
Middleware for the Use of Storage in Communication

Micah Beck†, Dorian Arnold†, Alessandro Bassi†, Fran Berman‡, Henri Casanova‡, Jack
Dongarra†, Terry Moore†, Graziano Obertelli‡, James Plank†, Martin Swany†, Sathish Vadhiyar†,

Rich Wolski†

Abstract:
The Logistical Computing and Internetworking (LoCI) project is a reflection of the way that the

next generation internetworking fundamentally changes our definition of high performance wide area
computing. A key to achieving this aim is the development of middleware that can provide reliable,
flexible, scalable, and cost-effective delivery of data with quality of service (QoS) guarantees to support
high performance applications of all types. The LoCI effort attacks this problem with a simple but
innovative strategy. At the base of the LoCI project is a richer view of the use of storage in
communication and information sharing.

Introduction
At the base of the LoCI research is a richer view of the use of storage in communication. Current

approaches to QoS rely on the standard end-to-end model of communication: the state of network flow is
maintained at the end nodes and not in the network. By contrast, our concept of logistical QoS is a
generalization of the typical model that permits state management within the networking fabric itself, via
a much more flexible control of message buffering, in order to achieve QoS delivery without difficult
end-to-end requirements. For example, whenever data is available to be sent well before it needs to be
received, it can be staged, i.e. moved in advance and stored in a location "close" to the receiver for later
delivery. We define such strategies that employ storage in communication, as logistical network
computing, and the main purpose of the LoCI project is to investigate and test the central conjecture of
logistical network computing:

If 1) distributed network storage is made available as resource an flexibly schedulable and
2) communication, computational, and storage resources can be predictably allocated for

coscheduling,
Then advanced applications can be implemented on computational grids with higher performance

and/or lower overall use of communication, computational, and storage resources.

The structure of our research in the LoCI program reflects the parts of this conjecture, which in turn
represent the fundamental elements of logistical network computing. To create a research-computing
environment that enables us to allocate communication, computation, and storage resources for
coscheduling, we combine four technologies from the world of computational grids:

� Internet Backplane Protocol (IBP) [1] is primitive middleware that supports a layer of network
storage, implemented as a system of buffers exposed for direct scheduling, that advanced applications
can use to leverage state management for high-performance.

� Network Weather Service (NWS) [2] enables us to predict the ability of the network to respond to
data movement requests over time.

� NetSolve [3] provides a programming environment that facilitates the analysis of program
dependences, expressed in the form of dependence flow graphs, to understand an application’s

† University of Tennessee, work supported in part by the NSF/NGS GRANT #NSF EIA-9975015, and NSF GRANT
ACI-9876895.
‡ University of California, San Diego, work supported in part by the NSF/NGS GRANT #NSF EIA-9975015.

 2

inherent communication requirements. A major component of LoCI research is identify and provide
opportunities for extracting scheduling information from applications.

� Application Level Scheduling (AppLeS) [4] is enabling us to derive an efficient schedule that meets
those communication requirements. Once the scheduling information is made available, mapping the
computation, network and storage resources of the application to the Grid resources, subject to
current and predicted resource conditions, is a difficult problem. AppLeS is the leading instance of a
range of approaches we are exploring under LoCI.

These Grid technologies have focused, primarily, on the control of compute and network resources
to achieve high-performance distributed execution. Logistical computing adds the control of storage to
form a comprehensive Grid infrastructure. By exposing more of the underlying storage structure of the
network and maximizing its exploitation in scientific applications, our research is moving network
computing towards the physical and logical limits of the underlying technology, as is found in more
mature areas of computer engineering.

Logistical Network Computing and Explicit Storage Control
Our architectural analysis of high performance network computing derives from an analogy with the

architecture of modern pipelined microprocessors. The fundamental elements of modern processor
architecture are:

� Buses and functional units which move and transform data, and
� Memory and cache, registers and pipeline buffers that store data.

With these mechanisms in place, the programming interface can then schedule the execution of a program
in a way that achieves maximum performance. Careful control of data at the various stages of an
execution pipeline is necessary to ensure high performance levels. It is our belief that Grid programs (or
the Grid middleware) must analogously control program state as it traverses the Grid.

Another important difference between modern RISC and VLIW architectures and the CISC architectures
of the 70s and 80s is that instructions are predictable because they model the processor pipeline very
directly. All elements of the pipeline behave in a completely deterministic fashion except for the cache,
which is statistically predictable.

In our model of logistical network computing, the fundamental elements are
� Predictable networking and computation which move and transform data, and
� Storage that is accessible from the network.

Using these elements, the programming interface can then schedule the execution of a program in a
way that achieves maximum performance. One important difference between logistical network
computing and traditional methods is that it is based on global scheduling expressed at the programming
interface but implemented by local allocation throughout the network. Traditional approaches express at
the programming interface only complex higher-level operations defined in terms of the endpoints,
encapsulating the complexity of the network. The result is that it is much harder to implement predictable
operations.

The Internet Backplane as Middleware for Next Generation Software
In order to experiment with logistical network computing, some mechanism for the management of

storage is required. Staging can be implemented at many possible levels in the application or operating
system, and as with all software architecture decisions, the tradeoffs are complex, involving many factors
including compatibility of interfaces, administrative convenience and performance.

Most network computing environments are fairly self-contained in the sense that data flows only
between processors which host compute servers, and so it is possible to implement data depots and
storage management as part of the compute server. Under this approach staging is accessible only to a
single network computing domain, so that the management of storage is not shared between environments

 3

(e.g. NetSolve [5], Globus [6], and Legion [7]) or between instances of single environment. Such sharing
is important because it allows storage to be managed as an aggregate resource rather than as several
smaller pools, and because it allows performance-enhancing services such as caching to be implemented
in an application- and environment-neutral manner.

The middleware approach is to abstract a model of state management from the particular computing
environment and to define it to be a lower level service. It is possible to implement that service in a user-
level library, in a daemon process or in kernel network drivers that reach lower into the protocol stack. In
fact, the functionality may ultimately be spread across these architectural levels, and could ultimately be
supported by modifications to the network infrastructure itself.

A key innovation of the LoCI project is the implementation of a software mechanism for distributed
data staging, called the Internet Backplane Protocol (IBP), a middleware service implemented by
TCP/IP connections to a daemon processes, in the style of FTP and NFS.

An Overview of the Internet Backplane Protocol (IBP)
Fundamentally, IBP is designed to allow much freer control of buffer management at distributed

storage depots through a general, but non-traditional scheme for naming, staging, delivering and
protecting data. To address the needs of new Grid applications IBP diverges from the standard storage
management systems (e.g. distributed file systems or databases) in three fundamental ways, which we
consider in turn.

IBP serves up both writable and readable storage to anonymous clients as a wide-area network
resource

The Internet is a mainly stateless communication substrate that serves up two kinds of network
resources to its generic and unauthenticated clients: read-only storage through anonymous FTP and the
Web, and remote processing servers that connect to clients via two-way ASCII communication pipes with
Telnet. There are projects that are trying to enlarge this resource space, such as Jini, NetSolve, and active
disk and network movement. IBP enlarges this resource space by focusing on storage, namely writable
storage. The benefits of offering writable storage as a network resource are numerous:

� Quality of service guarantees for networking can be met more easily when the intermediate
routing nodes can store the communication buffers.

� Resource schedulers can include the staging of data near the processing resources for better
resource utilization and better scheduling.

� Content services can be enhanced with both client and server-driven replication strategies
(including, but not limited to caching, content push, multicast support, and replica management)
for improved performance.

� A ubiquitous foundation for achieving fault-tolerance may be achieved.
Currently, most strategies for achieving the above benefits are ad hoc workarounds of the existing

Internet architecture.

IBP allows for the remote control of storage activities
Storage managed by IBP may be viewed as files or buffers, located on reliable storage, in RAM, or

perhaps on an active disk. IBP allows a user or processing entity to both access and manage these storage
entities remotely, without being involved in the actual manipulation of the bytes. We present three
general categories of how this improves application performance and flexibility below.

 4

As an illustration in Figure 1, consider the generation of sensor data in NWS. NWS generates a
tremendous about of performance data in order to make its predictions. It is not clear when the data is
being collected whether or not it will be used (i.e. clients might not request predictions for a few minutes).
Therefore it is optimal to store the data in a location close to the sender so that the storing is optimized.
Sending the data to clients is less optimal, but that is a more infrequent operation. Ideally, of course, the
data is stored on the machine being monitored, but that may not be possible. Storing it nearby in IBP is
the next best alternative.

A similar example is checkpointing computations within NetSolve for fault-tolerance [8]. Since
checkpoints may never be used, NetSolve would like to optimize the act of checkpointing. Obviously, it's
not a good idea to store the checkpoint on the compute server, because if the server fails, the checkpoint
may not be available (since the server is down). IBP thus allows the servers to checkpoint “nearby,”
which allows for an optimal balance of performance and fault-tolerance.

In Figure 2, the data is put close to the receiver so that the overhead of receiving is low. Standard
performance optimizations such as staging and caching fall into this category, and are well-known enough
to require no further elaboration.

In Figure 3, storage is used in the network to explicitly route a message. This obviously improves the
performance of broadcast messages. Additionally, it helps with intermediate link failures. With standard
end-to-end networking, one has to resend packets from the sender if any link fails. With intermediate
storage, the resend only has to happen on the failed link. Finally, with intermediate storage, a user can do
explicit routing, which may be much more effective than standard Internet routing [9].

Sender Receive
r

IBP Network

Sender Receiver IBP Network

Sender Receiver IBP IBP IBP

Figure 1: IBP: Keeping Data Close to Sender

Figure 2: IBP: Place Data Close To Receiver

Figure 3: IBP: Utilizing Storage Throughout

 5

IBP decouples the notion of user identification from storage
Typically, storage systems require authentication for any access that uses a persistent resource,

whereas networking has no persistent resources and so can rely on security implemented at the end-
points. IBP treats all storage as if it were a communication buffer by offering up writable storage on the
network to unauthenticated clients. That clients are unauthenticated does not mean that the system is
chaotic or without safeguards. IBP allows the owner of a storage server to define how much storage to
serve for IBP and how that storage should be served. In particular, IBP file allocation includes the notion
that files may have a limited lifetime before they are removed by the IBP system. Each file is accessed
through a unique storage capability so that access can be restricted without authentication. In addition, an
IBP file may be allocated as volatile, meaning that the IBP server may revoke the storage at any time.
Such a system strikes a balance between offering the benefits of writable storage on the network, and
making sure that the owner of such storage has the ability to reclaim it when desired.

Logistical Mechanisms
The two key logistical mechanisms that we are designing are the Internet Backplane Protocol (IBP),
which allows us to express logistical data movement, and the Network Weather Service (NWS) that
allows us to predict the effects of future requests for data movement.

The Internet Backplane Protocol API
We have defined and implemented a client API for IBP consisting of seven procedure calls, and a

server daemon software that makes local storage available for remote management. Currently,
connections between clients and servers are made through TCP/IP sockets.

IBP client calls may be made by any process that can connect to an IBP server. IBP servers do not
require administrative privileges to install and operate, so IBP has the flavor of software such as PVM
[10] that can leverage the privileges of ordinary users to create a distributed computing platform. IBP
servers can implement various storage allocation policies in order to control the local impact. For
example, the IBP server may be allowed to allocate spare physical memory, or it may by directed to only
allow the allocation of unused disk space and to revoke that allocation in favor of local use when
necessary. Alternatively, the IBP server may enforce only time-limited allocations, where the storage is
automatically revoked after a set time period. These features manage the local impact of allowing
allocation of local resources through IBP.

Each IBP server allocates storage in the form of append-only byte arrays. There are no directory
structures or file names (this structure can be layered on top of IBP through the use of a directory server
such as Globus’ MDS). Clients initially allocate storage through a request to an IBP server. If the
allocation is successful, the server returns three capabilities to the client, one for reading, one for writing,
and one for management. These capabilities can be viewed as names that are assigned by the server and
are meaningful only to IBP. The contents of the capability can be obscured cryptographically in order to
implement a basic level of security. In order to achieve high performance, applications can pass and copy
capabilities among themselves without coordinating through IBP.

IBP’s API and several logistical network computing applications are described in detail in other
documents [11],[12].

The Network Weather Service: Monitoring Resources for Logistical Scheduling
While IBP provides the mechanisms that allow applications to exploit logistical network computing,

resource usage must be carefully scheduled or application performance will suffer. To make these
decisions the scheduler must predict the future performance of a set of resources. We use the Network
Weather Service (NWS) [13] to make these predictions based on the observed performance history of
each resource.

 6

The Network Weather Service (NWS) periodically monitors available resource performance by
passively and actively querying each resource, forecasts future performance levels by statistically
analyzing monitored performance data in near-real time, and reports both up-to-date performance
monitor data and performance forecasts via a set of well-defined interfaces.

The monitor interface is easily extensible; currently implemented monitors include TCP/IP latency
and bandwidth, CPU load, and Globus GRAM process start times [14]. Monitor traces are presented as
time series to a set of NWS forecasting models that make short-term performance predictions levels.
Both forecast values and accuracy measures are reported for each resource and performance
characteristic. Using this accuracy information, schedulers can gauge the value of individual forecasts
and use this valuation to exploit different risk strategies. Forecast and forecast-quality data is published
via C-language interfaces for access by dynamic schedulers.

It is the function of logistical scheduling to compose intermediate network and storage resources into
an end-to-end “path” that supports a specified quality-of-service (QoS). Our schedulers will rely on NWS
performance forecasts to identify, dynamically, resource compositions that meet the QoS specifications of
different, and potentially competing, Grid applications. A key research question that we are addressing
concerns the degree to which NWS predications may be effectively composed to produce an overall
predication.

NetSolve as an Environment for Experimentation in Logistical
Scheduling
 NetSolve is a client, server and agent system in which the client uses simple procedure
calls to solve some problems remotely through the services hosted by a NetSolve server. The
agent acts as a coordinator of the NetSolve grid maintaining the state information of the different
components and acting as a global scheduler.

 The concept of storage provided by LoCI through IBP depots can be used in a variety of
ways in the NetSolve framework.

1. NetSolve involves communication of data between the client and the servers. This data
can be cached in an IBP depot located near the server(s) in situations where the NetSolve
client calls a number of NetSolve problems with the same data.

2. In cases where the NetSolve user is not interested in the intermediate results, these
intermediate results can be stored in the IBP depots for latter use by the NetSolve servers
during next phase of the computation.

3. In a collaborative project, where the NetSolve users interact to solve a large application,
the LoCI framework provided through the IBP depots can be used to share the NetSolve
results among the various users.

 Mechanisms have been implemented in NetSolve where the user can invoke NetSolve
calls to allocate storage in the IBP depots, encapsulate the storage in the form of an object and
pass these objects in the NetSolve calls to solve problems. Thus the input data to a NetSolve
problem can be stored in an IBP depot before the user makes the NetSolve call to solve the
problem and the output data from the NetSolve servers can be directed to an IBP depot. The
NetSolve calls that deal with the LoCI storage infrastructure are in turn implemented in terms of
the simple API calls provided by LoCI. Though the NetSolve users can achieve the desired effect
by directly invoking the LoCI API, NetSolve provides the abstraction in order to experiment
with different storage infrastructures.

 7

 In the following experiment, we illustrate the use of IBP in NetSolve to cache input and
intermediate results. The problem involves multiplication of 2 complex matrices, A and B to
form a complex matrix C, followed by solving complex system of equations involving C and a
known matrix Y. i.e.,

1. C = A X B
 Implemented as

 Cr = ArBr – A iBi

 Ci = A iBr + ArBi

 Where Ar, Br and Cr are the real parts of the matrices and A i, Bi and Ci are the
imaginary parts of the matrices
Ar, Br, A i, Bi and Y. The only output for this problem is X. The rest of the matrices associated
with the complex matrix C are intermediate values and are stored in an IBP depot located near
the NetSolve server. To mimic the geographical expense of the Grid, we placed a NetSolve client
application at the University of California, San Diego and experimented with requests to a pool
of computational and LoCI servers at the University of Tennessee as illustrated by the following
diagram.

 The following graph compares the performance obtained when the same problem
was solved without using the LoCI storage and when using LoCI storage for different matrix
sizes. The results show that using LoCI infrastructure in NetSolve helps to improve the
performance of data movement for solving problems.

NetSolve
Computational

IBP

Storage

NetSolve
Client

data

solve

output

input and intermediate data
UCSD

UT

 8

 We also solved another problem involving sparse matrices from the Harwell-Boeing
collection of the Matrux Market repository to solve system of equations using the MA28
solver library. The following figure illustrates the performance benefits of using LoCI
storage in NetSolve improves with the increase in number of accesses to the storage by the
NetSolve servers.

Figure 4: Results of Improved Computational Efficiency with IBP Caching Is Used With NetSolve

 9

Logistical Scheduling and the AppLeS Project

 The AppLeS project [4],[20] focuses on the design and development of Grid-
enabled high-performance schedulers for distributed applications. The first generation of
AppLeS schedulers demonstrated that simultaneously taking into account application- and
system-level information makes it possible to effectively schedule applications onto
computational environments as heterogeneous and dynamic as the Grid. The benefits of that
approach has been demonstrated for over a dozen applications (see the AppLeS website
[21]). However, all those schedulers were tightly embedded within the application itself and
thus difficult to re-use. Therefore, the next step was to build on AppLeS principles to provide
re-usable software environments that targets classes of structurally similar applications. Two
such environments, or templates, have been developed so far: the AppLeS Master Worker
Application Template (AMWAT) [22] and the AppLeS Parameter Sweep Template (APST)
[23] In the context of the LoCI project, we have investigated and implemented logistical
scheduling as part of APST.

 APST targets the class of Parameter Sweep Applications (PSAs), i.e. applications
structured as large numbers of computational tasks that exhibit little or no synchronization. In
addition, we assume that tasks use (and may share) potentially large input datasets, and
produce potentially large output datasets. The PSA model is representative of well-known
methodologies such as parameter space search techniques, Monte Carlo simulations, and
parameter studies. As such, PSAs arise in many fields, including Computational Fluid
Dynamics, Bioinformatics, Particle Physics, Discrete-event simulation, Computer Graphics,
and many areas of Biology. PSAs are primary candidate for Grid computing given their large
scale. Also, due to their loose task synchronization requirements, PSAs are able to tolerate
high latencies and faults, both of which are to be expected on the Grid.

 Many real-world PSAs are manipulating increasingly large datasets that need to be
moved among and staged on distributed Grid storage. Data movement is needed so that
distributed compute resources can be utilized, and data staging is needed so that data can be
shared and re-used by application tasks. The question is then: how does one make decisions
on where to move and where to stage application data in order to minimize application
execution time? In this paper we have termed this problem as logistical scheduling, which is
key for improving the performance of PSAs on the Grid.

 Much research work has been devoted to the problem of scheduling independent
tasks. This problem is NP-complete, and several heuristics have been proposed (see [24] for a
comparative survey). In this work we have built on three list-scheduling heuristics described
in [25]: Min-min, Max-min, Sufferage. Those heuristics have been shown to be effective
when application tasks exhibit affinities with compute resources. This means that some hosts
are better for some application tasks, but not for others (e.g. due to specialized hardware,
optimized software libraries, etc.). Our key intuition is that the presence of input data on a
Grid storage resource ``near'' a Grid compute resource leads to affinities. In other words, a
task has affinity with compute resources which are ``near'' input data required by that task.
This is particularly relevant for PSAs where task use and share large datasets over a Grid.

 10

 We have made a number of contributions to the PSA scheduling problem on the
Grid. First, we have extended the three heuristics in [26] so that they take into account
logistical issues (input data staging, input data re-use, data movements). Second, we
developed a new heuristic, XSufferage, that exploits some of the structure of the Grid
computing platform. Third, we enhanced all four heuristics so that they can be executed in an
adaptive fashion: scheduling decisions can be revised periodically at runtime in order to
account for dynamic resource conditions. All details on this work can be found in [27]. In
that paper we presented many simulation experiments comparing the four list-scheduling
heuristics and a greedy self-scheduled workqueue algorithm. The main difference between
the list-scheduling heuristics and the self-scheduled workqueue is that the former require
performance predictions (answers to questions like ``how long will that task take on that
resource?''), whereas the latter does not. One interesting question is then to quantify the
impact of performance prediction inaccuracy on the effectiveness of list-scheduling
heuristics. We derived two significant conclusions from our simulation results:
(i) XSufferage outperformsother heuristics (and the self-scheduled workqueue) by more

than 10\% on average when one assumes perfect performance prediction;
(ii) Adaptivity makes it possible for the list-scheduling scheduling heuristics to tolerate

performance prediction errors (and outperform the self-scheduled workqueue).

 After developing this adaptive logistical scheduling strategy, we implemented it as
part of the APST software. Implementing logistical scheduling requires
(i) fine-grain control of Grid storage resources;
(ii) fine-grain control of Grid compute resources;
(iii) predictions of the expected performance of data transfers and computations on those

resources.
 Those three requirements are met by IBP, NetSolve, and NWS, which have been
described in earlier sections. IBP provides the levels of control required to move and stage
application data among distributed IBP storage servers. NetSolve provides a simple way to
execute application tasks on remote resource while using data staged in IBP servers as input.
Those two mechanisms allow for the implementation of all logistical scheduling decisions
made by our adaptive heuristics. By default, if APST is configured to use list-scheduling, it
uses the XSufferage heuristic which was proved to achieve the best performance in our
simulation experiments. Finally, NWS predictions are the basis for making scheduling
decisions. APST uses a combination of NWS predictions as well as historical observations of
application performance as input to the list-scheduling heuristics. Finally, the APST software
uses several techniques to improve performance, such as multi-threading for latency-hiding
and network transfer overlapping. Those techniques, as well as all other implementation
details, are described in [23].

 In [23] we also described experimental results that corroborate parts of our
simulation results. Our main result is that we have shown that list-scheduling is indeed
practical for real-world Grid computing. Our results, obtained on a Grid testbed containing
storage and compute resources in Tennessee, California, and Japan, showed that XSufferage
can make use of IBP, NetSolve, and NWS in order to greatly improve application
performance over the standard self-scheduled workqueue approach. In those experiments,
performance prediction errors were of the order of 10\% for compute resources and 30\% for

 11

network resources. According to what we observed in our simulation experiments, those
errors are well within the bounds of what can be tolerated thanks to the use of adaptivity.

 The APST software is an active development project that has grown out of the LoCI
activity. We extended it to use other Grid middleware services, including those provided by
Globus [29] and Condor [30]. Version 1.1 of the software is freely available from the
project's website [28]. We are currently pursuing several new research directions concerning
scheduling and performance of PSAs on the Grid platform. For instance, we are
investigating scheduling techniques for applications that consist of a partitionable workload
(such as applications from bio-informatics). This work is building on scheduling algorithms
surveyed in [19]. Also, we are investigating how the ability to change which list-scheduling
heuristic is used at runtime can improve the overall performance of PSAs.

Conclusions and Future Work
By exposing intermediate communication state to application or middleware control, Logistical
Computing forms a comprehensive approach to Grid computing. Process resources, network resources,
and storage resources can be explicitly controlled and scheduled to ensure performance in the face of
fluctuating resource availability. In particular, the Internet Backplane Protocol allows distributed
applications to break with the end-to-end communication model achieving better quality of service levels
through explicit state control. By combining this innovative approach to dynamic storage management
with NetSolve and the Network Weather Service we have been able to deliver high-performance
distributed computing to the end user through the familiar RPC programming model. Our intention is to
continue our development of Logistical Computing and to deploy a campus-wide testbed using the
Scalable Intracampus Research Grid (SInRG) at the University of Tennessee. Designed to develop a
University Grid user community, we are developing a Logistical Computing environment for SInRG both
as a means of validating our results, and easing the Grid programming burden.

The software for IBP, NWS, NetSolve, and AppLeS can be found at the following url’s.
http://icl.cs.utk.edu/ibp/
http://nws.cs.utk.edu/
http://icl.cs.utk.edu/netsolve/
http://apples.ucsd.edu/

References:
1. Plank, J., et al. The Internet Backplane Protocol: Storage in the Network. in NetStore99:

The Network Storage Symposium. 1999. Seattle, WA.
2. Wolski, R., N. Spring, and J. Hayes, The Network Weather Service: a Distributed

Resource Performance Forecasting Service for Metacomputing. Future Generation
Computer Systems, 1999. 15(5-6): p. 757-768.

3. Casanova, H., et al., Application-Specific Tools, in The Grid: Blueprint for a New
Computing Infrastructure, I. Foster and C. Kesselman, Editors. 1998, Morgan Kaufman
Publishers: San Francisco, CA. p. 159-180.

4. Berman, F., et al., Application-level scheduling on distributed heterogeneous
multiprocessor systems, in Proceedings of Supercomputing '96. 1996.

5. Casanova, H. and J. Dongarra, Applying NetSolve's Network Enabled Server. IEEE
Computational Science & Engineering, 1998. 5(3): p. 57-66.

 12

6. Foster, I. and K. Kesselman, Globus: A Metacomputing Infrastructure Toolkit.
International Journal of Supercomputer Applications, 1997. 11(2): p. 115-128.

7. Grimshaw, A., W. Wulf, and e. al., The Legion vision of a worldwide virtual computer.
Communications of the ACM, 1997. 40(1): p. 39-45.

8. Agbaria, A. and J.S. Plank. Design, Implementation, and Performance of Checkpointing
in NetSolve. in International Conference on Dependable Systems and Networks (FTCS-
30 & DCCA-8). 2000.

9. Swany, M. and R. Wolski, Data Logistics in Networking: The Logistical Session Layer.
2001, University of Tennessee: Knoxville, TN.

10. Geist, A., et al., PVM : Parallel Virtual Machine. A Users' Guide and Tutorial for
Networked Parallel Computing. 1994, Cambridge, MA: The MIT Press.

11. Bassi, A., et al., Internet Backplane Protocol : API 1.0. 2001, University of Tennessee,
Computer Science Department.

12. Elwasif, W., et al. IBP-Mail: Controlled Delivery of Large Mail Files. in NetStore '99:
Network Storage Symposium. 1999: Internet2, http://dsi.internet2.edu/netstore99.

13. Wolski, R., Forcasting network performance to support dynamic scheduling using the
Network Weather Service, in Proceedings of the 6th IEEE Symposium on High
Performance Distributed Computing. 1997, IEEE Computer Society Press: Los Alamitos,
CA. p. 316-325.

14. Foster, I. and C. Kesselman, eds. The Grid: Blueprint for a New Computing
Infrastructure. 1998, Morgan Kaufman Publishers: San Francisco, CA. 677.

15. Casanova, H., et al. The AppLeS Parameter Sweep Template: User-Level Middleware for
the Grid}. in Proceedings of SuperComputing 2000. 2000. Dallas, TX: IEEE.

16. Arnold, D.C., D. Bachmann, and J. Dongarra. Request Sequencing: Optimizing
Communication for the Grid. in Euro-Par 2000 Parallel Processing, 6th International
Euro-Par Conference. 2000. Munich, Germany: Springer Verlag.

17. Boisvert, R.F., et al., Matrix Market : A Web Resource for Test Matrix Collections, in The
Quality of Numerical Software: Assessment and Enhancement. 1997, Chapman & Hall:
London. p. 125-137.

18. Duff, I., A.M. Erisman, and J.K. Reid, Direct Methods for Sparse Matrices. 1986,
Oxford: Clarendon Press.

19. Hagerup T., Allocating Independent Tasks to Parallel Processors: An Experimental
Study. Journal of Parallel and Distributed Computing, 1997, Vol. 47, p. 185-197.

20. Berman, F. and Wolski, R., The AppLeS Project: A Status Report, Proc. of the 8th NEC
Research Symposium, Berlin, Germany, May 1997.

21. http://apples.ucsd.edu.
22. Shao G., Adaptive Scheduling of Master/Worker Applications on Distributed
Computational Resources. PhD Thesis, University of California, San Diego, May 2001.
23. Casanova, H., Obertelli, G., Berman, F. and Wolski, R., The AppLeS Parameter Sweep
Template: User-Level Middleware for the Grid. Proceedings of SuperComputing 2000 SC'00,
Nov. 2000.
24. Braun, R.D., Siegel, H.J., Beck, N, Boloni, L., Maheswaran, M., Reuther, A.I.,
Robertson, J.P., Theys, M.D., Yao, B., Hensgen, D. and Freund, R.F., A Comparison Study of
Static Mapping Heuristics for a Class of Meta-tasks on Heterogeneous Computing Systems,
Proceedings of the 8th Heterogeneous Computing Workshop (HCW'99), Apr. 1999, p. 15—29.
25. Ibarra, O. H. and Kim, C. E., Heuristic algorithms for scheduling independent tasks on

 13

nonindentical processors, Journal of the ACM, Vol. 24(2), Apr. 1977, p. 280—289.
26. Maheswaran, M., Ali, S., Siegel, H. J., Hensgen, D. and Freund, R., Dynamic Matching
and Scheduling of a Class of Independent Tasks onto Heterogeneous Computing Systems, 8th
Heterogeneous Computing Workshop (HCW'99), Apr. 1999, p. 30—44.
27. Casanova, H, Legrand, A., Zagorodnov, D. and Berman, F , Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments, Proceedings of the 9th Heterogeneous
Computing Workshop (HCW'00), May 2000, p. 349—363.
28. The APST homepage, http://grail.sdsc.edu/projects/apst/
29. Globus homepage, http://www.globus.org
30. Basney, J. and Livny, M., Deploying a High Throughput Computing Cluster, Chapter 5,
High Performance Cluster Computing, vol. 1, Prentice Hall, May 1999.

