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Abstract: 
The Logistical Computing and Internetworking (LoCI) project is a reflection of the way that the 

next generation internetworking fundamentally changes our definition of high performance wide area 
computing.  A key to achieving this aim is the development of middleware that can provide reliable, 
flexible, scalable, and cost-effective delivery of data with quality of service (QoS) guarantees to support 
high performance applications of all types. The LoCI effort attacks this problem with a simple but 
innovative strategy. At the base of the LoCI project is a richer view of the use of storage in 
communication and information sharing. 

 

Introduction 
At the base of the LoCI research is a richer view of the use of storage in communication.  Current 

approaches to QoS rely on the standard end-to-end model of communication: the state of network flow is 
maintained at the end nodes and not in the network. By contrast, our concept of logistical QoS is a 
generalization of the typical model that permits state management within the networking fabric itself, via 
a much more flexible control of message buffering, in order to achieve QoS delivery without difficult 
end-to-end requirements. For example, whenever data is available to be sent well before it needs to be 
received, it can be staged, i.e. moved in advance and stored in a location "close" to the receiver for later 
delivery. We define such strategies that employ storage in communication, as logistical network 
computing, and the main purpose of the LoCI project is to investigate and test the central conjecture of 
logistical network computing: 

If       1) distributed network storage is made available as resource an flexibly schedulable and  
2) communication, computational, and storage resources can be predictably allocated for 

coscheduling, 
Then advanced applications can be implemented on computational grids with higher performance 

and/or lower overall use of communication, computational, and storage resources. 

The structure of our research in the LoCI program reflects the parts of this conjecture, which in turn 
represent the fundamental elements of logistical network computing. To create a research-computing 
environment that enables us to allocate communication, computation, and storage resources for 
coscheduling, we combine four technologies from the world of computational grids: 

� Internet Backplane Protocol (IBP) [1] is primitive middleware that supports a layer of network 
storage, implemented as a system of buffers exposed for direct scheduling, that advanced applications 
can use to leverage state management for high-performance.  

� Network Weather Service (NWS) [2] enables us to predict the ability of the network to respond to 
data movement requests over time.   

� NetSolve [3] provides a programming environment that facilitates the analysis of program 
dependences, expressed in the form of dependence flow graphs, to understand an application’s 
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inherent communication requirements. A major component of LoCI research is identify and provide 
opportunities for extracting scheduling information from applications.  

� Application Level Scheduling (AppLeS) [4] is enabling us to derive an efficient schedule that meets 
those communication requirements. Once the scheduling information is made available, mapping the 
computation, network and storage resources of the application to the Grid resources, subject to 
current and predicted resource conditions, is a difficult problem. AppLeS is the leading instance of a 
range of approaches we are exploring under LoCI. 

These Grid technologies have focused, primarily, on the control of compute and network resources 
to achieve high-performance distributed execution.  Logistical computing adds the control of storage to 
form a comprehensive Grid infrastructure.  By exposing more of the underlying storage structure of the 
network and maximizing its exploitation in scientific applications, our research is moving network 
computing towards the physical and logical limits of the underlying technology, as is found in more 
mature areas of computer engineering. 

Logistical Network Computing and Explicit Storage Control 
Our architectural analysis of high performance network computing derives from an analogy with the 

architecture of modern pipelined microprocessors.  The fundamental elements of modern processor 
architecture are: 

� Buses and functional units which move and transform data, and  
� Memory and cache, registers and pipeline buffers that store data. 

With these mechanisms in place, the programming interface can then schedule the execution of a program 
in a way that achieves maximum performance.  Careful control of data at the various stages of an 
execution pipeline is necessary to ensure high performance levels.  It is our belief that Grid programs (or 
the Grid middleware) must analogously control program state as it traverses the Grid. 

Another important difference between modern RISC and VLIW architectures and the CISC architectures 
of the 70s and 80s is that instructions are predictable because they model the processor pipeline very 
directly.   All elements of the pipeline behave in a completely deterministic fashion except for the cache, 
which is statistically predictable. 

In our model of logistical network computing, the fundamental elements are  
� Predictable networking and computation which move and transform data, and 
� Storage that is accessible from the network. 

Using these elements, the programming interface can then schedule the execution of a program in a 
way that achieves maximum performance.  One important difference between logistical network 
computing and traditional methods is that it is based on global scheduling expressed at the programming 
interface but implemented by local allocation throughout the network.  Traditional approaches express at 
the programming interface only complex higher-level operations defined in terms of the endpoints, 
encapsulating the complexity of the network.  The result is that it is much harder to implement predictable 
operations.  

The Internet Backplane as Middleware for Next Generation Software 
In order to experiment with logistical network computing, some mechanism for the management of 

storage is required.  Staging can be implemented at many possible levels in the application or operating 
system, and as with all software architecture decisions, the tradeoffs are complex, involving many factors 
including compatibility of interfaces, administrative convenience and performance.  

Most network computing environments are fairly self-contained in the sense that data flows only 
between processors which host compute servers, and so it is possible to implement data depots and 
storage management as part of the compute server.  Under this approach staging is accessible only to a 
single network computing domain, so that the management of storage is not shared between environments 
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(e.g. NetSolve [5], Globus [6], and Legion [7]) or between instances of single environment.  Such sharing 
is important because it allows storage to be managed as an aggregate resource rather than as several 
smaller pools, and because it allows performance-enhancing services such as caching to be implemented 
in an application- and environment-neutral manner. 

The middleware approach is to abstract a model of state management from the particular computing 
environment and to define it to be a lower level service.  It is possible to implement that service in a user-
level library, in a daemon process or in kernel network drivers that reach lower into the protocol stack.  In 
fact, the functionality may ultimately be spread across these architectural levels, and could ultimately be 
supported by modifications to the network infrastructure itself. 

A key innovation of the LoCI project is the implementation of a software mechanism for distributed 
data staging, called the Internet Backplane Protocol (IBP), a middleware service implemented by 
TCP/IP connections to a daemon processes, in the style of FTP and NFS.   

An Overview of the Internet Backplane Protocol (IBP) 
Fundamentally, IBP is designed to allow much freer control of buffer management at distributed 

storage depots through a general, but non-traditional scheme for naming, staging, delivering and 
protecting data. To address the needs of new Grid applications IBP diverges from the standard storage 
management systems (e.g. distributed file systems or databases) in three fundamental ways, which we 
consider in turn. 

IBP serves up both writable and readable storage to anonymous clients as a wide-area network 
resource 

The Internet is a mainly stateless communication substrate that serves up two kinds of network 
resources to its generic and unauthenticated clients: read-only storage through anonymous FTP and the 
Web, and remote processing servers that connect to clients via two-way ASCII communication pipes with 
Telnet. There are projects that are trying to enlarge this resource space, such as Jini, NetSolve, and active 
disk and network movement. IBP enlarges this resource space by focusing on storage, namely writable 
storage. The benefits of offering writable storage as a network resource are numerous:  

� Quality of service guarantees for networking can be met more easily when the intermediate 
routing nodes can store the communication buffers.  

� Resource schedulers can include the staging of data near the processing resources for better 
resource utilization and better scheduling.  

� Content services can be enhanced with both client and server-driven replication strategies 
(including, but not limited to caching, content push, multicast support, and replica management) 
for improved performance.  

� A ubiquitous foundation for achieving fault-tolerance may be achieved.  
Currently, most strategies for achieving the above benefits are ad hoc workarounds of the existing 

Internet architecture.  

IBP allows for the remote control of storage activities 
Storage managed by IBP may be viewed as files or buffers, located on reliable storage, in RAM, or 

perhaps on an active disk. IBP allows a user or processing entity to both access and manage these storage 
entities remotely, without being involved in the actual manipulation of the bytes.  We present three 
general categories of how this improves application performance and flexibility below. 
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As an illustration in Figure 1, consider the generation of sensor data in NWS.  NWS generates a 
tremendous about of performance data in order to make its predictions.  It is not clear when the data is 
being collected whether or not it will be used (i.e. clients might not request predictions for a few minutes). 
Therefore it is optimal to store the data in a location close to the sender so that the storing is optimized.  
Sending the data to clients is less optimal, but that is a more infrequent operation. Ideally, of course, the 
data is stored on the machine being monitored, but that may not be possible.  Storing it nearby in IBP is 
the next best alternative.  

 
A similar example is checkpointing computations within NetSolve for fault-tolerance [8].  Since 
checkpoints may never be used, NetSolve would like to optimize the act of checkpointing.  Obviously, it's 
not a good idea to store the checkpoint on the compute server, because if the server fails, the checkpoint 
may not be available (since the server is down).  IBP thus allows the servers to checkpoint “nearby,”  
which allows for an optimal balance of performance and fault-tolerance. 
 

 
 
 
 
 
 
 
 

In Figure 2, the data is put close to the receiver so that the overhead of receiving is low.   Standard 
performance optimizations such as staging and caching fall into this category, and are well-known enough 
to require no further elaboration. 

 
 
 
 
 
 
 
 
 

 
 
In Figure 3, storage is used in the network to explicitly route a message.  This obviously improves the 
performance of broadcast messages.  Additionally, it helps with intermediate link failures. With standard 
end-to-end networking, one has to resend packets from the sender if any link fails.  With intermediate 
storage, the resend only has to happen on the failed link. Finally, with intermediate storage, a user can do 
explicit routing, which may be much more effective than standard Internet routing [9]. 

Sender Receive
r 

IBP Network 

Sender Receiver IBP Network 

Sender Receiver IBP IBP IBP 

Figure 1: IBP: Keeping Data Close to Sender 

Figure 2: IBP: Place Data Close To Receiver 

Figure 3: IBP: Utilizing Storage Throughout 
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IBP decouples the notion of user identification from storage 
Typically, storage systems require authentication for any access that uses a persistent resource, 

whereas networking has no persistent resources and so can rely on security implemented at the end-
points. IBP treats all storage as if it were a communication buffer by offering up writable storage on the 
network to unauthenticated clients. That clients are unauthenticated does not mean that the system is 
chaotic or without safeguards. IBP allows the owner of a storage server to define how much storage to 
serve for IBP and how that storage should be served. In particular, IBP file allocation includes the notion 
that files may have a limited lifetime before they are removed by the IBP system. Each file is accessed 
through a unique storage capability so that access can be restricted without authentication. In addition, an 
IBP file may be allocated as volatile, meaning that the IBP server may revoke the storage at any time. 
Such a system strikes a balance between offering the benefits of writable storage on the network, and 
making sure that the owner of such storage has the ability to reclaim it when desired.  

Logistical Mechanisms 
The two key logistical mechanisms that we are designing are the Internet Backplane Protocol (IBP), 
which allows us to express logistical data movement, and the Network Weather Service (NWS) that 
allows us to predict the effects of future requests for data movement. 

The Internet Backplane Protocol API 
We have defined and implemented a client API for IBP consisting of seven procedure calls, and a 

server daemon software that makes local storage available for remote management.  Currently, 
connections between clients and servers are made through TCP/IP sockets.   

IBP client calls may be made by any process that can connect to an IBP server. IBP servers do not 
require administrative privileges to install and operate, so IBP has the flavor of software such as PVM 
[10] that can leverage the privileges of ordinary users to create a distributed computing platform.  IBP 
servers can implement various storage allocation policies in order to control the local impact.   For 
example, the IBP server may be allowed to allocate spare physical memory, or it may by directed to only 
allow the allocation of unused disk space and to revoke that allocation in favor of local use when 
necessary.  Alternatively, the IBP server may enforce only time-limited allocations, where the storage is 
automatically revoked after a set time period.  These features manage the local impact of allowing 
allocation of local resources through IBP. 

Each IBP server allocates storage in the form of append-only byte arrays.  There are no directory 
structures or file names (this structure can be layered on top of IBP through the use of a directory server 
such as Globus’  MDS).  Clients initially allocate storage through a request to an IBP server.  If the 
allocation is successful, the server returns three capabilities to the client, one for reading, one for writing, 
and one for management.  These capabilities can be viewed as names that are assigned by the server and 
are meaningful only to IBP.  The contents of the capability can be obscured cryptographically in order to 
implement a basic level of security. In order to achieve high performance, applications can pass and copy 
capabilities among themselves without coordinating through IBP.  

IBP’s API and several logistical network computing applications are described in detail in other 
documents [11],[12].   

The Network Weather Service: Monitoring Resources for Logistical Scheduling 
While IBP provides the mechanisms that allow applications to exploit logistical network computing, 

resource usage must be carefully scheduled or application performance will suffer.  To make these 
decisions the scheduler must predict the future performance of a set of resources.  We use the Network 
Weather Service (NWS) [13] to make these predictions based on the observed performance history of 
each resource. 
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The Network Weather Service (NWS) periodically monitors available resource performance by 
passively and actively querying each resource, forecasts future performance levels by statistically 
analyzing monitored performance data in near-real time, and reports both up-to-date performance 
monitor data and performance forecasts via a set of well-defined interfaces. 

The monitor interface is easily extensible; currently implemented monitors include TCP/IP latency 
and bandwidth, CPU load, and Globus GRAM process start times [14].  Monitor traces are presented as 
time series to a set of NWS forecasting models that make short-term performance predictions levels.  
Both forecast values and accuracy measures are reported for each resource and performance 
characteristic.  Using this accuracy information, schedulers can gauge the value of individual forecasts 
and use this valuation to exploit different risk strategies.  Forecast and forecast-quality data is published 
via C-language interfaces for access by dynamic schedulers. 

It is the function of logistical scheduling to compose intermediate network and storage resources into 
an end-to-end “path”  that supports a specified quality-of-service (QoS).  Our schedulers will rely on NWS 
performance forecasts to identify, dynamically, resource compositions that meet the QoS specifications of 
different, and potentially competing, Grid applications.  A key research question that we are addressing 
concerns the degree to which NWS predications may be effectively composed to produce an overall 
predication.   

NetSolve as an Environment for Experimentation in Logistical 
Scheduling  
              NetSolve is a client, server and agent system in which the client uses simple procedure 
calls to solve some problems remotely through the services hosted by a NetSolve server. The 
agent acts as a coordinator of the NetSolve grid maintaining the state information of the different 
components and acting as a global scheduler. 
 
              The concept of storage provided by LoCI through IBP depots can be used in a variety of 
ways in the NetSolve framework. 

1. NetSolve involves communication of data between the client and the servers. This data 
can be cached in an IBP depot located near the server(s) in situations where the NetSolve 
client calls a number of NetSolve problems with the same data. 

2. In cases where the NetSolve user is not interested in the intermediate results, these 
intermediate results can be stored in the IBP depots for latter use by the NetSolve servers 
during next phase of the computation. 

3. In a collaborative project, where the NetSolve users interact to solve a large application, 
the LoCI framework provided through the IBP depots can be used to share the NetSolve 
results among the various users. 

 
              Mechanisms have been implemented in NetSolve where the user can invoke NetSolve 
calls to allocate storage in the IBP depots, encapsulate the storage in the form of an object and 
pass these objects in the NetSolve calls to solve problems. Thus the input data to a NetSolve 
problem can be stored in an IBP depot before the user makes the NetSolve call to solve the 
problem and the output data from the NetSolve servers can be directed to an IBP depot. The 
NetSolve calls that deal with the LoCI storage infrastructure are in turn implemented in terms of 
the simple API calls provided by LoCI. Though the NetSolve users can achieve the desired effect 
by directly invoking the LoCI API, NetSolve provides the abstraction in order to experiment 
with different storage infrastructures. 
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              In the following experiment, we illustrate the use of IBP in NetSolve to cache input and 
intermediate results. The problem involves multiplication of 2 complex matrices, A and B to 
form a complex matrix C, followed by solving complex system of equations involving C and a 
known matrix Y. i.e., 

1. C = A X B 
              Implemented as 

                    Cr = ArBr – A iBi

                    Ci = A iBr + ArBi 

                    Where Ar, Br and Cr are the real parts of the matrices and A i, Bi and Ci are the 
imaginary parts of the matrices 
Ar, Br, A i, Bi  and Y. The only output for this problem is X. The rest of the matrices associated 
with the complex matrix C are intermediate values and are stored in an IBP depot located near 
the NetSolve server. To mimic the geographical expense of the Grid, we placed a NetSolve client 
application at the University of California, San Diego and experimented with requests to a pool 
of computational and LoCI servers at the University of Tennessee as illustrated by the following 
diagram. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
              The following graph compares the performance obtained when the same problem 
was solved without using the LoCI storage and when using LoCI storage for different matrix 
sizes. The results show that using LoCI infrastructure in NetSolve helps to improve the 
performance of data movement for solving problems. 
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              We also solved another problem involving sparse matrices from the Harwell-Boeing 
collection of the Matrux Market repository to solve system of equations using the MA28 
solver library. The following figure illustrates the performance benefits of using LoCI 
storage in NetSolve improves with the increase in number of accesses to the storage by the 
NetSolve servers. 
 

 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

Figure 4: Results of Improved Computational Efficiency with IBP Caching Is Used With NetSolve 
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Logistical Scheduling and the AppLeS Project 
 

              The AppLeS project [4],[20] focuses on the design and development of Grid-
enabled high-performance schedulers for distributed applications. The first generation of 
AppLeS schedulers demonstrated that simultaneously taking into account application- and 
system-level information makes it possible to effectively schedule applications onto 
computational environments as heterogeneous and dynamic as the Grid. The benefits of that 
approach has been demonstrated for over a dozen applications (see the AppLeS website 
[21]). However, all those schedulers were tightly embedded within the application itself and 
thus difficult to re-use. Therefore, the next step was to build on AppLeS principles to provide 
re-usable software environments that targets classes of structurally similar applications. Two 
such environments, or templates, have been developed so far: the AppLeS Master Worker 
Application Template (AMWAT) [22] and the AppLeS Parameter Sweep Template (APST) 
[23] In the context of the LoCI project, we have investigated and implemented logistical 
scheduling as part of APST. 
 
              APST targets the class of Parameter Sweep Applications (PSAs), i.e. applications 
structured as large numbers of computational tasks that exhibit little or no synchronization. In 
addition, we assume that tasks use (and may share) potentially large input datasets, and 
produce potentially large output datasets. The PSA model is representative of well-known 
methodologies such as parameter space search techniques, Monte Carlo simulations, and 
parameter studies. As such, PSAs arise in many fields, including Computational Fluid 
Dynamics, Bioinformatics, Particle Physics, Discrete-event simulation, Computer Graphics, 
and many areas of Biology. PSAs are primary candidate for Grid computing given their large 
scale. Also, due to their loose task synchronization requirements, PSAs are able to tolerate 
high latencies and faults, both of which are to be expected on the Grid. 
 
              Many real-world PSAs are manipulating increasingly large datasets that need to be 
moved among and staged on distributed Grid storage. Data movement is needed so that 
distributed compute resources can be utilized, and data staging is needed so that data can be 
shared and re-used by application tasks. The question is then: how does one make decisions 
on where to move and where to stage application data in order to minimize application 
execution time? In this paper we have termed this problem as logistical scheduling, which is 
key for improving the performance of PSAs on the Grid. 
  
              Much research work has been devoted to the problem of scheduling independent 
tasks. This problem is NP-complete, and several heuristics have been proposed (see [24] for a 
comparative survey). In this work we have built on three list-scheduling heuristics described 
in [25]: Min-min, Max-min, Sufferage. Those heuristics have been shown to be effective 
when application tasks exhibit affinities with compute resources. This means that some hosts 
are better for some application tasks, but not for others (e.g. due to specialized hardware, 
optimized software libraries, etc.). Our key intuition is that the presence of input data on a 
Grid storage resource ``near'' a Grid compute resource leads to affinities. In other words, a 
task has affinity with compute resources which are ``near'' input data required by that task. 
This is particularly relevant for PSAs where task use and share large datasets over a Grid. 
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              We have made a number of contributions to the PSA scheduling problem on the 
Grid. First, we have extended the three heuristics in [26] so that they take into account 
logistical issues (input data staging, input data re-use, data movements). Second, we 
developed a new heuristic, XSufferage, that exploits some of the structure of the Grid 
computing platform. Third, we enhanced all four heuristics so that they can be executed in an 
adaptive fashion: scheduling decisions can be revised periodically at runtime in order to 
account for dynamic resource conditions. All details on this work can be found in [27]. In 
that paper we presented many simulation experiments comparing the four list-scheduling 
heuristics and a greedy self-scheduled workqueue algorithm. The main difference between 
the list-scheduling heuristics and the self-scheduled workqueue is that the former require 
performance predictions (answers to questions like ``how long will that task take on that 
resource?''), whereas the latter does not. One interesting question is then to quantify the 
impact of performance prediction inaccuracy on the effectiveness of list-scheduling 
heuristics. We derived two significant conclusions from our simulation results: 
(i) XSufferage outperformsother heuristics (and the self-scheduled workqueue) by more 

than 10\% on average when one assumes perfect performance prediction; 
(ii) Adaptivity makes it possible for the list-scheduling scheduling heuristics to tolerate 

performance prediction errors (and outperform the self-scheduled workqueue). 
 
              After developing this adaptive logistical scheduling strategy, we implemented it as 
part of the APST software. Implementing logistical scheduling requires  
(i) fine-grain control of Grid storage resources; 
(ii) fine-grain control of Grid compute resources; 
(iii) predictions of the expected performance of data transfers and computations on those 

resources. 
              Those three requirements are met by IBP, NetSolve, and NWS, which have been 
described in earlier sections. IBP provides the levels of control required to move and stage 
application data among distributed IBP storage servers. NetSolve provides a simple way to 
execute application tasks on remote resource while using data staged in IBP servers as input. 
Those two mechanisms allow for the implementation of all logistical scheduling decisions 
made by our adaptive heuristics. By default, if APST is configured to use list-scheduling, it 
uses the XSufferage heuristic which was proved to achieve the best performance in our 
simulation experiments. Finally, NWS predictions are the basis for making scheduling 
decisions. APST uses a combination of NWS predictions as well as historical observations of 
application performance as input to the list-scheduling heuristics. Finally, the APST software 
uses several techniques to improve performance, such as multi-threading for latency-hiding 
and network transfer overlapping. Those techniques, as well as all other implementation 
details, are described in [23]. 
 
              In [23] we also described experimental results that corroborate parts of our 
simulation results. Our main result is that we have shown that list-scheduling is indeed 
practical for real-world Grid computing.  Our results, obtained on a Grid testbed containing 
storage and compute resources in Tennessee, California, and Japan, showed that XSufferage 
can make use of IBP, NetSolve, and NWS in order to greatly improve application 
performance over the standard self-scheduled workqueue approach. In those experiments, 
performance prediction errors were of the order of 10\% for compute resources and 30\% for 
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network resources. According to what we observed in our simulation experiments, those 
errors are well within the bounds of what can be tolerated thanks to the use of adaptivity. 
 
              The APST software is an active development project that has grown out of the LoCI 
activity. We extended it to use other Grid middleware services, including those provided by 
Globus [29] and Condor [30]. Version 1.1 of the software is freely available from the 
project's website [28]. We are currently pursuing several new research directions concerning 
scheduling and performance of PSAs on the Grid platform.  For instance, we are 
investigating scheduling techniques for applications that consist of a partitionable workload 
(such as applications from bio-informatics). This work is building on scheduling algorithms 
surveyed in [19]. Also, we are investigating how the ability to change which list-scheduling 
heuristic is used at runtime can improve the overall performance of PSAs.  

Conclusions and Future Work 
By exposing intermediate communication state to application or middleware control, Logistical 
Computing forms a comprehensive approach to Grid computing.  Process resources, network resources, 
and storage resources can be explicitly controlled and scheduled to ensure performance in the face of 
fluctuating resource availability.  In particular, the Internet Backplane Protocol allows distributed 
applications to break with the end-to-end communication model achieving better quality of service levels 
through explicit state control.  By combining this innovative approach to dynamic storage management 
with NetSolve and the Network Weather Service we have been able to deliver high-performance 
distributed computing to the end user through the familiar RPC programming model.  Our intention is to 
continue our development of Logistical Computing and to deploy a campus-wide testbed using the 
Scalable Intracampus Research Grid (SInRG) at the University of Tennessee.  Designed to develop a 
University Grid user community, we are developing a Logistical Computing environment for SInRG both 
as a means of validating our results, and easing the Grid programming burden. 
 
The software for IBP, NWS, NetSolve, and AppLeS can be found at the following url’s. 
http://icl.cs.utk.edu/ibp/ 
http://nws.cs.utk.edu/ 
http://icl.cs.utk.edu/netsolve/ 
http://apples.ucsd.edu/ 
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