
Stochastic Performance Prediction for Iterative Algorithmsin Distributed Environments
Henri CasanovaUniversity of California at San DiegoDepartment of Computer Science and EngineeringLa Jolla, CA 9209-0114, U.S.Ae-mail: casanova@cs.ucsd.eduMichael G. ThomasonUniversity of TennesseeDepartment of Computer Science, 104 Ayres HallKnoxville, TN 37996-1301, U.S.Ae-mail: thomason@cs.utk.eduJack J. DongarraUniversity of TennesseeDepartment of Computer Science, 104 Ayres HallKnoxville, TN 37996-1301, U.S.Ae-mail: dongarra@cs.utk.eduandOak Ridge National LaboratoryMathematical Science Section, PO Box 2008, Building 6012Oak Ridge, TN 37821-6367, U.S.Ae-mail: dongarra@msr.epm.ornl.gov

1

Running Head:Performance Prediction for Iterative AlgorithmsAuthor to whom proofs should be sent:Henri CasanovaUCSD, Dept. 01149500 Gilman Dr.LA JOLLA, CA 92093-0114e-mail: casanova@cs.ucsd.eduph: (619)-534-5913fax: (619)-534-7029Abstract:The parallelization of iterative algorithms is an important issue for e�cient solution of largenumerical problems. Several theoretical results concerning su�cient conditions for, andspeed of, convergence of parallel iterative algorithms are available. However, those resultsusually do not take into account the processor workloads and network communications atthe application level. The approach in this paper develops a Markov chain based on randomvariables which describe aspects of the multi-user, distributed-memory environment and thephases of the algorithm. The performance characterization addresses stochastic character-istics of the algorithmic execution time such as mean values and standard deviations. Wepresent simulation results as well as experimental results over di�erent time periods. The re-sults provide information about the impact of distributed environment and implementationstyle on long-run, expected execution time characteristics.Keywords:convergence, distributed-memory, iterative algorithm, Markov chain, multi-user, parallel,performance prediction, stochastic modeling

2

1 IntroductionIterative algorithms are widely used in di�erent areas of science and engineering, e.g., medicalimaging [22] and network ow in electrical networks, communication networks and �nancialmodels [5]. A broad class of iterative algorithms aims at �nding a �xed point of a given op-erator. Many well-know numerical methods use such an algorithm with linear or non-linearoperators. For problems with large dimension and/or extensive numerical computation foreach component of the solution vector at each iteration (e.g., gradient approximations orHessian computations for non-linear operators), it is natural to consider parallel implemen-tations of iterative algorithms.Analyzing the behavior and thus the performance of a parallelized iterative algorithmin a distributed environment is not an easy task. The amount of computation performedby a processor to update a component of the solution vector often is not known a prioriand in non-linear cases may depend on the operator. For instance, in popular algorithmsto compute approximations of the gradient of the operator at each iteration (e.g., gradientdescent algorithms), the amount of computation required to approximate the value of acomponent of the gradient (say the i-th component) depends on the shape (or geometry)of the operator along direction i at the current solution vector. Furthermore, if distributediteration is implemented on a non-dedicated system with other users, the computation andcommunication of those users impact the availability of processor and network resources tothe iterative algorithm.In this research, we focus on non-dedicated, distributed-memory environments such asclusters of processors on a network. There are existing convergence results that indirectlysupport a quantitative assessment of the parallel algorithm convergence rate, but almost allthese results are purely theoretical and do not take into account the nature of the multi-user, distributed environment itself. Commonly available results are lower bounds on thealgorithm theoretical rate of convergence.Due to non-determinism (randomness) both in network communications and in compu-tational workloads at processors, stochastic methods appear to be a natural way to movetowards more comprehensive models. These models should capture the uctuations of thedistributed environment and the algorithm, and their impact on the user's implementation,at least in terms of average or \expected" characteristics of execution time conditioned on theassumptions made to obtain tractable models. In the following sections, we give de�nitionsand assumptions concerning parallel iterative algorithms in multi-user, distributed-memoryenvironments; introduce application-level models of the distributed environment and the al-gorithm which lead to a �nite-state, time-homogeneous Markov chain; discuss performancecharacterizations related to convergence; and describe results of simulations and experiments.2 Parallel Iterative AlgorithmsWe use two, well-established paradigms for parallel implementation of iterative algorithms:synchronous and asynchronous. In [27], it is shown that asynchronous implementations have\good" communication complexity as compared to synchronous ones, but it is di�cult to usethese results to obtain quantitative estimates of actual performance in a given distributed3

environment. A performance comparison between the two paradigms is provided in [8,Section 6.3.5], but the model is non-random and does not describe non-deterministic systems.A unique reference that proposes a stochastic approach is [30] which gives an analysis ofasynchronous iteration with expected values based on [18]. This work is of interest for shared-memory homogeneous implementations and an age scheduling strategy for which processors'execution times are described by a speci�c family of probability distributions (increasingfailure rate (IFR) functions) with simulation used to approximate some parameters. Incontrast, this paper focuses on distributed-memory systems that may be non-homogeneous,and assumes static scheduling (which simulations in [30] show to be superior) to develop aMarkov chain model.We consider iterative algorithms in which an operator is applied repetitively to a vectorof real-valued data until some convergence criteria are met. Let R denote the reals and Nthe non-negative integers f0; 1; 2; : : :g. The computation of the algorithm is a sequence ofvectors fx(t)g in Rm , and the iteration can be written as:(x(0) 2 Rmx(t+ 1) = Op(x(t)) 2 Rm for all t 2 N : (1)If the algorithm converges, the sequence fx(t)g converges to a �xed point of operator Op.Much work has been devoted to �nding useful operators for speci�c problems and �ndingoperators that provide the highest convergence rates (cf. [24]).In this research, we consider the general iterative equation Equ. (1) without looking atdetails of the numerical method(s) implemented to compute Op. The iteration to update thecomponents of the solution vector x(t) is distributed among a collection of processors. Aspreviously stated, we consider only static scheduling, meaning that each processor updatesone piece of x(t) which is a preassigned, �xed subset of the components of vector x(t).2.1 Synchronism vs. AsynchronismSynchronous implementations of iterative algorithms are straightforward parallelizations ofsequential implementations. This makes them attractive as their convergence properties arethus well known. It is often easy to convert a sequential implementation of a given algo-rithm into a synchronous parallel implementation. Assume that the distributed environmentused to execute the algorithm consists of p processors. Each processor can access its localmemory and communicate with any other processor via a network. Each processor startseach iteration with the entire current solution vector in its memory and updates its subsetof x(t) by applying part of the operator Op to the entire vector. The processors then per-form an all-to-all communication, exchange their up-to-date subsets of the solution vector,and proceed to the next iteration. More formally, if the components of the solution vectorx(t) are denoted by xi(t), i = 1; :::; m and if the components of Op(x(t)) are denoted byOpi(x1(t); :::; xm(t)), the synchronous iteration can be written as:xi(t+ 1) = Opi(x1(t); :::; xm(t)) for 1 � i � m and all t 2 N : (2)The most obvious performance bottleneck in synchronous implementations is the all-to-all communication phase. First, for slow networks, having to exchange (p � 1)2 messages4

at each iteration can be prohibitive [22]. Improved network technologies make this less aconcern in many applications today, e.g., for implementations that transmit reasonably smallmessages on a fast local area network, but it remains a factor. Second, and more importantlyfor this paper, the possible lack of synchronization among the processors [25, 19, 10, 15] canlead to serious performance losses because relatively fast processors may be idle for largepercentages of real-time while awaiting slower processors. This lack of synchronization tendsto become particularly prominent when the iterative algorithm is run on a non-dedicatedcluster of workstations with multiple users. This phenomenon is a clear motivation forstudying asynchronous implementations.The study of asynchronous implementations started as early as 1969 [12] and has beenthe object of many extensions and generalizations. As for the synchronous case, we assumethat there are p processors in the distributed environment and that the solution vector issegmented in pieces (subsets of components of x(t)) assigned to each processor, i.e., staticscheduling. By contrast with the synchronous implementation, there is no all-to-all commu-nication phase to synchronize the processors. Instead, a processor may perform more thanone update between communications, possibly using out-of-date data for the subsets fromthe other processors. Each processor must at times communicate its most up-to-date valuesfor its subset to other processors.A formal description of the asynchronous iteration is given in [3] and is inspired by thede�nition of chaotic relaxations in [12]. The de�nition we give here is very similar: for1 � i � m and t = 1; 2; : : : ,xi(t) = (xi(t� 1) if i 62 JtOpi(x1(s1(t)); :::; xm(sm(t))) if i 2 Jt (3)where Jt is a subset of f1; : : : ; mg, and si(t) is in N . We adopt three additional conditionsfor asynchronous iteration proposed in [3]:Condition 2.1 For 1 � i � m:(i) si(t) � t for all t = 1; 2; :::.(ii) limt!1(si(t)) =1.(iii) i occurs in�nitely often in the sets Jt, t = 1; 2; :::.Condition (i) states that when a processor updates a component of the solution vector, itcan only use previously computed components. Condition (ii) states that the same value fora component cannot be used inde�nitely when computing updates. Condition (iii) requiresthat a processor not abandon a component forever. In the formal de�nition of asynchronousiterations that we have given so far, there is no limit on the amount by which a componentused in an update can be out-of-date. If there is no upper bound on this amount, theimplementation is referred to as totally asynchronous [8]; otherwise, the implementation issaid to be partially asynchronous. Actual implementations are often partially asynchronoussince it is often practical to �x some kind of bound on the asynchronism for implementationpurposes. 5

2.2 ConvergenceThe de�nition of the asynchronous iteration shows clearly that the algorithm can be as\asynchronous as needed" to take advantage of the very phenomena that are performancebottlenecks for a synchronous implementation. However, convergence of the algorithm is nolonger implied by the same conditions as for a sequential implementation and its convergencerate must also be reexamined.Work in analyzing the convergence of asynchronous parallel iterative algorithms in-cludes [8, 7, 12, 21, 20, 3, 6, 4, 26, 14, 28, 29]. Some of the earliest work focused on speci�citerative algorithms or on speci�c implementations. A su�cient condition for convergencefor linear operators is available in [12], only for partially asynchronous implementations.In [21, 20], this su�cient condition is generalized to the case of certain non-linear opera-tors, still in a partially asynchronous setting. A recent and general theorem in [8] givesa su�cient condition for convergence of asynchronous iterative algorithms based on a se-quence of subsets of Rm (a \box condition"). The applications given in [8] are contractionsor pseudo-contractions with respect to a weighted maximum norm (traditional \Lipschitz-like" properties detailed in [8]), and it may be di�cult to fully exploit the generality of thetheorem in practical situations. A lower bound on rate of convergence is obtained underadditional assumptions.A fundamental reference on which to develop a stochastic approach is Baudet's work [3].That work contains a theorem establishing the convergence of asynchronous iterations forcontracting operators de�ned by the following \Lipschitz-like" condition:De�nition 2.1 An operator Op from Rm to Rm is said to be contracting on a subset D ofRm if there exists a nonnegative m�m matrix A such that8x; y 2 D jOp(x)� Op(y)j � Ajx� yj; component-wiseand �(A) � 1 where �(A) denotes the spectral radius of A (i.e. the magnitude of A's largestmagnitude eigenvalue).Furthermore, [3] provides a lower bound on the convergence rate of the algorithm de�nedtraditionally as: R�= lim inft!1 [(� log kx(t)� �k)=t] (4)where k:k denotes a norm of Rm and � the �xed point of the operator. This de�nition ofthe rate of convergence has an immediate interpretation: if the logarithm is in base 10, then1=R measures the asymptotic number of iterations required to divide the initial error by afactor of 10 where an iteration is the computation described by Equ. (3) for all i. Withoutany additional assumptions, it is shown thatR � �[lim inft!1 (kt=t)] log �(A): (5)where fktg is a sequence of integers de�ned in [3]. With reference to [3] for details, we notehere that this sequence fktg is increasing, and the more asynchronous the implementation,the less rapid the increase. 6

The insight into performance provided by Equ. (5) is in the form of a lower bound onthe theoretical rate of convergence. Experiments in [3] indicate that the bound is veryconservative, and the possibility for stochastic approaches is mentioned. Our goal is tointroduce tractable stochastic models and obtain convergence results relevant to the userfor a practical purpose: deciding which implementation is the best for a given multi-user,distributed-memory environment in terms of long-run, average performance.3 Application-level ModelsWe introduce two models to describe the distributed environment and the algorithm at anapplication-level. Some of the low-level elements of the computer system are ignored orapproximated to develop and analyze the models.3.1 Modeling the Distributed EnvironmentWe assume that the distributed environment is a computer network of p nodes connected by acommunication facility. A node is composed of a processor, memory and a network interface.Each node has its own memory accessed only by its processor. In this distributed-memorysetting, nodes can exchange data via the communication facility, thanks to their networkinterfaces. We do not require that all the nodes be identical, i.e., the environment may beheterogeneous, but do make several strong assumptions below. The communication facility isseen as an abstract device that allows reliable point-to-point communication between any twonodes of the network and we do not make any assumptions about the network topology. Ourmodel is therefore applicable in diverse environments, from a Massively Parallel Processor(MPP) system to an Internet-wide collection of machines.The performance of the network in terms of transmission speed is modeled by a randomvariable (RV) for each point-to-point data path (for a total of p(p� 1) RVs). Similarly, theperformance of each node in terms of local computation is modeled by a RV that describesthe time that node spends to perform one update of its subset of the solution vector (for atotal of p RVs). The distributions of all these RVs describe the behavior of the algorithmexecution in the distributed environment. In order to introduce tractable stochastic models,these RVs are assumed independent and stationary during the run of the iterative algorithm;however, any �nitely-speci�ed, discrete probability distributions can be used|empiricallyestimated, analytically speci�ed, or arbitrarily chosen.3.2 Modeling the AlgorithmThe algorithm is partitioned into phases. Figure 1 depicts one phase for three processors i,i+1, i+2. Note that real-time intervals for the same phase of the algorithm do not generallycoincide at di�erent processors. Each phase is composed of two sub-phases, � and �. Duringthe � sub-phase, a processor performs successive updates on its subset of the solution vector.All updates performed by a processor during its � sub-phase, beyond the �rst update, useout-of-date data until the next messages are received from the other processors. At theend of the � sub-phase, a processor broadcasts its subset of the current solution vector to7

all the other processors. Just after this broadcast, its � sub-phase starts and the processorexpects p� 1 messages from the other processors. During its � sub-phase, a processor mayperform additional updates (up to a preset number) on its subset of the solution vector. Ifany updates are performed during this sub-phase, they will also use out-of-date data. Aprocessor �nishes its � sub-phase when it has received all the p� 1 messages; it then movesonto the next algorithm phase.For each processor, the user must choose the number of updates to be performed duringthe � sub-phase and the maximum number of updates allowed during the � sub-phase.The larger those numbers, the more asynchronous the algorithm. A more asynchronousimplementation usually implies a lower convergence rate but better use of computationalresources (less processor idle-time). A method to evaluate this trade-o� in terms of theexpected execution time is an objective of this research.Note that the model includes synchronism as the special case that, for each processor,there is a single update during its � sub-phase and no update during its � sub-phase. Inthe next section, we give several de�nitions and assumptions, then de�ne a Markov chain(cf. [16]) of interest.3.3 Underlying Markov ChainLet us de�ne two non-negative, integer-valued constants and three non-negative, real-valuedRVs:De�nition 3.1(i) User-speci�ed, integer constant Ai > 0 denotes the number of updates performed byprocessor i during its � sub-phase of each algorithm phase.(ii) User-speci�ed, integer constant Bi � 0 denotes the maximum number of updates thatprocessor i is allowed to perform during its � sub-phase of each algorithm phase.(iii) RV �i(k) 2 R is the duration in seconds of the � sub-phase of the kth algorithm phaseon processor i.(iv) RV ni!j(k) 2 R is the duration in seconds of the message transfer from processor i toprocessor j during the kth algorithm phase. By convention, processor i sends a messageto itself at each phase and ni!i(k) = 0 for all i and k.(v) RV T i(k) 2 R denotes the time of the beginning of the kth algorithm phase on processori.We assume independence of RVs but do not require identical distributions for all pro- CHECKSTATE-MENTSHERE!cessors i. We �rst assume that, given i, the RVs f�i(k)g are independent and identi-cally distributed (i.i.d) for all k. Independence of RVs means that the computational time�i(k) for processor i to perform one update does not exhibit a dependence on update-timesf�j(k); j 6= ig at other processors. (This assumption is violated, e.g., when workloads oftwo or more processors are correlated, due for instance to other parallel applications sharingthe resources. Relaxing this independence assumption is a topic for future development.)8

Similarly for given i and j, the RVs fni!j(k)g are i.i.d for each k; but it is not required thatthe distribution of ni!j(k) be the same as that of nh!`(k) for i 6= h or j 6= `.Although these are strong assumptions, independence and identical distribution of RVsare widely used in computational models (cf. [30, 1]). The experimental results presentedin Section 6 illuminate some aspects of validity and limitations and Section 7 introducesnew research directions to loosen the assumptions. We also assume that network times arebounded, that messages are sent at exactly the same time during a broadcast, and thatmessage-sends are free in terms of CPU cycles on the sending processor. The last twosimplifying assumptions could be removed by the use of additional RVs at the cost of morecomplicated modeling.Recall that T i(k) 2 R denotes the time of the beginning of the kth phase of the algorithmon processor i. Taking arbitrary processor 1 as reference, we de�ne the wavefront X(k) asX(k) = (X1(k); X2(k); :::; Xp(k))= (0; T 2(k)� T 1(k); :::; T p(k)� T 1(k)) 2 Rp : (6)X(k) describes the shape of the line joining the starting times of each processor in the kthphase. X(k) is represented on �gure 1 as a thick line, and it is shown in Appendix A thatfor each processor i, Xi(k + 1) = maxj2f1;::;pg[Xj(k) + �j(k) + nj!i(k)]�maxj2f1;::;pg[Xj(k) + �j(k) + nj!1(k)]: (7)The wavefront is the key to the stochastic model because, based on the assumption ofi.i.d. RVs, Equ. (7) de�nes a Markov process; speci�cally, the wavefront X(k) is a time-homogeneous Markov chain. It is shown in Appendix B that, with a few technical assump-tions, the Markov chain is �nite-state. Equ. (7) can be used to compute the transitionprobability matrix P of the Markov chain by using the discrete distributions of the di�erentRVs. Examples of the transition matrix P can be found in [11].Since the �nite-state chain is recurrent, it has a stationary distribution which describesthe behavior of the chain in the long-run (cf [16, 2, 9]). We refer to the probabilities inthis distribution as the �-values. �s (> 0) for state s is the long-run, relative-frequency ofoccurrence of state s in realizations of the chain.4 Performance CharacterizationThe wavefront Markov chain is exploited to obtain performance results for the parallel it-erative algorithm. The goal is to obtain information on the average execution time. Theexecution time can be computed as the ratio of the number of iterations to perform overthe number of iterations performed per time unit. The number of iterations required can beapproximated using the asymptotic convergence rate of the algorithm. This is the topic ofthe next section. 9

4.1 Asymptotic Rate of ConvergenceThe challenge here is to re�ne the lower bound on the asymptotic rate of convergence in [3]by modi�ed estimates that take into account randomness at the application-level. Onecan compute three estimates (see Appendix D) respectively called worst-, average-, and best-cases and denoted respectively as R, bR, and R. The usefulness of the average- and best-caseestimates is yet to be demonstrated; however, the worst-case estimate is a straightforwardimprovement over the lower bound in [3] as (i) it is higher than Baudet's and (ii) it is stilla lower bound on the asymptotic convergence rate.Let R� denote one of the three estimates for this rate. Then a user who wants the initialerror on the solution vector to be divided by a factor of 10! may approximate the numberof iterations needed as !=R� assuming that ! is reasonably large. The value of ! chosenby the user is the convergence criterion: the larger !, the smaller the �nal error. Of course,the choice of R� is crucial, and we expect that the three estimates will provide informationabout this choice.4.2 Execution SpeedWe can use R� to estimate the speed of the execution in terms of number of iterationsperformed per time unit. Let �(k) denote the duration in seconds of the kth algorithm phaseon processor 1. Let N(k) denote the number of iterations performed during that phase. Both�(k) and N(k) are RVs and their long-run probability distributions can be approximated bymaking use of the wavefront �-values. Indeed, the probability distributions of RVs of interestin the model are all conditioned on the wavefront state. The �-values are used to replacethose conditional probabilities by unconditional probabilities, and a simple convolution isused to obtain the long-run estimate.The speed of the execution is entirely described by sums of the random vector �N(k)�(k)� forsuccessive values of k. This vector can be used in di�erent ways, as described in the nextsection.4.3 Performance Characterization LevelsLevel 1: This level provides an estimate of the execution time mean value. Using theStrong Law of Large Numbers [16], it is possible to compute the asymptotic algorithm speedas the ratio of the limiting expected values of N(k) and �(k). Denoting this ratio as S, oneobtains �1, an asymptotic estimate for the execution time expected value:�1 = !SR� :Level 2: This level provides an estimate of the execution time standard deviation. Thederivation of the estimate is detailed in Appendix C.
10

5 SimulationSimulation results are summarized here for a Gradient algorithm for a multi-polynomialcost function with thirty variables (see also [11, Section 5.1]). The distributed environmentconsists of three processors with the di�erent update-time distributions depicted in Figure 2obtained by sampling the distributions of actual workstations. The three processors areinterconnected by a network that delivers constant, non-random performance, i.e., given iand j, ni!j(k) is constant for all k and, by convention in De�nition 3.1(iv), is 0 for i = j.Three implementations are simulated: synchronous with Ai = 1 and Bi = 0 for all processorsi; asynchronous (Async. 1) with Ai = Bi = 1 for all processors i; and more asynchronous(Async. 2) with Ai = 1 and Bi = 2 for all processors i. The assumptions set forth above arenot violated in these simulations.The simulations provide information about accuracy and sensitivity of the two levels forthe environment described. First, we observe that the new estimates of asymptotic conver-gence rate are improvements on estimates in [3]. Table 1 shows the relative errors betweenthe di�erent estimates and the observed convergence rate for di�erent implementations in thesimulated environment. The gaps between the four estimates increase with asynchronicity.It is to be noted that no estimate exactly predicts the observed convergence rate. A primaryreason is that the estimates depend only on the spectral radius of the matrix associated tothe contracting operator, but not on the actual shape of that operator. Therefore, the sameestimates will be computed for di�erent operators that happen to have the same contractingmatrix.The simulations also show that level 2 characterization is rather sensitive. Indeed, as itis based on a binomial Gaussian approximation, its accuracy as an approximation generallyincreases with a larger number of samples. It is shown in [11] that the error between level2 characterization and the observed standard deviation decreases for increasing values of !(recall that larger ! implies more iterations performed).Figure 3 shows the simulation versus the characterization for an asynchronous imple-mentation in the simulated heterogeneous distributed environment. On each graph, theempirical distribution of the execution time is shown as a bar diagram labeled \simulation."The empirical mean is shown as a vertical solid line and the empirical standard deviation isrepresented as a horizontal line segment inside bold vertical lines on each side of the empiricalmean. Level 1 characterization is shown as a dashed vertical line. Level 2 characterizationis shown as two horizontal dashed line segments in bold vertical lines on each side of level 1.We show four characterizations | Baudet [3], R, bR, R | each corresponding to a di�erentasymptotic convergence rate estimate. Note that the average-case estimate is a dramaticimprovement over the estimate in [3] for the execution time distribution (22% vs. 214%error).6 ExperimentThis section presents experimental results [11] with a gradient algorithm for a real multi-polynomial cost function with thirty variables. The algorithm runs in parallel on threeSun Sparc Ultra 1 workstations interconnected by a standard 10 Mbps Ethernet. Those11

workstations are being used by students for course-work as well as for personal research.Measurements were obtained throughout one week (Nov. 17-24, 1997).6.1 Preliminary RemarksFigure 4 shows the execution times observed throughout the whole week for the synchronousimplementation and for the �rst asynchronous implementation (mildly asynchronous: atmost one update performed in � sub-phase for each processor). This corresponds to 862observations for each implementation. The measurements for the second asynchronous im-plementation (fairly asynchronous: at most two update performed in � sub-phase for eachprocessor) are not shown on Figure 4 because they would be di�cult to distinguish fromthe ones of the �rst asynchronous implementation on that time scale. The three di�erentimplementations were run in a round-robin fashion, each run using the three workstationsand taking about 2 minutes.The �rst observation is that the asynchronous implementations are generally more e�-cient than the synchronous one. The �rst asynchronous implementation is up to 150 secondsfaster than the synchronous implementation, and 30 seconds faster on average. On averagethe second implementation is faster than the �rst one by about 1.9 seconds. But in only15% of the observations is the absolute di�erence between between the two implementationsmore than 10 seconds.It seems that, in this environment, a good choice is an asynchronous implementationas opposed to a synchronous one. However, a mild asynchronicity is su�cient to obtainimprovement over a synchronous implementation. This can be explained both by the na-ture of the distributed environment and by the nature of the iterative algorithm. Severalother references also include examples for which asynchronous implementations outperformsynchronous ones [3, 5, 22].A fundamental observation on Figure 4 is that the execution time is bursty. In fact,the distributed environment, and therefore the algorithm, behaves very di�erently at dif-ferent times in the time period, for the system is in use for a variety purposes during theexperimental runs. In order to illustrate these di�erent behaviors, Figures 5(a), (b) and(c) show three close-ups of the execution times for each implementation during three shortsub-periods about two hours long. The distributed environment appears to exhibit distinctmodes during the week, wich violates our i.i.d. assumption.Figure 7 shows the execution times for the parallel iterative algorithm throughout a 24-hour time period at the end of the week. The distributed environment exhibited a fairly stablebehavior, leading to relatively smoother observations. We expect the stochastic models toyield better results for the 24-hour time period than for the entire week as burstiness indicatesviolation of the stationarity assumption. We do not claim that any 24-hour time periodwould lead to better result (as the execution time may be bursty on many time scales). Wemerely chose to highlight a subset of the time line that exhibited close-to-stationary behaviorto evaluate how the model would perform in a more stable environment. In the followingsections, we present and comment on some of the results for both time periods.
12

6.2 Applying the Model6.2.1 The One Week Time PeriodThe workload distributions of the three processors were sampled throughout the week (roughlyevery 20 seconds) and are shown in �gure 6. Figure 8 shows the results for the synchronousimplementation. The empirical distribution is clearly multi-modal as already seen in Sec-tion 6.1. The level 1 characterization makes an error of about 17% in predicting the meanof the execution time. The level 2 characterization underestimates the observed standarddeviation by a factor of 50. In fact, level 2 is very sensitive to the violation of the stationaryassumption as a Gaussian approximation is involved.Figure 9 shows the results for the mildly asynchronous implementation. Four character-izations are shown, one of each estimate of the asymptotic convergence rate. If one uses theaverage-case estimate (see Section 4.1), then the error on the mean prediction is only 4% (asopposed to 116% with the estimate in [3]). The observations made on Figure 8 about level 2are still valid. The results for the second asynchronous implementation are not shown hereas they are fairly similar to the results for the �rst asynchronous implementation. The nextsection reduces the time period to 24 hours and should lead to improvements, especially forthe level 2 characterization as the stationary assumption should be less violated.6.2.2 The 24 Hours Time PeriodFigure 10, for a synchronous implementation, demonstrates that the level 2 characterizationbecomes much more accurate for this shorter, more nearly stationary time period. Its erroris here about 27% whereas it was a factor of 50 for the whole week. Similar improvementswere observed for all implementations. Furthermore, the level 1 characterization is moreinformative than for the one week time period. Even though the level 1 characterizations donot exactly agree with the observed mean, they are su�cient for purposes of comparisons. Inthis experiment, the level 1 characterizations computed in [11] imply that an asynchronousimplementation will outperform a synchronous one on average by 40 seconds (which agreeswith the experimental results on Figure 7).7 Conclusion and Future WorkParallelizing iterative algorithms for the solution of complex problems is a crucial issue.The amount of computation required to solve such problems may be prohibitive for a se-quential implementation, especially in non-linear cases. We use synchronous and asyn-chronous paradigms for parallel iteration and develop stochastic models that take charac-teristics of multi-user, distributed-memory environments into account. The models are usedto obtain performance characterizations that are directly meaningful to the end-user. Inpractice, a user must provide the probability distributions for network and CPU loads (as�nitely-speci�ed, discrete distributions obtained through sampling or from tools such as theNWS [31], for instance) and employ the model for comparisons among degrees of asyn-chronism in implementations in terms of the estimates on algorithmic convergence rates, inparticular, for the worst-case. 13

An additional level of performance characterization based on Large Deviation Theory isdeveloped in [11] and will be reported in the future. Further research may also incorporateMarkov-modulated random processes to model bursty behaviors in more detail [23, 13, 17]and may investigate more complex models by introducing dependences among RVs.AcknowledgementThe authors thank the reviewers for their constructive criticism and suggestions.AppendixA Wavefront EquationLet �i(k) 2 R be the the duration in seconds of the � sub-phase of the kth algorithm phaseon processor i. �i(k) is a RV and it can be computed as follows. The � sub-phase of thekth algorithm phase on processor i clearly starts at time �istart(k) = T i(k) + �i(k). It endswhen the last expected message has been received by processor i. The message expectedfrom processor j is received by processor i at time �jstart(k) + nj!i(k). Therefore,�i(k) = maxj2f1;::;pg[�jstart(k) + nj!i(k)]� �istart(k)= maxj2f1;::;pg[�jstart(k) + nj!i(k)� �istart(k)]:Since ni!i(k) = 0, one obtains:�i(k) = max[0; maxj2f1;::;pg�fig(T j(k) + �j(k)� T i(k)� �i(k) + nj!i(k))]:By de�nition 3.1(v) and Equ. (6):X i(k + 1) = X i(k) + �i(k) + �i(k)� �1(k)� �1(k):Replacing �i(k) and �j(k) by their expression and using the fact that8x; y 2 R max(0; x� y) + y = max(x; y);one obtains Equ. (7).B Wavefront State-SpaceLemma B.1 9M; 8k � 1 kX(k)k1 � M:
14

Proof. Let us consider processor 1 and processor i 6= 1 during the kth algorithm phase.The times at which these two processors receive a message from a processor h are apart byjnh!1(k)�nh!i(k)j seconds since we assume that processor h sends all messages at the exactsame time. Therefore, the times at which processors 1 and i receive the last messages theywere expecting are apart by at most maxh2f1;::;pg(jnh!1(k)� nh!i(k)j). The communicationtimes are assumed to be bounded above and below as:8s; d 9ns!d; ns!d; 8k ns!d � ns!d(k) � ns!d:One can then write:8h jnh!1(k)� nh!i(k)j � max(nh!1 � nh!i; nh!i � nh!1)� max(nh!1; nh!i)� maxj2f1;::;pg(nh!j):This implies that the times at which processors 1 and i receive the last message they wereexpecting are apart by at most maxh;j2f1;::;pg(nh!j). But those times are also apart by Xi(k)according to de�nition 3.1(v) and Equ. (6). Since kX(k + 1)k1 � maxi2f1;::;pg jXi(k + 1)j,the proof is complete.The preceding establishes that the wavefront vector is in a closed ball of Rp . If oneassumes that �i(k), ni!j(k), and the components of X(0) are rational (in Q), then for eachk, X(k) is in a �nite subset of Rp that does not depend on k. Those assumptions are reallypurely technical: the data being manipulated is in Q since it is processed by computers with�nite arithmetic. The size of the state-space of the wavefront Markov chain depends on the�nitely-speci�ed, discrete distributions of �i(k) and ni!j(k) [11]. The �-values for the chainare the unique values in the solution of the linear system � = �P where P is the transitionprobability matrix,Ps �s = 1, and �s > 0 for every state s [16, 2, 9].C Level 2 CharacterizationOne can make a binomial Gaussian approximation of the distribution of the random vector�N(k)�(k)� (with covariance matrix C). The covariance matrix of the sum of those vectors foreach algorithm phase until convergence, C 0, can then be estimated asC 0 = !EfN(k)gR� Cwhere EfN(k)g denotes the expected value of N(k) (this expected value does not depend onk). Using C 0, it is then easy to obtain an estimate of the standard deviation of the executiontime. Indeed, if C 0 = � �2X �XY�XY �2Y � ;then the standard deviation estimate is computed as [16]:� = �Yr1� (�XY�X�Y)2:15

D Asymptotic Convergence Rate EstimatesTo compute estimates of the algorithm asymptotic rate of convergence, we must extendEqu. (5). In [3], the sequence ftkg is de�ned as:(t0 = 0tk = tk + ak + bkwhere fakg and fbkg are de�ned as:(i) starting with the (tk + ak)th iteration, no solution vector update makes use of valuesof components corresponding to iterates with indices smaller than tk.(ii) all solution vector components are updated at least once between the (tk + ak)th andthe (tk + ak + bk)th iterations.The sequence fktg of Equ. (5) is then de�ned as:kt�=supfk 2 N ja0 + b0 + :::+ ak�1 + bk�1 � tgfor non-negative integers N .In our setting, 8k = 0; 1; :::(ak = N(k)bk = 0where N(k) denotes the number of iterations performed during the kth algorithm phase. Onecan then compute: kt = supfkj k�1Xl=0 maxi2f1;::;pg(Ai +N(l)) � tg;The long-term probability distribution of the RV N(k) can be approximated using the �-values for the wavefront Markov chain, leading to the probability distribution of kt for eacht. It is then possible to compute three estimates for the asymptotic rate of convergenceby replacing kt in Equ. (5) by its minimal observable value, its expectation, or its maximalobservable value. A formal proof of the convergence of the limit in Equ. (5) for each estimateis left for future work. A �nite limit has been obtained in all simulations and experiments.References[1] V. Adve and M. Vernon. The inuence of Random Delays on Parallel Execution Times.In Proceedings of the 1993 ACM Sigmetrics Conference on Measurement and Modelingof Computer Systems, pages 61{73, May 1993.[2] R. Ash. Information Theory. Dover Publications, Mineola, N.Y., 1990.16

[3] G. Baudet. Asynchronous Iterative Methods for Multiprocessors. Journal of the Asso-ciation for Computing Machinery, 25:226{244, April 1978.[4] D. El Baz. M-functions and parallel asynchronous algorithms. SIAM Journal of Nu-merical Analysis, 27:136{140, 1990.[5] D. El Baz, P. Spiteri, J.C. Miellou, and D. Gazen. Asynchronous Iterative Algorithmswith Flexible Communication for Nonlinear Network Flow Problems. Journal of Paralleland Distributed Computing, 38:1{15, 1996.[6] D. P. Bertsekas. Distributed asynchronous computation of �xed point. Math. Program-ming, 27:107{120, 1983.[7] D. P. Bertsekas and J. N. Tsitsiklis. Convergence rate and termination of asynchronousiterative algorithms. In Proceedings of the Int. Conf. on Supercomputing, pages 461{470,1989.[8] D. P. Bertsekas and J. N. Tsitsiklis. Parallel and Distributed Computation. Prentice-Hall, Englewood Cli�s, NJ, 1989.[9] A. Bharucha-Reid. Elements of the Theory of Markov Processes and their Applications.Dover Publications, Mineola, N.Y., 1997.[10] L. Brochard, J.-P. Prost, and F. Fauire. Synchronization and load unbalance e�ects ofparallel iterative algorithms. In Proceedings of the International Conference on ParallelProcessing (ICPP), volume III, pages 153{160, 1989.[11] H. Casanova. Stochastic Models for Performance Anlyses of Iterative Algorithms in Dis-tributed Environments. PhD thesis, Dept. of Computer Science, University of Tennessee,Knoxville, TN, 1998. Available as TR ut-cs-98-386.[12] D. Chazan and W. Miranker. Chaotic relaxation. Linear Algebra and Applications,2:199{222, 1969.[13] N. Du�eld, J. Lewis, N. O'Connel, R. Russell, and F. Toomey. Entropy of ATM Tra�cStreams: A Tool for Estimating QoS Parameters. IEEE Journal on Selected Areas inCommunications, 13(6):981{989, August 1995.[14] A. Frommer. On asynchronous iterations in partially ordered spaces. Numerical Funct.Anal. Optimization, 12(3 & 4):315{325, 1991.[15] A. Greenbaum. Synchronization costs on multiprocessors. Parallel Computing, 10:3{14,1989.[16] S. Karlin and H. Taylor. A First Course in Stochastic Processes. Academic Press, NewYork, NY, second edition, 1975.
17

[17] K. Kawahara, Y. Oie, M. Murata, and H. Miyahara. Performance Analysis of ReactiveCongestion Control for ATM Networks. IEEE Journal on Selected Areas in Communi-cations, 13(4):651{661, May 1995.[18] C. P. Kruskal and A. Weiss. Allocating independent subtasks on parallel processors.In Proceedings of the International Conference on Parallel Processing (ICPP), pages236{240, 1984.[19] B. Lubachevsky and D. Mitra. Chaotic Asynchronous Algorithm for Computing theFixed Point of a Nonnegative Matrix of Unit Spectral Radius. Journal of the ACM,33(1):130{150, January 1986.[20] J.C. Miellou. Algorithmes de relaxation �a retards. Revue d'Automatique, Informatiqueet Recherche Op�erationnelle, 9:55{82, 1970.[21] J.C. Miellou. It�erations chaotiques �a retards. Comptes Rendus de l'Acad, Sci. Paris,278:957{960, 1974.[22] S. P. Olesen, J. Gregor, M. G. Thomason, and G. T. Smith. EM-ML PET reconstructionon multiple processors with reduced communications. Int'l. Journal of Imaging Systemsand Technology, 7(3):215{223, 1996.[23] R. Onvural. Asynchronous Transter Mode Networks, Performance Issues. Artech House,Inc., Norwood, MA, second edition, 1995.[24] J. M. Ortega and W. C. Rheinboldt. Iterative solution of nonlinear equations in severalvariables. Academic Press, New York, 1970.[25] J. T. Robinson. Some Analysis Techniques for Asynchronous Multiprocessor Algorithms.IEEE Transactions on Software Engineering, SE-5(1):24{31, January 1979.[26] E. Tarazi. Some convergence results for asynchronous algorithms. Numerical Mathe-matics, 39:325{340, 1982.[27] J. N. Tsitsiklis and G.D. Stamoulis. On the average communication complexity ofasynchronous distributed algorithms. Technical Report LIDS-P-1986, MIT Laboratoryfor Information and Decision Systems, 1990.[28] A. �Uresin and M. Dubois. Su�cient conditions for the convergence of asynchronousdistributed algorithms. Parallel Computing, 10:83{92, November 1989.[29] A. �Uresin and M. Dubois. Parallel asynchronous algorithms for discrete data. Journalof the ACM, 37(3):588{606, 1990.[30] A. �Uresin and M. Dubois. E�ects of Asynchronism on the Convergence Rate of IterativeAlgorithms. Journal of Parallel and Distributed Computing, 34:66{81, 1996.[31] R. Wolski. Dynamically forecasting network performance using the network weatherservice. Technical Report TR-CS96-494, U.C. San Diego, October 1996.18

Henri Casanova received the BS from l'Ecole Nationale Sup�erieure d'Electrotechnique,d'Informatique et d'Hydraulique de Toulouse (ENSEEIHT) in 1993, MS from l'Universit�ePaul Sabatier, Toulouse, in 1994, and PhD from the University of Tennessee, Knoxville,in 1998, and is currently a project scientist at the University of California at San Diego.His research interests include metacomputing, parallel/distributed computing, performancemodeling, and stochastic models.Michael G. Thomason received the BS from Clemson University in 1965, MS from JohnsHopkins University in 1970, and PhD from Duke University in 1973. He worked for Westing-house (Baltimore) and currently is Professor of Computer Science at the University of Ten-nessee, Knoxville. His research interests include pattern/image analysis, parallel/distributedcomputation, and stochastic models in computer science. He is a member of Association forComputing Machinery (ACM) and senior member of the Institute of Electrical and Elec-tronics Engineers (IEEE).Jack Dongarra Jack Dongarra received the BS in Mathematics from Chicago State Uni-versity in 1972, the MS in Computer Science from the Illinois Institute of Technology in1973, and the PhD in Applied Mathematics from the University of New Mexico in 1980.Dongarra is a Distinguished Scientist specializing in numerical algorithms in linear algebraat the University of Tennessee's Computer Science Department and Oak Ridge NationalLaboratory's Mathematical Sciences Section. Professional activities include membership inthe Society for Industrial and Applied Mathematics and in the Association for ComputingMachinery (ACM).

19

Table 1: Simulation: Convergence rate errors.Impl. R bR R RBaudetSync. 7.69% 7.69% 7.69% 7.69%Async. 1 31.96% 17.53% 36.08% 54.64%Async. 2 9.55% 17.86% 57.14% 69.05%

20

 Alpha
sub−phase

 Beta
sub−phase

Broadcast

current phaseprevious
 phase

 next
phase

time

process #i

process #i+1

process #i+2

 Local
Computation

 Local
Computation

All messages
 received

All messages
 sent

X(k+1)X(k)

Figure 1: Decomposition of the algorithm into phases

21

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

pr
ob

ab
ili

ty

Processor #1

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

pr
ob

ab
ili

ty

Processor #2

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

pr
ob

ab
ili

ty

update time (in seconds)

Processor #3

Figure 2: Update time distributions for the three processors

22

100 150 200 250 300 350 400 450 500 550
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Execution time in seconds

Pr
ob

ab
ilit

y

Best case

Simulation

Average case

Worst case Baudet

Empirical distrib.
Empirical mean
Empirical stddev
Level 1
Level 2

Figure 3: Simulation vs. characterizations for an asynchronous implementation

23

0 200 400 600 800
50

100

150

200

250

300

Ex
ec

uti
on

 tim
e

Observation number

Synchronous
Implementation

0 200 400 600 800
50

100

150

200

250

300

Ex
ec

uti
on

 tim
e

Observation number

First Asynchronous
Implementation

Figure 4: Execution time measurements over a week

24

100 105 110
50

100

150

200

250

300

Ex
ec

uti
on

 tim
e

Observation number

(a)

Synch.
1st Asynch.
2nd Asynch.

130 135 140
50

100

150

200

250

300

Ex
ec

uti
on

 tim
e

Observation number

(b)

Synch.
1st Asynch.
2nd Asynch.

185 190 195
50

100

150

200

250

300

Ex
ec

uti
on

 tim
e

Observation number

(c)

Synch.
1st Asynch.
2nd Asynch. Figure 5: Di�erent experimental behaviors throughout one week

25

0
0.2

0.4
0.6

0.8
1

1.2
1.4

1.6
1.8

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Update time in seconds

P
ro

ba
bi

lit
y

1st processor
2nd processor
3rd processor

Figure 6: Experimental update time distributions for the three processors

26

0 20 40 60 80 100 120 140
80

90

100

110

120

130

140

150

160

170

Observation number

Ex
ec

uti
on

 tim
e

Synch.
1st Asynch.
2nd Asynch.

Figure 7: Measurements during 24 hours for the three implementations

27

80 100 120 140 160 180 200 220 240 260 280 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Execution time in seconds

P
ro

b
a
b
ili

ty

Empirical distrib.
Empirical mean
Empirical stddev
Level 1
Level 2

Figure 8: Experiment vs. Characterization for the synchronous implementation

28

50 100 150 200 250 300
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Execution time in seconds

Pr
ob

ab
ilit

y

Best case

Average case

Worst case Baudet

Empirical distrib.
Empirical mean
Empirical stddev
Level 1
Level 2

Figure 9: Experiment vs. Characterization for the �rst asynchronous implementation

29

165 170 175 180 185 190 195 200 205
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Execution time in seconds

P
ro

b
a
b
ili

ty

Empirical distrib.
Empirical mean
Empirical stddev
Level 1
Level 2

Figure 10: Experiment vs. Characterization for the synchronous implementation

30

