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1 Introduction

Numerical linear algebra, particularly the solution of linear systems of equa-
tions, linear least squares problems, eigenvalue problems and singular value
problems, is fundamental to most calculations in scienti�c computing, and
is often the most computationally intensive part of such calculations. De-
signers of computer programs involving linear algebraic operations have fre-
quently chosen to implement certain low level operations, such as the dot
product or the matrix-vector product, as separate subprograms. This may
be observed both in many published codes and in codes written for speci�c
applications at many computer installations.

This approach encourages structured programming and improves the
self-documenting quality of the software by specifying basic building blocks
and identifying these operations with unique mnemonic names. Since a sig-
ni�cant amount of execution time in complicated linear algebraic programs
may be spent in a few low level operations, reducing the execution time spent
in these operations leads to an overall reduction in the execution time of the
program. The programming of some of these low level operations involves
algorithmic and implementation subtleties that need care, and can be easily
overlooked. If there is general agreement on standard names and parameter
lists for some of these basic operations, then portability and e�ciency can
also be achieved.

This paper summarizes the BLAS Technical Forum Standard, a speci-
�cation of a set of kernel routines for linear algebra, historically called the
Basic Linear Algebra Subprograms and commonly known as the BLAS. The
complete standard can be found in [1], and on the BLAS Technical Forum
webpage (http://www.netlib.org/blas/blast-forum/).

The �rst major concerted e�ort to achieve agreement on the speci�cation
of a set of linear algebra kernels resulted in the Level 1 Basic Linear Algebra
Subprograms (BLAS)1 [18] and associated test suite. The Level 1 BLAS are
the speci�cation and implementation in Fortran of subprograms for scalar
and vector operations. This was the result of a collaborative project in 1973-
77. Following the distribution of the initial version of the speci�cations to
people active in the development of numerical linear algebra software, a se-
ries of open meetings were held at conferences and, as a result, extensive
modi�cations were made in an e�ort to improve the design and make the
subprograms more robust. The Level 1 BLAS were extensively and success-

1Originally known just as the BLAS, but in the light of subsequent developments now

known as the Level 1 BLAS
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fully exploited by LINPACK [9], a software package for the solution of dense
and banded linear equations and linear least squares problems.

With the advent of vector machines, hierarchical memory machines and
shared memory parallel machines, speci�cations for the Level 2 and 3 BLAS
[11, 10], concerned with matrix-vector and matrix-matrix operations respec-
tively, were drawn up in 1984-86 and 1987-88. These speci�cations made it
possible to construct new software to utilize the memory hierarchy of mod-
ern computers more e�ectively. In particular, the Level 3 BLAS allowed the
construction of software based upon block-partitioned algorithms, typi�ed
by the linear algebra software package LAPACK [2]. LAPACK is state-of-
the-art software for the solution of dense and banded linear equations, linear
least squares, eigenvalue and singular value problems. LAPACK makes ex-
tensive use of all levels of BLAS and particularly utilizes the Level 2 and
3 BLAS for portable performance. LAPACK is widely used in application
software and is supported by a number of hardware and software vendors.

To a great extent, the user community embraced the BLAS, not only for
performance reasons, but also because developing software around a core
of common routines like the BLAS is good software engineering practice.
Highly e�cient machine-speci�c implementations of the BLAS are available
for most modern high-performance computers. The BLAS have enabled
software to achieve high performance with portable code.

The original BLAS concentrated on dense and banded operations, but
many applications require the solution of problems involving sparse matrices,
and thus there have also been e�orts to specify computational kernels for
sparse vector and matrix operations [8, 12].

In the spirit of the earlier BLAS meetings and the standardization ef-
forts of the MPI and HPF forums, a technical forum was established to
consider expanding the BLAS in the light of modern software, language,
and hardware developments. The BLAS Technical Forum meetings began
with a workshop in November 1995 at the University of Tennessee. Meet-
ings were hosted by universities, government institutions, and software and
hardware vendors. Detailed minutes were taken for each of the meetings,
and these minutes are available on the BLAS Technical Forum webpage
(http://www.netlib.org/blas/blast-forum/).

Various working groups within the Technical Forum were established
to consider issues such as the overall functionality, language interfaces,
sparse BLAS, distributed-memory dense BLAS, extended and mixed preci-
sion BLAS, interval BLAS, and extensions to the existing BLAS. The rules
of the forum were adopted from those used for the MPI and HPF forums.
In other words, �nal acceptance of each of the chapters in the BLAS Tech-
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nical Forum standard were decided at the meetings using Robert's Rules.
Drafts of the document were also available on the BLAS Technical Forum
webpage, and attendees were permitted to edit chapters, give comments,
and vote on-line in \virtual meetings", as well as to conduct discussions on
the email re
ector. The results of these working groups are summarized
in this paper. Most of these discussions resulted in de�nitive proposals
which led to the speci�cations given in [5, 14, 16]. Not all of the discus-
sions resulted in de�nitive proposals, and such discussions are summarized
in what was called the \Journal of Development" in the hope that they
may encourage future e�orts to take those discussions to a successful con-
clusion. The \Journal of Development" forms an appendix to the standard
(see http://www.netlib.org/blas/blast-forum/).

A major aim of the standards de�ned in the document is to enable linear
algebra libraries (both public domain and commercial) to interoperate e�-
ciently, reliably and easily. We believe that hardware and software vendors,
higher level library writers and application programmers all bene�t from the
e�orts of this forum and are the intended end users of these standards.

The speci�cation of the original BLAS was given in the form of Fortran
66 and subsequently Fortran 77 subprograms. In the BLAS Technical Forum
standard, we provide speci�cations for Fortran 952, Fortran 77 and C. Ref-
erence implementations of the standard are provided on the BLAS Technical
Forum webpage (http://www.netlib.org/blas/blast-forum/). Alterna-
tive language bindings for C++ and Java were also discussed during the
meetings of the forum, but the speci�cations for these bindings were post-
poned for a future series of meetings.

The remainder of this paper is organized as follows. Section 2 provides
motivation for the functionality, and Sections 3 and 4 de�ne mathemati-
cal notation and present tables of functionality for the routines. Section 5
discusses the naming scheme for the routines. Section 6 discusses issues
concerning the numerical accuracy of the BLAS, and Section 7 brie
y de-
tails the error handling mechanisms utilized within the routines. And lastly,
Section 8 acknowledges all of the individuals who have contributed to this
standardization e�ort.

2 Motivation

The motivation for the kernel operations is proven functionality. Many of
the new operations are based upon auxiliary routines in LAPACK [2] (e.g.,

2the current Fortran standard
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SUMSQ, GEN GROT, GEN HOUSE, SORT, GE NORM, GE COPY). Only
after the LAPACK project was begun was it realized that there were op-
erations like the matrix copy routine (GE COPY), the computation of a
norm of a matrix (GE NORM) and the generation of Householder trans-
formations (GEN HOUSE) that occurred so often that it was wise to make
separate routines for them.

A second group of these operations extended the functionality of some of
the existing BLAS (e.g., AXPBY, WAXPBY, GER, SYR/HER, SPR/HPR,
SYR2/HER2, SPR2/HPR2). For example, the Level 3 BLAS for the rank
k update of a symmetric matrix only allows a positive update, which means
that it cannot be used for the reduction of a symmetric matrix to tridiag-
onal form (to facilitate the computation of the eigensystem of a symmetric
matrix), or for the factorization of a symmetric inde�nite matrix, or for a
quasi-Newton update in an optimization routine.

Other extensions (e.g., AXPY DOT, GE SUM MV, GEMVT, TRMVT,
GEMVER) perform two Level 1 BLAS (or Level 2 BLAS) routine calls
simultaneously to increase performance by reducing memory tra�c.

One important feature of the new standard is the inclusion of sparse
matrix computational routines. Because there are many formats commonly
used to represent sparse matrices, the Level 2 and Level 3 Sparse BLAS
routines utilize an abstract representation, or handle, rather than a �xed
storage description (e.g. compressed row, or skyline storage). This handle-
based representation allows one to write portable numerical algorithms using
the Sparse BLAS, independent of the matrix storage implementation, and
gives BLAS library developers the best opportunity for optimizing and �ne-
tuning their kernels for speci�c architectures or application domains.

The original Level 2 BLAS included, as an appendix, the speci�cation of
extended precision subprograms. With the widespread adoption of hardware
supporting the IEEE extended arithmetic format [17], as well as other forms
of extended precision arithmetic, together with the increased understanding
of algorithms to successfully exploit such arithmetic, it was felt to be timely
to include a complete speci�cation for a set of extra precise BLAS.

3 Nomenclature and Conventions

This section addresses mathematical notation and de�nitions for the BLAS
routines.

The following notation is used in the functionality tables.

� A, B, C { matrices
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� D, DL, DR { diagonal matrices

� H { Householder matrix

� J { symmetric tridiagonal matrix (including 2� 2 blocked diagonal)

� P { permutation matrix

� T { triangular matrix

� u, v, w, x, y, z { vectors

� �x { speci�es the conjugate of the complex vector x

� incu, incv, incw, incx, incy, incz { stride between successive elements
of the respective vector

� Greek letters - scalars (but not exclusively Greek letters)

� xi - an element of a one-dimensional array

� yjx { refers to the elements of the dense vector y that have common
indices with the sparse vector x.

�  { assignment statement

� $ { swap (assignment) statement

� jj � jjp { the p-norm of a vector or matrix

Additional notation for sparse matrices can be found in the Sparse BLAS
chapter of the BLAS Technical Forum standard [1]
(http://www.netlib.org/blas/blast-forum/), as well as [16].

For the mathematical formulation of the operations, as well as their
algorithmic presentation, we have chosen to index the vector and matrix
operands starting from zero. This decision was taken to simplify the pre-
sentation of the document but has no impact on the convention a particular
language binding may choose.

3.1 Scalar Arguments

Many scalar arguments are used in the speci�cations of the BLAS routines.
For example, the size of a vector or matrix operand is determined by the
integer argument(s) m and/or n. Note that it is permissible to call the rou-
tines with m or n equal to zero, in which case the routine exits immediately
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without referencing its vector/matrix elements. Some routines return a dis-
placement denoted by the integer argument k. The scaling of a vector or
matrix is often denoted by the arguments alpha and beta.

3.2 Vector Operands

A n-length vector operand x is speci�ed by two arguments { x and incx. x is
an array that contains the entries of the n-length vector x. incx is the stride
within x between two successive elements of the vector x.

Lowercase letters are used to denote a vector.

3.3 Vector Norms

There are a variety of ways to de�ne the norm of a vector, in particular for
vectors of complex numbers, several of which have been used in the existing
Level 1 BLAS and in various LAPACK auxiliary routines. Our de�nitions
include all of these in a systematic way.

Data Type Name Notation De�nition

Real one-norm kxk1
P

i jxij

two-norm kxk2

qP
i x

2
i

in�nity-norm kxk1 maxi jxij

Complex one-norm kxk1
P

i jxij

=
P

i(Re(xi)
2 + Im(xi)

2)1=2

real one-norm kxk1R
P

i(jRe(xi)j+ jIm(xi)j)

two-norm kxk2
pP

i jxij
2

= (
P

i(Re(xi)
2 + Im(xi)

2))1=2

in�nity-norm kxk1 maxi jxij

= maxi(Re(xi)
2 + Im(xi)

2)1=2

real in�nity-norm kxk1R maxi(jRe(xi)j+ jIm(xi)j)

Table 1: Vector Norms

Rationale. The reason for the two extra norms of complex vectors, the
real one-norm and real in�nity-norm, is to avoid the expense of up to n
square roots, where n is the length of the vector x. The two-norm only
requires one square root, so a real version is not needed. The in�nity
norm only requires one square root in principle, but this would require
tests and branches, making it more complicated and slower than the
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real in�nity-norm. When x is real, the one-norm and real one-norm
are identical, as are the in�nity-norm and real in�nity-norm. We note
that the Level 1 BLAS routine ICAMAX, which �nds the largest entry
of a complex vector, �nds the largest value of jRe(xi)j+jIm(xi)j. (End
of rationale.)

Computing the two-norm or Frobenius-norm of a vector is equivalent.
However, this is not the case for computing matrix norms. For consistency
of notation between vector and matrix norms, both norms are available.

3.4 Matrix Operands

A m-by-n matrix operand A is speci�ed by the argument A. A is a language-
dependent data structure containing the entries of the matrix operand A.
The representation of the matrix entry ai;j in A is denoted by A(i,j) for all
(i,j) in the interval [0 : : : m� 1]� [0 : : : n� 1].

Capital letters are used to denote a matrix.

3.5 Matrix Norms

Analogously to vector norms as discussed in Section 3.3, there are a variety
of ways to de�ne the norm of a matrix, in particular for matrices of complex
numbers. Our de�nitions include all of these in a systematic way.

In contrast to computing vector norms, computing the two-norm and
Frobenius-norm of a matrix are not equivalent. If the user asks for the
two-norm of a matrix, where the matrix is 2-by-2 or larger, an error 
ag is
raised. The one exception occurs when the matrix is a single column or a
single row. In this case, the two-norm is requested and the Frobenius-norm
is returned.

4 Functionality

This section summarizes, in tabular form, the functionality of the proposed
routines. Issues such as storage formats or data types are not addressed.
The functionality of the existing Level 1, 2 and 3 BLAS [8, 10, 11, 18] is a
subset of the functionality proposed in this document.

In the original BLAS, each level was categorized by the type of operation;
Level 1 addressed scalar and vector operations, Level 2 addressed matrix-
vector operations, while Level 3 addressed matrix-matrix operations. The
functionality tables in this document are categorized in a similar manner,
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Data Type Name Notation De�nition

Real one-norm kAk1 maxj
P

i jaij j

Frobenius-norm kAkF
qP

i

P
j a

2
ij

in�nity-norm kAk1 maxi
P

j jaij j

max-norm kAkmax maximaxj jaij j

Complex one-norm kAk1 maxj
P

i jaij j

= maxj
P

i(Re(aij)
2 + Im(aij)

2)1=2

real one-norm kAk1R maxj
P

i(jRe(aij)j+ jIm(aij)j)

Frobenius-norm kAkF
qP

i

P
j jaij j

2

= (
P

i

P
j(Re(aij)

2 + Im(aij)
2))1=2

in�nity-norm kAk1 maxi
P

j jaij j

= maxi
P

j(Re(aij)
2 + Im(aij)

2)1=2

real in�nity-norm kAk1R maxi
P

j(jRe(aij)j+ jIm(aij)j)

max-norm kAkmax maximaxj jaij j

= maximaxj(Re(aij)
2 + Im(aij)

2)1=2

real max-norm kAkmaxR = maximaxj(jRe(aij)j+ jIm(aij)j)

Table 2: Matrix Norms

with additional categories to cover operations which were not addressed in
the original BLAS.

Unless otherwise speci�ed, the operations apply to both real and complex
arguments. For the sake of compactness the complex operators are omitted,
so that whenever a transpose operation is given the conjugate transpose
should also be assumed for the complex case.

The last column of each table denotes in which chapter of the BLAS
Technical Forum standard the functionality occurs. Speci�cally,

� \D" denotes dense and banded BLAS

� \S" denotes sparse BLAS, and

� \E" denotes extended and mixed precision BLAS.

4.1 Scalar and Vector Operations

This section lists scalar and vector operations. The functionality tables are
organized as follows. Table 3 lists the scalar and vector reduction opera-
tions, Table 4 lists the vector rotation operations, Table 5 lists the vector
operations, and Table 6 lists those vector operations that involve only data
movement.
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For the Sparse BLAS, x is a compressed sparse vector and y is a dense
vector.

For further details of vector norm notation, refer to Section 3.3.

Dot product r  �r + �xT y D,E
r  xT y S

Vector norms r  jjxjj1; D
r  jjxjj1R; D
r  jjxjj2; D
r  jjxjj1; D
r  jjxjj1R; D

Sum r  
P

i xi D,E
Min value & location k; xk; ; k = argmini xi D
Min abs value & location k; xk; k = argmini(jRe(xi)j+ jIm(xi)j) D
Max value & location k; xk; ; k = argmaxi xi D
Max abs value & location k; xk; k = argmaxi(jRe(xi)j+ jIm(xi)j) D
Sum of squares (scl; ssq) 

P
x2i ; D

ssq � scl2 =
P
x2i D

Table 3: Reduction Operations

Generate Givens rotation (c; s; r) rot(a; b) D
Generate Jacobi rotation (a; b; c; s) jrot(x; y; z) D
Generate Householder transform (�; x; �) house(�; x); D

H = I � �uuT

Table 4: Generate Transformations
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Reciprocal Scale x x=� D
Scaled vector accumulation y  �x+ �y; D,E

y  �x+ y S
Scaled vector addition w  �x+ �y D,E

Combined axpy & dot product

(
ŵ  w � �v
r  ŵTu

D

Apply plane rotation ( x y ) ( x y )R D

Table 5: Vector Operations

Copy y  x D
Swap y $ x D
Sort vector x sort(x) D
Sort vector & return index vector (p; x) sort(x) D
Permute vector x Px D
Sparse gather x yjx S
Sparse gather and zero x yjx; yjx  0 S
Sparse scatter yjx  x S

Table 6: Data Movement with Vectors
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4.2 Matrix-Vector Operations

This section lists matrix-vector operations in Table 7. The matrix arguments
A, B and T are dense or banded or sparse. In addition, where appropriate,
the matrix A can be symmetric (Hermitian) or triangular or general. The
matrix T represents an upper or lower triangular matrix, which can be unit
or non-unit triangular. For the Sparse BLAS, the matrix A is sparse, the
matrix T is sparse triangular, and the vectors x and y are dense.

Matrix-vector product y  �Ax+ �y; y  �ATx+ �y D,E
x �Tx; x �T Tx D,E
y  �Ax+ y; y  �ATx+ y S

Summed matrix-vector multiplies y  �Ax+ �Bx D,E

Multiple matrix-vector multiplies

(
x T T y
w  Tz

D(
x �AT y + z
w  �Ax

D

Multiple matrix-vector mults

and low rank updates

8><
>:

Â A+ u1v
T
1 + u2v

T
2

x �ÂT y + z

w  �Âx

D

Triangular solve x �T�1x; x �T�Tx D,S,E

Rank one updates A �xyT + �A D
and symmetric (A = AT ) A �xxT + �A D
rank one & two updates A (�x)yT + y(�x)T + �A D

Table 7: Matrix-Vector Operations

4.3 Matrix Operations

This section lists a variety of matrix operations. The functionality tables
are organized as follows. Table 8 lists single matrix operations and matrix
operations that involve O(n2) operations, Table 9 lists the O(n3) matrix-
matrix operations and Table 10 lists those matrix operations that involve
only data movement. Where appropriate one or more of the matrices can
also be symmetric (Hermitian) or triangular or general. The matrix T rep-
resents an upper or lower triangular matrix, which can be unit or non-unit
triangular. D, DL, and DR represent diagonal matrices, and J represents a
symmetric tridiagonal matrix (including 2� 2 block diagonal).
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For further details of matrix norm notation, refer to Section 3.5.

Matrix norms r jjAjj1; r  jjAjj1R D
r jjAjjF ; r  jjAjj1; r  jjAjj1R D
r jjAjjmax; r  jjAjjmaxR D

Diagonal scaling A DA; A AD; A DLADR D
A DAD D
A A+BD D

Matrix acc and scale C  �A+ �B D
Matrix add and scale B  �A+ �B; B  �AT + �B D

Table 8: Matrix Operations { O(n2) 
oating-point operations

Matrix-matrix product C  �AB + �C; C  �ATB + �C D,E
C  �ABT + �C; C  �ATBT + �C D,E
C  �AB + C; C  �ATB + C S

Triangular multiply B  �TB; B  �BT D,E
B  �T TB; B  �BT T D,E

Triangular solve B  �T�1B; B  �T�TB D,S,E
B  �BT�1; B  �BT�T D,E

Symmetric rank k & 2k C  �AAT + �C; C  �ATA+ �C D,E
updates (C = CT ) C  �AJAT + �C; C  �ATJA+ �C D

C  (�A)BT +B(�A)T + �C, D,E
C  (�A)TB +BT (�A) + �C
C  (�AJ)BT +B(�AJ)T + �C, D
C  (�AJ)TB +BT (�AJ) + �C

Table 9: Matrix-Matrix Operations - O(n3) 
oating-point operations

Matrix copy B  A; B  AT D
Matrix transpose A AT D
Permute Matrix A PA, A AP D

Table 10: Data Movement with Matrices
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5 Interface Issues

For brevity, the details of language-speci�c interface issues are not discussed
in this paper. Complete details of the design of the language bindings for
Fortran 95, Fortran 77, and C, can be found in the respective chapters of
the BLAS Technical Forum standard [1]
(http://www.netlib.org/blas/blast-forum/).

5.1 Naming Conventions

Language bindings are speci�ed for Fortran 95, Fortran 77, and C.
The Fortran 95 language bindings have routine names of the form<name>,

where <name> is in lowercase letters and indicates the computation per-
formed. These bindings use generic interfaces to manipulate the data type
of the routine, and thus their names do not contain a letter to denote the
data type.

The Fortran 77 and C language bindings have routine names of the form
BLAS x<name>, where the letter x, indicates the data type as follows:

Data type x Fortran 77 x C

s.p. real S REAL s 
oat
d.p. real D DOUBLE PRECISION d double
s.p. complex C COMPLEX c 
oat
d.p. complex Z COMPLEX*16 or DOUBLE COMPLEX z double

The su�x <name> in the routine name indicates the computation per-
formed. In the matrix-vector and matrix-matrix routines of the Dense and
Banded BLAS and the Mixed and Extended-Precision BLAS, the type of
the matrix (or of the most signi�cant matrix) is also speci�ed as part of this
<name> name of the routine. Most of these matrix types apply to both
real and complex matrices; a few apply speci�cally to one or the other, as
indicated below.
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GB general band
GE general (i.e., unsymmetric, in some cases rectangular)
HB (complex) Hermitian band
HE (complex) Hermitian
HP (complex) Hermitian, packed storage
SB (real) symmetric band
SP symmetric, packed storage
SY symmetric
TB triangular band
TP triangular, packed storage
TR triangular (or in some cases quasi-triangular)

For Fortran 77, routine names are in uppercase letters; however, for the
C interfaces all routine names are in lowercase letters. To avoid possible
name collisions, programmers are strongly advised not to declare variables
or functions with names beginning with these pre�xes.

A detailed discussion of the format of the <name> naming convention
is contained in each respective chapter of the document.

6 Numerical Accuracy and Environmental Enquiry

With a few exceptions, no particular computational order is mandated by
the function speci�cations. In other words, any algorithm that produces
results \close enough" to the usual algorithms presented in a standard book
on matrix computations [4, 13, 15] is acceptable. For example, Strassen's
algorithm may be used for matrix multiplication, even though it can be
signi�cantly less accurate than conventional matrix multiplication for some
pairs of matrices [15]. Also, matrix multiplication may be implemented
either as C = (� � A) � B + (� � C) or C = � � (A � B) + (� � C) or C =
A � (� � B) + (� � C), whichever is convenient.

To use the error bounds in [4, 13, 15] and elsewhere, certain machine
parameters are needed to describe the accuracy of the arithmetic. Detailed
error bounds and limitations due to over
ow and under
ow are discussed
in [5] but all of them depend on details of how 
oating-point numbers are
represented. These details are available by calling an environmental enquiry
function called FPINFO. For further details of FPINFO, please refer to the
BLAS Technical Forum standard [1]
(http://www.netlib.org/blas/blast-forum/).

In the chapters of the BLAS Technical Forum standard, there are ex-
ceptional routines where we ask for particularly careful implementations
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to avoid unnecessary over/under
ows, that could make the output unnec-
essarily inaccurate or unreliable. The details of each routine are described
with the language dependent calling sequences. Model implementations that
avoid unnecessary over/under
ows are based on corresponding LAPACK
auxiliary routines, NAG routines, or cited reports.

Floating-point numbers are represented in scienti�c notation as follows.
This discussion follows the IEEE Floating-Point Arithmetic Standard 754
[3].3

x = �d:d � � � d � BASEE

where d:d � � � d is a number represented as a string of T signi�cant digits
in base BASE with the \point" to the right of the leftmost digit, and E is
an integer exponent. E ranges from EMIN up to EMAX. This means that
the largest representable number, which is also called the over
ow threshold
or OV, is just less than BASEEMAX+1, This also means that the smallest
positive \normalized" representable number (i.e. where the leading digit
of d:d � � � d is nonzero) is BASEEMIN , which is also called the under
ow
threshold or UN.

When over
ow occurs (because a computed quantity exceeds OV in ab-
solute value), the result is typically �1, or perhaps an error message. When
under
ow occurs (because a computed quantity is less than UN in absolute
magnitude) the returned result may be either 0 or a tiny number less than
UN in magnitude, with minimal exponent EMIN but with a leading zero
(0:d � � � d). Such tiny numbers are often called denormalized or subnormal,
and 
oating-point arithmetic which returns them instead of 0 is said to
support gradual under
ow.

The relative machine precision (or machine epsilon) of a basic operation
� 2 f+;�; �; =g is de�ned as the smallest EPS > 0 satisfying

fl(a� b) = (a� b) � (1 + �) for some j�j � EPS

for all arguments a and b that do not cause under
ow, over
ow, division
by zero, or an invalid operation. When fl(a� b) is a closest 
oating-point
number to the true result a � b (with ties broken arbitrarily), then round-
ing is called \proper" and EPS = :5 � BASE1�T . Otherwise typically
EPS = BASE1�T , although it can sometimes be worse if arithmetic is not
implemented carefully. We further say that rounding is \IEEE style" if ties
are broken by rounding to the nearest number whose least signi�cant digit
is even (i.e. whose bottom bit is 0).

3We ignore implementation details like \hidden bits", as well as unusual representations

like logarithmic arithmetic and double-double.
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The function FPINFO returns the above 
oating-point parameters, among
others, to help the user understand the accuracy to which results are com-
puted. FPINFO can return the values for either single precision or double
precision. The way the precision is speci�ed is language dependent, as is the
choice of 
oating-point parameter to return, and described in Section 6. The
names single and double may have di�erent meanings on di�erent machines.
We have long been accustomed to single precision meaning 32-bits on all
IEEE and most other machines [3], except for Cray and its emulators where
single is 64-bits. And there are historical examples of 60-bit formats on some
old CDC machines, etc. Nonetheless, we all agree on single precision as a
phrase with a certain system-dependent meaning, and double precision too,
meaning at least twice as many signi�cant digits as single.

7 Error Handling

The BLAS Technical Forum standard supports two types of error-handling
capabilities: an error handler, BLAS ERROR, and error return codes. Each
chapter of the document, and thus each 
avor of BLAS, has the choice of
using either capability, whichever is more appropriate. The dense and the
extended precision BLAS rely on an error handler, and the Sparse BLAS
provides error return codes. Each function in the document determines when
and if an error-handling mechanism is called, and its function speci�cation
must document the conditions (if any) which trigger the error handling
mechanism.

For complete details on the error-handling mechanisms available, refer
to the BLAS Technical Forum standard [1]
(http://www.netlib.org/blas/blast-forum/).
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