
Toward a Framework for Preparing and
Executing Adaptive Grid Programs

Ken Kennedyα, Mark Mazina, John Mellor-Crummey, Keith Cooper, Linda Torczon
Rice University

α Corresponding author: ken@rice.edu

Fran Berman, Andrew Chien, Holly Dail, Otto Sievert
University of California, San Diego

Dave Angulo, Ian Foster
University of Chicago

Dennis Gannon
Indiana University
Lennart Johnsson

University of Houston
Carl Kesselman

USC/Information Sciences Institute

Ruth Aydt, Daniel Reed
University of Illinois, Urbana-

Champaign
Jack Dongarra, Sathish Vadhiyar

University of Tennessee
 Rich Wolski

University of California, Santa Barbara

Abstract
This paper describes the program execution

framework being developed by the Grid Application
Development Software (GrADS) Project. The goal of this
framework is to provide good resource allocation for
Grid applications and to support adaptive reallocation if
performance degrades because of changes in the
availability of Grid resources. At the heart of this strategy
is the notion of a configurable object program, which
contains, in addition to application code, strategies for
mapping the application to different collections of
resources and a resource selection model that provides
an estimate of the performance of the application on a
specific collection of Grid resources. This model must be
accurate enough to distinguish collections of resources
that will deliver good performance from those that will
not. The GrADS execution framework also provides a
contract monitoring mechanism for interrupting and
remapping an application execution when performance
falls below acceptable levels.

Introduction

The recently-published volume The Grid: Blueprint
for a New Computing Infrastructure [5] has established a
compelling vision of a computational and information
resource that will change the way that everyone, from
scientist and engineer to business professional, teacher,
and citizen uses computation [5,12]. Just as the Internet
defines fundamental protocols that ensure uniform and
quasi-ubiquitous access to communication, so the Grid

will provide uniform access to computation, data, sensors,
and other resources. Grid concepts are being pursued
aggressively by many groups and are at the heart of major
application projects and infrastructure deployment efforts,
such as NASA’s Information Power Grid (IPG) [7], the
NSF PACI’s National Technology Grid [12] and
Distributed Terascale Facility, the NSF’s Grid Physics
Network, and the European Union’s EU Data Grid and
Eurogrid projects. These and many other groups
recognize the tremendous potential of an infrastructure
that allows one to conjoin disparate and powerful
resources dynamically to meet user needs.

Despite the tremendous potential, enthusiasm, and
commitment to the Grid paradigm, as well as the
sophistication of the applications being discussed, the
dynamic and complex nature of the Grid environment
poses daunting challenges. Few software tools exist. Our
understanding of algorithms and methods is extremely
limited. Middleware exists, but its suitability for a broad
class of applications remains unconfirmed. Impressive
applications have been developed, but only by teams of
specialists [3, 4, 5, 6, 8, 9, 11].

Entirely new approaches to software development
and programming are required for Grid computing to
become broadly accessible to ordinary scientists,
engineers, and other problem solvers. In particular, it
must be relatively easy to develop new Grid applications.
Currently applications are developed atop existing
software infrastructures, such as Globus, by developers
who are experts on Grid software implementation.
Although many useful applications have been produced
this way, this approach requires a level of expertise that

will make it difficult for Grid computing to achieve
widespread acceptance.

The Grid Application Development Software
(GrADS) Project was established with support from the
NSF Next Generation Software Program to help address
this challenge. In the GrADS vision, the end user should
be able to specify applications in high-level, domain-
specific problem-solving languages and expect these
applications to seamlessly access the Grid to find required
resources when needed. Using such environments, users
would be free to concentrate on how to solve a problem
rather than on how to map a solution onto available Grid
resources.

To realize this vision we must solve two fundamental
technical problems. First, we must understand how to
build programming interfaces that insulate the end user
from the underlying complexity of the Grid execution
environment without sacrificing application execution
efficiency. Second, we must provide an execution
environment that automatically adapts the application to
the dynamically-changing resources of the Grid. To
address this second problem, the GrADS project has
designed an execution framework for adaptive Grid
applications. The goal of this paper is to elaborate the
design of this framework and the motivation behind it.

The GrADS Framework

Initial efforts within the GrADS project have
demonstrated the complexity of writing applications for
the Grid and managing their execution. To deal with this
complexity, the GrADS project has adopted a strategy for
program preparation and execution that revolves around
the idea that a program must be configurable to run on the
Grid. To be configurable in the sense intended by GrADS,
a program must contain more than just code—it must also
include a portable strategy for mapping the program onto
distributed computing resources and a mechanism to
evaluate how well that mapped program will run on a
given set of resources. The notion of a configurable
object program is thus at the heart of the GrADS
execution framework. Later in this paper, we will discuss
tools to help construct mapping strategies and
performance models that are part of the configurable
object program. For now, we will simply assume that
these components exist in executable form.

Once a configurable object program, plus input data,
is provided to the GrADS execution system, there must be
a process that initiates the resource selection, launches the
problem run, and sees its execution through to
completion. In the GrADS execution framework, the
Application Manager is the process that is responsible for
these activities—either directly or through the invocation
of other GrADS components or services. In this scenario,
individual GrADS components only need to know how to

accomplish their task(s); the question of when and with
what input or state becomes the Application Manager's
responsibility.

The application launch and execution process is
illustrated in Figure 1. We will step through this process
discussing the role of each component in the execution
launch sequence.

Application Execution Scenario

A Grid user, or a problem solving environment (PSE)
on behalf of the user, provides source code (which may be
annotated with resource selection or run-time behavior
information) or a handle to an existing IR Code object
previously created for the user. This is given to a
component called the Builder, which is the part of the
program preparation system responsible for producing a
configurable object program (COP). An overview of how
the Builder accomplishes its task will be provided in a
later section.

The Builder will construct any required objects and
return a handle to a configurable object program, which
includes the IR Code, the mapping strategy (or Mapper),
and the performance model, which we will refer to as the
Resource Selection Evaluator (RSE). In addition, the
Builder will provide a model of the resource space needed
for execution of the application. This is called an
Application Abstract Resource and Topology (AART)
Model. An AART Model provides a structured method
for encapsulation of application characteristics and
requirements in an input-data-independent way. This
information is in the form of a collection of descriptive
and parametric resource characteristics along with a
description of the topology connecting these resources.
The purpose of the AART Model is to kick-start the
resource selection process and to provide part of the
information needed by the Mapper and the Resource
Selection Evaluator.

Next, the user starts the Application Manager. This
may be a standard GrADS Application Manager or a
specialized manager designed by the user. The
Application Manager needs the handle to the COP, I/O
location information, the problem run size information
(specifically, information to allow calculation of memory
requirements), plus any desired resource selection criteria
and other run-specific parameters desired or required.

The Application Manager retrieves the pieces of the
COP. The AART Model is combined with the problem
run information, resulting in the Resource Selection Seed
Model. This produces the preliminary state necessary for
the Mapper and the Resource Selection Evaluator to start
being useful.

Once these components are available, the application
manager invokes the Scheduler/Resource

Figure 1: The GrADS Application Launch and Execution Process

Negotiator (S/RN) and provides it with the Resource
Selection Seed Model. The Scheduler/Resource
Negotiator is the component responsible for choosing
Grid resources appropriate for a particular problem run
based on that run’s characteristics and organizing them
into a proposed virtual machine. In GrADS, the S/RN is
basically an optimization procedure that searches the
space of acceptable resources looking for the best fit
according to the application’s needs as determined by
using the Resource Selection Evaluator as an objective
function.

The Scheduler/Resource Negotiator then invokes the
Grid Information Service to determine the state of Grid
resources and determine what resources are available that
satisfy the characteristics required by the Resource
Selection Seed Model. In other words, the Resource
Selection Seed Model defines a feasible resource space
for application execution. Once sets of feasible sets of

resources are identified, they are organized into a
collection according to the proposed Grid virtual
machine. The Scheduler/Resource Negotiator then
searches the collection of feasible sets of resources to find
the one with the best performance on the given
application, using the Resource Selection Model provided
by the Application Manager as the objective function.

Once a collection of resources has been identified,
the Application Manager begins the launch sequence.
First, it stores state (basically a checkpoint) on the
impending problem run (i.e. application + data) in the
GrADS Program Execution System (PES) Repository,
which is used to keep track of where each component of
the application is executing and provide sufficient
information to restart the application in the case of a
catastrophic component failure. The Application Manager
then invokes the Program Preparation System (PPS)

Binding Phase, passing it the COP handle, selected virtual
machine, and the user’s run-time information.

The PPS Binding Phase invokes the Mapper to
perform the actual data layout and creates optimized
binaries using a component called the Dynamic
Optimizer, which performs tailoring of the program
components to the specific computational resources on
which they will run. The Binding Phase also inserts
monitoring sensors needed by the performance-
monitoring component of the execution environment,
which is referred to as the Contract Monitor. The
Contract Monitor is responsible for identifying egregious
violations of the performance assumptions that led to the
original resource mapping and initiation a reallocation of
resources if necessary. The definition of what sensors are
needed is provided by the Performance Monitoring Setup
Module, which is invoked from within the PPS Binding
Phase.

For some Grid-aware libraries, the PPS Binding
Phase may need to arrange for dynamic linking to pre-
built libraries for specific platforms. Handles to the
optimized problem run binaries are passed back to the
Application Manager, which again checkpoints its state to
the GrADS PES Repository.

The Application Manager starts the Contract Monitor
and then launches the binaries by invoking the GrADS
Launcher, a service that is constructed on top of the
Globus middleware layer. While the Contract Monitor is
initializing, code inserted by the PPS in the application
binaries may be positioning data on the resources making
up the virtual machine.

As the code runs, the Contract Monitor gathers sensor
data and uses the contract monitoring performance
model(s) and violation thresholds provided by the
Performance Monitoring Setup Module to determine if
the application is delivering an acceptable level of
performance. In addition, the Contract Monitor may try
to make some determination of the cause of the poor
performance. It reports its findings, together with
summary monitoring information, to the Application
Manager.

The evaluation of acceptable levels of performance
and determination of the cause of violations is the shared
responsibility of the Contract Monitor Component and the
Application Manager, with the final decision to signal a
violation coming under the domain of the Application
Manager. The distribution of the decision making effort
between the components will vary as appropriate for the
given application structure, contract monitoring
performance model granularity, and violation type.

Concurrently, the Contract Monitor output, as well as
the original sensor output, can be archived for later use to
refine models, adjust thresholds, or guide future
executions. In addition, the application, Contract
Monitor, and Application Manager may adjust the

contract monitoring performance models and violation
thresholds throughout the application lifetime in response
to evolving application patterns and resource volatility.

If the Application Manager determines that the
application is not making reasonable progress (or
alternately, if the system becomes aware of more suitable
execution resources), the Rescheduler is invoked. Using
knowledge of the current execution, the Rescheduler
determines the best course of action in order to improve
progress. Examples of rescheduling actions are replacing
particular resources, redistributing the application
workload/tasks on the current resources, and adding or
removing resources; or doing nothing (continuing
execution with the current VM).

If the Rescheduler constructs a revised VM, the
Application Manager builds new optimized executables,
checkpoints the application, reconfigures and re-launches
the application. The application reads in the checkpoint
information and continues program execution. Once the
application finishes, the Application Manager makes
certain that the relevant collected performance data is fed
back (i.e. archived) into the Program Preparation System
and shuts down the Contract Monitor.

Constructing Configurable Object Programs

Clearly, for this execution scenario to work, we must
have a reasonable performance model and mapping
strategies for each application. In fact, the performance
model depends on a preliminary mapping provided by the
mapping strategy, so these two components are intimately
tied together. In our preliminary research [10], we
discovered that performance models for non-
homogeneous collections are extremely difficult for even
sophisticated developers to construct.

As a result, we have adopted a strategy of providing
within the program preparation system a collection of
components and tools to assist in the development of the
requisite performance models and mapping strategies.
These tools will use three general strategies for
constructing reasonably accurate performance models:

1. Expert knowledge about performance of components,
particularly on different classes of homogeneous
parallel processors.

2. Trial execution to determine run times of important
components, with estimates of communications costs
based on information from the Grid Information
Service.

3. Integration of whole-application performance models
from accurate models for individual components,
based on the topology of the application.

The design and evaluation of these tools is a subject
of ongoing research. However, our preliminary studies

indicate that there is strong promise that these three
strategies can combine to provide enough accuracy to
make the resource selection process effective [1,10].

Project Status

Preliminary versions of the execution model
described in this paper have been prototyped in the
context of two demonstration applications: ScaLAPACK
[10] and Cactus [1]. We are currently working toward an
implementation that includes generic versions of these
components that can be used with any configurable object
program.

Bibliography

1. G. Allen, D. Angulo, I. Foster, G. Lanfermann, C.
Liu, T. Radke, E. Seidel, and J. Shalf. The Cactus
Worm: Experiments with Dynamic Resource
Discovery and Allocation in a Grid Environment.
International Journal of High Performance
Applications and Supercomputing 15(4), Winter,
2001.

2. F. Berman, A. Chien, K. Cooper, J. Dongarra, I.
Foster, D. Gannon, L. Johnsson, K. Kennedy, C.
Kesselman, J. Mellor-Crummey, D. Reed, L.
Torczon, and R. Wolski. The GrADS Project:
Software Support for High-Level Grid Application
Development. International Journal of High
Performance Applications and Supercomputing
15(4), Winter, 2001.

3. T. DeFanti, I. Foster, M. Papka, R. Stevens, and T.
Kuhfuss. Overview of the I–WAY: Wide--Area
Visual Supercomputing. The International Journal of
Supercomputer Applications and High Performance
Computing 10(2):123–130, Summer/Fall 1996.

4. I. Foster, J. Geisler, W. Nickless, W. Smith, and S.
Tuecke. Software Infrastructure for the I–WAY
Metacomputing Experiment. To appear in
Concurrency: Practice & Experience.

5. I. Foster and C. Kesselman, editors. The Grid:
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, San Francisco, 1998.

6. E. Gabriel, M. Resch, T. Beisel, and R. Keller.
Distributed Computing in a Heterogenous Computing
Environment. In Proc. EuroPVMMPI’98. 1998.

7. W. E. Johnston, D. Gannon, and B. Nitzberg. Grids
as Production Computing Environments: The
Engineering Aspects of NASA's Information Power
Grid. In Proceedings of the 8th IEEE Symposium on
High-Performance Distributed Computing (HPDC),
IEEE Computer Society Press, 1999.

8. T. Kimura and H. Takemiya. Local Area
Metacomputing for Multidisciplinary Problems: A
Case Study for Fluid/Structure Coupled Simulation.
In Proc. Intl. Conf. on Supercomputing, pages 145–
156. 1998.

9. P. Lyster, L. Bergman, P. Li, D. Stanfill, B. Crippe,
R. Blom, C. Pardo, and D. Okaya. CASA Gigabit
Supercomputing Network: CALCRUST Three–
Dimensional Real–Time Multi–Dataset Rendering}.
In Proceedings of Supercomputing '92, Minneapolis,
Minnesota, November 1992 (Poster session).

10. A.Petitet, S.Blackford, J.Dongarra, B.Ellis, G.Fagg,
K.Roche, and S.Vadhiyar. Numerical Libraries and
the Grid: The GrADS Experiment with
ScaLAPACK. International Journal of High
Performance Applications and Supercomputing
15(4), Winter, 2001.

11. T. Sheehan, W. Shelton, T. Pratt, P. Papadopoulos, P.
LoCascio, and T. Dunigan. Locally Self Consistent
Multiple Scattering Method in a Geographically
Distributed Linked MPP Environment. Parallel
Computing 24, 1998.

12. R. Stevens, P. Woodward, T. DeFanti and C. Catlett.
From the I–WAY to the National Technology Grid.
Communications of the ACM 40(11): 50–60,
November 1997.

