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Abstract

Generating high quality schedules for distributed applications on a Computational Grid is a challenging problem.
Some experiments using Simulated Annealing as a scheduling mechanism for a ScaLAPACK LU solver on a Grid
are described. The Simulated Annealing scheduler is compared to a Ad-Hoc Greedy scheduler used in earlier exper-
iments. The Simulated Annealing scheduler exposes some assumptions built into the Ad-Hoc scheduler and some
problems with the Performance Model being used.

1 Scheduling in the GrADS Project

Despite of the existence of several Grid infrastructure projects such as Globus [9] and Legion [11], programming,
executing and monitoring applications on a Computational Grid remains a user intensive process. The goal of the
Grid Application Development Software (GrADS)[4] project is to simplify distributed heterogeneous computing in
the same way that the World Wide Web simplified information sharing. The GrADS project intends to provide tools
and technologies for the development and execution of applications in a Grid environment. This includes tasks such
as locating available resources on the Grid and scheduling an application on an appropriate subset of the resources.

This paper will present some experiments on automated scheduling in a Grid environment. The scheduling is
done over a non-homogeneous set of Grid resources residing at geographically disparate locations, and uses dynamic
machine status and connectivity information from the Globus Metacomputing Directory Service (MDS) [9, 10] and
the Network Weather System (NWS) [19].

The naive approach of testing all possible machine schedules to select the best schedule quickly becomes in-
tractable as the number of machines grows. WhenN machines are available, the naive approach would require
checking approximately 2N possible subsets of machines. Thisminimum execution-time multiprocessor scheduling
problemis known to be NP-hard in its generalized form, and is NP-hard even in some restricted forms [16]. Many
heuristics exist that can be used to reduce the search space, and search strategies such as greedy searches (which rank
order the machines using some criteria), and (non)-linear programming searches (which seek to minimize an objective
function given certain constraints) can be used to find solutions. However, these techniques generally do not contain
mechanisms to avoid local minima.

There are many research efforts aimed at scheduling strategies for the Grid [5, 17, 18, 1, 2], see Berman [3] for
an overview of scheduling on the Grid and a summary of alternative approaches. Berman argues that a successful
scheduling strategy for the Grid has to produce time-frame specific performance predictions, has to use dynamic
information, and has to adapt to a variety of potential computational environments. Scheduling in the GrADS project
takes dynamic resource information about a distributed, heterogeneous Grid environment, and tries to generate a
schedule to minimize the execution time.
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1.1 Numerical Libraries and the Grid

As part of an earlier GrADS project demonstration [14], a ScaLAPACK [6] numerical solver routine (i.e., the LU
solver routine PDGESV) was analyzed to obtain an accuratePerformance Modelfor the routine. This Performance
Model is used to predict the execution time for the routine given the current machine characteristics (i.e., CPU load,
free memory) and their current connection characteristics (i.e., bandwidth and latency). The information from the Per-
formance Model can be used to schedule the routine on a subset of the available resources to execute in the minimum
time. Scheduling the LU solver routine is somewhat complicated by the fact that the minimum per-machine memory
requirements change as the number of machines chosen varies. This means, if the selection or removal of a machine
changes the number of chosen machines, all the other currently selected machines may need to be reevaluated.

An Ad-Hoc greedy approach was used for scheduling in the earlier GrADS project demonstration [14] (a slightly
modified version of this scheduler is described in this document). Experiments in a simplistic, homogeneous, single
cluster environment have shown that this scheduler can make better than 95% accurate predictions of the execution
time.

1.2 Ad-Hoc Greedy Scheduler Used in the ScaLAPACK Experiment

The scheduling algorithm used in the ScaLAPACK LU solver demonstration [14] uses an Ad-Hoc greedy technique
in conjunction with a hand-crafted Performance Model to select the machines on which to schedule the execution.
The list of all qualified, currently available machines is obtained from the Globus Metacomputing Directory Service
(MDS); it may contain machines from several geographically distributed clusters. The Network Weather Service
(NWS) is contacted to obtain details pertaining to each machine (i.e., the CPU load, the available memory) and the
latency and bandwidth between machines. This detailed resource information is used by the Performance Model to
estimate the execution time for the ScaLAPACK routine. The Ad-Hoc scheduling algorithm can be approximated as
in Algorithm 1.

Algorithm 1: Scheduling using Ad-Hoc greedy scheduler

1: for each cluster, starting a new search in the clusterdo
2: select fastest machine in the cluster to initialize
3: repeat
4: find a new machine which has highest average bandwidth to the machines that are already selected and add

it to the selected machines
5: ensure that memory constraints are met by all machines (details omitted here)
6: use the Performance Model with detailed machine and network information to predict the execution time
7: until the Performance Model shows that execution time is no longer decreasing
8: track the best solution
9: end for

In this algorithm, new machines are ordered by their average bandwidth with the machines that have already been
selected and they are added to the selection in this order. This technique returns a good set of machines for the appli-
cation, but it assumes that communication is the major factor determining the execution time of the algorithm. Other
greedy techniques using different orderings have been implemented within the GrADS resource selection process, for
example, using CPU load to order the machines [8].

2 Global Scheduling Strategies

The scheduling problem can be viewed as an multivariate optimization problem, where the application is being as-
signed to a set of machines so as to optimize some metric (i.e., the overall execution time). Techniques exist for
finding locally optimal solutions for multivariate optimization problems, such as gradient descent techniques, linear
programming, or greedy techniques. However, these techniques only search some local space, and will not find the
global optimum if it is not contained in that local space. For example, the Ad-Hoc greedy method orders the machines
by communication, and thus will not find the optimal solution if it is not contained in that ordering.
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A globally optimal schedule for the application is desirable, however, most classes of global optimization problems
are NP-hard. There are several stochastic and heuristic approaches to optimization that attempt to avoid most local
minima, such as Monte Carlo methods, simulated annealing, genetic algorithms, and branch-and-bound methods.
This paper details experiments using Simulated Annealing as a global optimization technique for selecting the set of
machines for scheduling the GrADS ScaLAPACK application.

2.1 Quick Overview of Simulated Annealing

Simulated Annealing [13] is a generalization of a Monte Carlo method for statistically finding the global optimum
for multivariate functions. The concept originates from the way in which crystalline structures are brought to more
ordered states by aannealing processof repeated heating and slowly cooling the structures.

In Simulated Annealing, a system is initialized at a temperatureT with some configuration whose energy is eval-
uated to beE. A new configuration is constructed by applying a random change, and the change in energydE is
computed. The new configuration is unconditionally accepted if it lowers the energy of the system. If the energy of
the system is increased by the change, the new configuration is accepted with some random probability. In the original
Metropolis scheme [13], the probability is given by the Boltzmann factorexp(−dE/kT). This process is repeated
sufficient times at the current temperature to sample the search space, and then the temperature is decreased. The
process is repeated at the successively lower temperatures until a frozen state is achieved. This procedure allows the
system to move to lower energy states, while still jumping out of local minima (especially at higher temperatures) due
to the probabilistic acceptance of some upward moves.

Simulated Annealing has been used in Operations Research to successfully solve a large number of optimization
problems [12] such as the Traveling Salesman problem and various scheduling problems [15]. Here, it is applied to
the problem of application scheduling in a Grid environment.

3 Scheduling in GrADS using Simulated Annealing

The scheduler uses the Metacomputing Directory Service to get a list of the available machines, and uses the Network
Weather Service to get CPU load, memory and communication details for the machine. The Simulated Annealing
scheduler is outlined in Algorithm 2, however various simple heuristics used to speed up the search process and avoid
unnecessary searches are not shown.

Each virtual machine size (from 1..N) is searched separately because in the LU solver application the minimum
per-processor memory requirements vary with the number of machines used in the schedule. Trying to search over
all the machine sizes simultaneously would disrupt the search process, because the addition (or subtraction) of a
machine, leading to a different number of machines in the schedule, might cause other machines to become qualified
(or disqualified) because of the memory requirements. Searching each virtual machine size separately allows the
minimization process to work smoothly at that size.

3.1 Comparing Generated Schedules for the Annealing and Ad-Hoc Schedulers

In this experiment, the Annealing Scheduler is compared to the Ad-Hoc scheduler to see which one produces better
estimatedschedules when given the same information. The list of available machines obtained from MDS and their
characteristics obtained from NWS are cached, so that the scheduling is done using consistent information. The
experimental testbed consisted of x86 CPUS running Linux; there were 3 machines from the University of Tennessee
(UTK) TORC cluster (550 MHz PIII, 512 MB memory), 3 machines from the UTK MSC cluster (933 MHz PIII, 512
MB memory), and 9 machines from the University of Illinois (UIUC) OPUS cluster (450 MHz PII, 256 MB memory).

The schedules that were generated were not actually run in this experiment since consistent machine information
was required to test the schedulers, this information would have been stale by the time the runs were performed. The
best schedules and their predicted execution times are shown in Figure1. This testbed of 12 machines was not able to
handle matrices of size 15000 or larger, so the largest problem that was scheduled was of size 14000. The annealing
scheduler is usually able to find a schedule having a better estimated execution time than the Ad-Hoc scheduler.
This trend is stronger for the larger matrix sizes. However, this estimated schedule depends on how accurately the
Performance Model reflects reality.
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Algorithm 2: Scheduling using Simulated Annealing

1: given N available machines from MDS with NWS information
2: for each possible virtual machine size vmsize = 1...Ndo
3: find all R machines having sufficient resources (i.e. free memory)
4: if number of machines with sufficient resources R< vmsizethen
5: continue to next vmsize
6: else{below we select best vmsize machines from R using Simulated Annealing}
7: create an initial schedule using random n from the R eligible machines
8: evaluate the Performance Model on the n selected machines using the dynamic NWS information
9: repeat{at each temperature}

10: for a number of steps, breaking for loop if energy stabilizesdo
11: perturb the schedule randomly, remove a machine, add another machine, and swap their order
12: evaluate the Performance Model on the new schedule
13: if energy (execution time) is decreasedthen
14: accept new schedule unconditionally
15: else
16: accept new schedule if a random number< exp(−dE/kT) [Metropolis step]
17: end if
18: end for
19: decrease temperature
20: until energy does not change or temperature is at minimum
21: end if
22: end for
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Figure 1: Estimated execution times for Simulated Annealing and Ad-Hoc schedules using static network information
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3.2 Accuracy of the Generated Schedules

In this experiment we want to determine how accurately the estimated execution time matches the actual execution
time for the two schedulers. The difficulty is that the estimated schedules measure the accuracy of the Performance
Model far more than the accuracy of the Scheduler. However, since the same Performance Model is used for both the
Simulated Annealing scheduler as well as the Ad-Hoc scheduler, the comparison of the two schedulers shows how
well they perform given the current Performance Model.

If the Performance Model is not correct, we expect that the Ad-Hoc scheduler will perform somewhat better than
the Simulated Annealing scheduler, since it includes some implicit knowledge of the application and the environment.
For example, the Ad-Hoc greedy scheduler uses bandwidth as a major factor for ordering its selection of machines
and generating a good schedule for the ScaLAPACK example. Also, it assumes that it is better to use machines
within a cluster (having high connectivity) before using remote machines. These assumptions, though valid for the
ScaLAPACK application, may not be valid in all cases.

The Simulated Annealing scheduler is application agnostic; it creates the schedule without any knowledge of the
application. The scheduler depends purely on the Performance Model, so if the Performance Model is accurate, the
annealing scheduler will return accurate results.

For this experiment, 25 machines from three Linux clusters at the were used as the testbed. Nine machines were
from the UTK/TORC cluster (550 MHz PIII, 512 MB memory), 8 machines were from the UTK/MSC cluster (933
MHz PIII, 512 MB memory), and 8 machines were from the UIUC/OPUS cluster (450 MHz PII, 256 MB memory) .
Figure2 shows that estimated execution times for the runs using dynamic network (NWS) information. The difference
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Figure 2: Estimated execution time for the Ad-Hoc and Simulated Annealing schedules using dynamic network infor-
mation

between the estimated execution times for the two scheduling techniques is not as dramatic as in Figure1, however,
these measurements were taken at different times and under different network and load conditions, and the Ad-Hoc
scheduler did not get caught in a bad local minima in this example as it did in Figure1. Figure3 shows the measured
execution time when the generated schedules were run, and here we see that the measured times are generally larger
than the estimated times. This exposes a problem with the current Performance Model, which does not properly
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Figure 3: Measured execution time for the Ad-Hoc and Simulated Annealing schedules using dynamic network infor-
mation
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account for the communication costs. The Simulated Annealing schedule generally takes a little less time than the
Ad-Hoc schedule, however this trend is not totally consistent.

Figure4 shows the ratio of the measured execution time to the estimated execution time. If the Performance Model
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Figure 4: Accuracy of Simulated Annealing and Ad-Hoc scheduling shown as ratio of measured execution time to
estimated execution time

was fully accurate and execution environment was perfectly known, the ideal ratio in Figure4 would be a 1.0 across
all the matrix sizes. However, both the schedulers differ substantially from the ideal, implying that the Performance
Model is not estimating the time required for execution accurately for a distributed set of machines. There could be
several reasons why this is happening, however the current belief is that the Performance Model does not properly
account for the communication costs.

3.3 Overhead of the Scheduling Strategies

The Ad-Hoc scheduler has very little overhead associated with it. The number of times it has to evaluate the Per-
formance Model for different machine configurations is at most (number of clusters× total number of available
machines). This takes a negligible amount of time given the size of the current testbeds.

The Simulated Annealing scheduler is has a higher overhead; however, it is still relatively small in comparison to
the time required for most of the problems that would solved in a Grid environment. The time taken by simulated
annealing is dependent on some of algorithm parameters, like the temperature reduction schedule and the desired
number of iterations at each temperature, as well as the size of the space that is being searched. In our experiments,
when the testbed consists of 38 machines, we got the maximum overhead of 57 seconds from the Simulated Annealing
scheduling process (on a 500MHz PIII machine). This is still relatively small compared to execution time for most of
the ScaLAPACK problems.
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4 Future Research

Firstly, the Performance Model needs to be examined, to see if it can be improved. Also, the performance of the
schedulers has to be verified on larger testbeds. In order to construct large, repeatable experiments, a simulation
environment designed to examine application scheduling on the Grid such as SimGrid [7] could be used. Additional
scheduling algorithms (using non-linear programming techniques, genetic algorithms, etc.) should also be evaluated.

A possible improvement to the scheduling process might be to combine the Ad-Hoc and Simulated Annealing
schedulers. The Ad-Hoc scheduler could be used to determine the approximate space where the optimal solution can
be found (e.g., returning the approximate numberN of machines to be used), and the Annealing Scheduler could be
used to search that space more thoroughly (e.g., search usingN−1, N, N + 1 machines). This would combine the
speed of the Ad-Hoc approach and retain elements of the global search process.

5 Summary

The Simulated Annealing scheduler generates schedules that have a betterestimatedexecution time than those returned
by the Ad-Hoc greedy scheduler. This is because the Simulated Annealing scheduler can avoid some of the local
minima that are not anticipated in the ordering imposed in the Ad-Hoc techniques greedy search. When the generated
schedules are actually executed, the measured execution time for the Annealing Scheduler is approximately the same
or just a little better than the Ad-Hoc scheduler. Also, the measured execution time is sufficiently different from the
estimated execution time that we need to re-examine the Performance Model being used.
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