a least-squares �t y = a+bx�1

through the data points, where y is the observed megaop rate and x is the dataset
size. The asymptotic performance is then the value of a.

This assumption on the performance behaviour accomodates both cache-processors,
for which we expect b > 0 as the dataset size overows the cache, and vector
processors, for which we expect b < 0 as performance goes up with increasing
vector length.

For cache-based processors we may expect a plateau behaviour if the cache is large;
we discard the front of this plateau when calculating the asymptotic performance.

4 Elements of the benchmark code

The user of the benchmark has the following choices in determining the problem to
run.

4.1 Storage formats

The matrix can be in the following formats:

3

� Diagonal storage for a seven-diagonal matrix corresponding to �nite di�er-
ences in three dimensions;

� Compressed row storage of a matrix where the sparsity structure is randomly
generated; each row has between 2 and 20 nonzeros, each themselves randomly
generated, and the bandwidth is � n2=3 which again corresponds to a problem
in three space dimensions.

For both formats a symmetric variant is given, where only half the matrix is stored.

The diagonal storage is very regular, giving code that has a structure of loop nests
of depth three. Vector computers should perform very e�ciently on this storage
scheme. In general, all index calculation of o�sets can be done statically.

Matrix-vector operations on compressed row storage may have a di�erent perfor-
mance in the transpose case from the regular case. Such an operation in the regular
case is based on inner products; in the transpose case it uses vector updates (axpy
operations). Since these two operations have di�erent load/store characteristics,
they may yield di�erent ops rates. In the symmetric case, where we store only
half the matrix, such operations use in fact the regular algorithm for half the ma-
trix, and the transpose algorithm for the other half. Thus, the performance of,
for instance, the matrix-vector product, will be di�erent in GMRES from in the
Conjugate Gradient method.

The CRS format gives algorithms that consist of an outer loop over the matrix
rows, with an inner loop that involves indirect addressing. Thus, we expect a lower
performance, especially on machines where the indirect addressing involves an access
to memory.

4.2 Iterative methods

The following iterative methods have been implemented2 (for more details on the
methods mentioned, see the Templates book [1]):

� Conjugate Gradients method; this is the archetypical Krylov space method for
symmetric systems. We have included this, rather than MINRES or SYMLQ,
for its ease of coding, and for the fact that its performance behaviour is rep-
resentative of the more complicated methods. The results for CG are also
more-or-less representative for transpose-free methods for nonsymmetric sys-
tems, such as BiCGstab, which also have a storage demand constant in the
number of iterations.

� Generalized Minimum Residual method, GMRES. This popular method has
been included because its performance behaviour is di�erent from CG: stor-
age and computational complexity are an increasing function of the iteration
count. For that reason GMRES is most often used in cycles of m steps. For
low values of m, the computational performance for GMRES will not be much
di�erent than for CG. For larger values, saym > 5, the j inner products in the
j-th iteration may inuence the performance. We have included GMRES(20)
in our benchmark.

2. We have not included methods such as BiCG in the benchmark, which use a product with

the transpose matrix At. In many cases forming this product is impractical, and for this reason

such methods are less used than transpose-free methods such as BiCGstab. BiCG has the same

performance behaviour as CG, except for the di�erence between the regular and the transpose

matrix-vector product. For diagonal matrix storage there is no di�erence; for compressed storage

it is the di�erence between a dot product and a vector update, both indirectly addressed.

4

The Conjugate and BiConjugate gradient methods (see �gure 1) involve, outside

Let A, M , x, b be given;
compute r1 = Ax� b;
for i = 1 : : : 10

solve preconditioner: z =M�1r
inner product �i = rtz
if i > 1, update p z + p(�i=�i�1)
matrix vector product: q = Ap
inner product � = ptq
update x x� p�

r r � q�

Figure 1: Conjugate Gradient algorithm

the matrix-vector product and preconditioner application, only simple vector op-
erations. Thus, their performance can be characterised as Blas1-like. The GMRES
method (see �gure 2), on the other hand, uses orthogonalisation of each new gen-

Let A, M , x, b be given;
for i = 1 : : : 10

matrix and preconditioner apply: z = AM�1r
orthogonalize z against all earlier vj , j < i
normalize vi z=kzk.
update QR factorisation of size i+ 1� i Hessenberg matrix

Update x x�
P

i vici

Figure 2: One restart cycle of the Generalized Minimum Residual method

erated Krylov vector against all previous, so a certain amount of cache reuse should
be possible. See also section 6 for a rewritten version that uses Blas3 kernels.

4.3 Preconditioners

The following preconditioners are available3:

� No preconditioner;
� Point ILU; for the diagonal storage a true ILU-D is implemented, in the CRS

case we use SSOR, which has the same algorithmic structure as ILU;
� Line ILU for the diagonal storage scheme only; this makes a factorisation of

the line blocks.
� Block Jacobi for the diagonal storage scheme only; this is parallel on the

level of the plane blocks. The block Jacobi preconditioner gives a performance
representative of domain decomposition methods, including Schwarz methods.

The point ILU method is typical of commonly used preconditioners. It has largely
the structure of the matrix-vector product, but on parallel machines its sequential
nature inhibits e�cient execution.

3. We have not included the commonly used Jacobi preconditioner, since this is mathematically

equivalent to scaling the matrix to unit diagonal, a strategy that has the exact same performance

as using no preconditioner.

5

The line ILU method uses a Level 2 BLAS kernel, namely the solution of a banded
system. It is also a candidate for algorithm replacement, substituting a Neumann
expansion for the system solution with the line blocks.

5 Parallel realisation

Large parts of the benchmark code are conceptually parallel. Thus we encourage
the submission of results on parallel machines. However, the actual implementation
of the methods in the reference code is sequential. In particular, the benchmark
includes ILU preconditioners using the natural ordering of the variables.

It has long been realised that ILU factorisations can only be implemented e�ciently
on a parallel architecture if the variables are renumbered from the natural ordering
to, for instance, a multi-colour or nested dissection ordering.

Because of our strict conformance test (see section 3.1), the implementer is not
immediately at liberty to replace the preconditioner by an ILU based on a di�erent
ordering. Instead, we facilitate the parallel execution of the benchmark by providing
several orderings of the test matrices, namely:

� Reverse Cuthill-McKee ordering.
� Multi-colour ordering; here we do not supply the numbering with the minimal

number of colours, but rather a colouring based on [4].
� Nested dissection ordering; this is an ordering based on edge-cutting, rather

than �nding a separator set of nodes.

The implementer then has the freedom to improve parallel e�ciency by optimising
the implementation for a particular ordering.

Again, the implementer should heed the distinction of section 3.2 between execution
by using only compiler ags or directives in the code, and explicit rewrites of the
code to force the parallel distribution.

6 Code variants

We supply a few variants of the reference code that incorporate transformations
that are unlikely or impossible to be done by a compiler. These transformations
target speci�c architecture types, possibly giving a higher performance than the
reference code, while still conforming to it; see section 3.1.

Naive coding of regular ILU Putting the tests for boundary conditions in the
inner loop is bad coding practice, except for dataow machines, where it
exposes the structure of the loop.

Wavefront ordering of regular ILU We supply a variant of the code where the
triple loop nest has been rearranged explicitly to a sequential outer loop and
two fully parallel inner loops. This may bene�t dataow and vector machines.

Long vectors At the cost of a few superuous operations on zeros, the vector
length in the diagonal-storage matrix-vector product can be increased from
O(n) to O(n3). This should bene�t vector computers.

6

Di�erent GMRES orthogonalisation algorithms There are at least two re-
formulations of the orthogonalisation part of the GMRES method. They can
enable use of Level 3 BLAS operations and, in parallel context, combine inner
product operations. However, these code transformations no longer preserve
the semantics under computer { rather than exact { arithmetic.

7 Results

The following tables contain preliminary results for the machines listed in table 1.
In table 2 we report the top speed reported regardless the iterative method, pre-
conditioner, and problem size. This speed is typically reported on a fairly small
problem, where presumably the whole data set �ts in cache.

We compute an `asymptotic speed' by a least-squares �t as described in section 3.2.
We report this asymptotic speed for the following components:

� The matrix vector product. We report this in regular storage, and in com-
pressed row storage separately for the symmetric case (cg) and the nonsym-
metric case since these may have di�erent performance characteristics; see
section 4.1.

� The ILU solve. We also report this likewise in three variants.
� The Block Jacobi solve.
� Vector operations. These are the parts of the algorithm that are independent

of storage formats. We report the e�ciency of vector operations for the CG
method; in case of GMRES a higher e�ciency can be attained by using Level
2 BLAS and Level 3 BLAS routines. We have not tested this.

Processor Manufacturer / type Clock speed / #procs Compiler / options
Alpha EV56 Compaq 433 MHz f77 -O5
Alpha EV67 Compaq 500 MHz f77 -O5
Athlon AMD 1 GHz g77 -O
LX164 DCG 533 MHz g77 -O5
MIPS R10000 SGI Indigo 195 MHz f77 -O
MIPS R12000 SGI Octane dual 270 MHz f77 -O
PIII Dell 550 MHz g77 -O
P4 Dell 1.5GHz g77 -O
Power3 IBM dual 200 MHz xlf -O
PowerPC G4 Apple 450 MHz g77 -O
UltraSparcII Sun quad 296 MHz f77 -O

Table 1: List of machines used

We see from the results that the performance of these sparse operations, in contrast
to the dense operations in for instance the Linpack benchmark, is almost completely
determined by the quality of the memory subsystem.

8 Obtaining and running the benchmark

The benchmark code can be obtained from http://www.netlib.org/benchmark/sparsebench.
The package contains Fortran code, and shell scripts for installation and post-

7

processing. Results can be reported automatically to sparsebench@cs.utk.edu,
which address can also be used for questions and comments.

Machine Mop/s

EV67 705
Power3 550
P4 425
EV56 331
UltraSparcII 259
LX164 233
MIPS R12000 228
PowerPC G4 163
PIII 163
Athlon 163
MIPS R10000 151

Table 2: Highest attained performance

Machine Mop/s

EV67 86
P4 73
Power3 68
MIPS R12000 49
Athlon 45
UltraSparcII 40
LX164 34
EV56 34
PIII 24
PowerPC G4 21
MIPS R10000 18

Table 3: Asymptotic performance of Diagonal storage Matrix-vector product

References

[1] Richard Barrett, Michael Berry, Tony F. Chan, James Demmel, June Do-
nato, Jack Dongarra, Victor Eijkhout, Roldan Pozo, Charles Romine, and
Henk van der Vorst. Templates for the Solution of Linear Systems:

Building Blocks for Iterative Methods. SIAM, Philadelphia PA, 1994.
http://www.netlib.org/templates/templates.ps.

[2] Jack Dongarra. Performance of various computers using standard linear equa-
tions software. http://www.netlib.org/benchmark/performance.ps.

[3] Jack Dongarra and Henk van der Vorst. Performance of various computers using
sparse linear equations software in a fortran environment. Supercomputer, 1992.

[4] M.T. Jones and P.E. Plassmann. A parallel graph coloring heuristic. SIAM J.

Sci. Stat. Comput., 14, 1993.

8

Machine Mop/s

EV67 76
Power3 58
P4 46
MIPS R12000 39
Athlon 34
EV56 28
LX164 24
PIII 22
UltraSparcII 18
MIPS R10000 16
PowerPC G4 9

Table 4: Asymptotic performance of Symmetrically stored CRS Matrix-vector pro-
duc

Machine Mop/s

P4 97
EV67 96
MIPS R12000 53
Athlon 39
LX164 28
EV56 28
UltraSparcII 27
PIII 27
PowerPC G4 19
MIPS R10000 19
Power3 14

Table 5: Asymptotic performance of CRS Matrix-vector product

Machine Mop/s

EV67 86
MIPS R12000 41
Athlon 34
LX164 29
EV56 28
P4 24
Power3 21
PIII 19
PowerPC G4 13
MIPS R10000 9
UltraSparcII 7

Table 6: Asymptotic performance of Diagonal storage ILU solve

9

Machine Mop/s

P4 70
EV67 69
Power3 57
Athlon 31
MIPS R12000 26
LX164 26
EV56 26
PIII 21
PowerPC G4 19
UltraSparcII 17
MIPS R10000 10

Table 7: Asymptotic performance of Symmetrically stored CRS ILU solve

Machine Mop/s

P4 86
EV67 48
Power3 45
Athlon 21
MIPS R12000 18
LX164 16
EV56 15
PIII 13
UltraSparcII 8
MIPS R10000 6
PowerPC G4 5

Table 8: Asymptotic performance of CRS ILU solve

Machine Mop/s

EV67 201
Power3 113
MIPS R12000 113
P4 79
EV56 65
MIPS R10000 58
UltraSparcII 47
PIII 44
LX164 41
PowerPC G4 26
Athlon 10

Table 9: Asymptotic performance of Vector operations in CG

10

Machine Mop/s

EV67 106
MIPS R12000 65
Power3 53
P4 51
LX164 33
EV56 32
Athlon 30
PIII 18
UltraSparcII 16
PowerPC G4 12
MIPS R10000 12

Table 10: Asymptotic performance of Diagonal storage Block Jacobi solve

11

