
Lecture Notes in Computer Science 1

Parallel IO support for Meta-Computing Applications:
MPI_Connect IO applied to PACX-MPI

Graham E. Fagg+, Edgar Gabriel*, Michael Resch* and Jack J. Dongarra+

 +Department of Computer Science, University of Tennessee, Suite 413, 1122 Volunteer
Blvd, Knoxville, TN-37996-3405, USA.

*High Performance Computing Center Stuttgart,

Allmandring 30, D-70569 Stuttgart, Germany

fagg@cs.utk.edu
gabriel@hlrs.de

Abstract. Parallel IO (PIO) support for larger scale computing is becoming
more important as application developers better understand its importance in
reducing overall execution time by avoiding IO overheads. This situation has
been made more critical as processor speed and overall system size has in-
creased at a far greater rate than sequential IO performance. Systems such as
MPI_Connect and PACX-MPI allow multiple MPPs to be interconnected,
complicating IO issues further. MPI_Connect implemented Parallel IO support
for distributed applications in the MPI_Conn_IO package by transferring com-
plete sections of files to remote machines, supporting the case that all the ap-
plications and the file storage were completely distributed. This system had a
number of performance drawbacks compared to the more common usage of
metacomputing where some files and applications have an affinity to a home
site and thus less data transfer is required. Here we present the new PACX-
MPI PIO system based initially on MPI_Connect IO, and attempt to demon-
strate multiple methods of handling MPI PIO that cover a greater number of
possible usage scenarios. Given are some preliminary performance results as
well as a comparison to other PIO grid systems such as the Asian Pacific
GridFarm, and Globus gridFTP, GASS and RIO.

1. Introduction

Although MPI [13] is currently the de-facto standard system used to build high
performance applications for both clusters and dedicated MPP systems, it is not with-
out some issues. Initially MPI was designed to allow for very high efficiency and
thus performance on a number of early 1990s MPPs, that at the time had limited OS
runtime support. This led to the current MPI-1 design of a static process model.
While this model was possible to implement for MPP vendors, easy to program for,
and more importantly something that could be agreed upon by a standards commit-
tee. During the late 90s a number of systems similar to MPI_Connect [1] and PACX-

Lecture Notes in Computer Science 2

MPI [3] were developed that allowed multiple MPPs running MPI applications to be
interconnected while allowing for internal MPP communications to take advantage
of vendor tuned software rather than using a TCP socket based portable implementa-
tion only.

While MPI_Connect and PACX-MPI solved some of the problems of executing
application across multiple platforms they did not solve the problem of file distribu-
tion and collection or handling multiple specialized file subsystems. Initially this was
not a problem as many parallel applications were developed from sequential versions
and they continued to utilize sequential IO operations. In many cases only the root
processor would perform IO. This state of affairs was compounded by the initial
version of MPI not having any Parallel IO API calls, thus forcing users of Parallel IO
to use non portable proprietary interfaces. The MPI-2 standard did however include
some Parallel IO operations, which were quickly implemented by a number of ven-
dors. The work presented here is built on the MPI-2 Parallel IO interface and the
appication supported are expected to use the MPI-2 Parallel IO interface to maintain
portability.

1.1 MPI-2 Parallel IO

Parallel I/O can be described as multiple access of multiple processes to the same,
shared file. The goal of using parallel File I/O within MPI applications is to improve
the performance of reading or writing data, since I/O is often a bottleneck, especially
for applications, which are frequently check-pointing intermediate results. With the
MPI-2 standard, an interface is designed which enables the portable writing of code,
which makes use of parallel I/O.

MPI–I/O provides routines for manipulating files and for accessing data. The rou-
tines for file manipulation include opening and closing files, as well as deleting and
resizing files. Most file manipulation routines have to provide as an argument an
MPI communicator, thus these operations are collective.

For reading or writing data, the user has several options. MPI-I/O gives the appli-
cation developer the possibility to work either with explicit offsets, with individual
file pointers or with shared file pointers. The operations are implemented as blocking
and non-blocking routines. Additionally, most routines are available in both collec-
tive and non-collective versions. Taking it all together, the user may choose between
more than 28 routines, which fits best to his applications IO access pattern.

1.2 MPI_Connect and MPI_Conn_IO

 MPI_Connect is a software package that allows heterogeneous parallel applica-
tions running on different Massively Parallel Processors (MPPs) to interoperate and
share data, thus creating Meta-applications. The software package is designed to
support applications running under vendor MPI implementations and allow inter-
connection between these implementations by using the same MPI send and receive
calls as developers already use within their own applications. This precludes users

Lecture Notes in Computer Science 3

from learning a new method for interoperating, as the syntax for sending data be-
tween applications is identical to what they already use. The support of vendor MPI
implementations means that internal communications occur via the optimized ven-
dor versions and thus incur no performance degradation as opposed to using only
TCP/IP, the only other option previously available. Unlike systems such as PACX-
MPI, each application maintains its own MPI_COMM_WORLD communicator, and
this allows each application to connect and disconnect at will with other MPI appli-
cations as shown in figure 1.

Fig 1. MPI_Connect overview

The MPI_Conn_IO API was developed to support multi-site multi-application

execution using shared files. The three primary requirements were to provide:
(A) Local parallel file system access rates
(B) Global single name space naming for all files
(C) Single points of storage

To provide (A) the system had to utilize the MPI-2 PIO API for file access. To pro-
vide (B) which is important for GRID applications where location independence is
required to handle uncertainties caused by runtime scheduling, a dedicated nam-
ing/resolution service was created. (C) single point of storage is where the input and
output files are stored in well known locations as known by the naming service so
that users do not have to distribute their files at every location where an execution is
possible. This required the use of dedicated file serving daemons. An overview of the
MPI_Conn_IO system is given in figure 2.

To allow applications the ability to handle this distributed access to Parallel IO the
users had to add two additional library calls, one to gain access to the global/shared
file and the other to release it. The call to access the file was one of two variations:
(A) MPI_Conn_getfile(globalfname, localfname, outsize)

Lecture Notes in Computer Science 4

(B) MPI_Conn_getfile_view(globalfname, localfname, my_app, num_apps, dtype,
outsize, comm)

Both calls would access the naming/resolution service to locate the file server with
the required file. Variant (A) would then copy the complete file onto all the systems
in the MPI_Connect system. The individual applications themselves would then have
to handle the portioning of the file so that they each accessed the correct sections of
data. In variant (B) the call is a combination of opening a file and setting the access
pattern in the terms of access derived data types and relative numbers of nodes in
each part of the MetaApplication. This allows the file daemons to partition the files
at the source so that file distribution and transmission costs are reduced. For exam-
ple, if two applications of sizes 96 and 32 nodes opened the same file with the first
setting my_app=0, num_apps=2 and dtype to MPI_DOUBLE, and the second opened
the file with my_app=1, num_apps=2 and dtype = MPI_DOUBLE then the file
would get stripped between the two sites. The first site would get the first 96 doubles
with the second site getting then next 32 doubles and so on. The files on the local
Parallel IO subsystems would be named by the user supplied localfname parameter.

Once the file has been globally opened it can then be opened via the standard
MPI-2 Parallel IO call MPI_File_open (com, localfname, mode, info, fhandle).

After the application has finished with the file, the application needs to release its
references to the global version of the file via the MPI_Conn_releasefile API call. If
the file was created or modified locally its globally stored version would be updated
by this call.

To further reduce the time it takes to transfer a file, the TCP/IP routing of the files
contents can be explicitly controlled by store and forwarding through a number of
IBP [15] network caches at various locations throughout the network. This scheme is
used to avoid known network bottlenecks at peak times.

Fig 2. MPI_Conn_IO overview

Lecture Notes in Computer Science 5

1.2 PACX-MPI

PACX-MPI is an implementation of the MPI standard optimized for clustered wide-
area systems. The concept of PACX-MPI relies on three major ideas: First, in clus-
tered systems, the library has to deal with two different levels of quality of communi-
cation. Therefore, PACX-MPI uses two completely independent layers to handle
operations on both communication subsystems. Second, for communication between
processes on the same machine, the library makes use of the vendor-MPI, since this
allows it to fully exploit the capacity of the underlying communication subsystem in
a portable manner. And third, for communication between processes on different
machines, PACX-MPI introduces two communication daemons. These daemons
allow buffering and packing of multiple wide area communications as well as han-
dling security issues centrally.

Fig 3. Concept of PACX-MPI

2. Distributed and Grid Parallel IO issues

The requirements and implementation issues of Distributed and Grid based file sys-
tems overlap heavily. Although the topic is very complex and broad it can be simpli-
fied to a number of key issues.

Distributed File Systems (DFS) such as AFS [12] primarily focus on performance
through mechanisms such as caching, and specialized file locking techniques at the
OS layer and are typically aimed at supporting sequential (POSIX style) access pat-
terns across a wide area network rather than an unreliable global one. They assume
that restrictions such as single user IDs and a single coherent file name space.

Grid based tools are primarily aimed at simplified transmission of file data, where
the actual data IO is done locally from some temporary storage location. Here the
issues become those of single point authentication, efficient handling of different
backend file services, mapping of multiple user Ids, and handling the naming and
resolution of multiple replicated copies of data [6][11]. The replicated issue becom-

Lecture Notes in Computer Science 6

ing more important as more systems utilize caching and pre-staging of data to reduce
access latencies to remote storage. Systems such as gridFTP and Global Access to
Secondary Storage (GASS) [8] exemplify this. GridFTP provides an FTP abstraction
that hides multiple access, transmission and authentication methods, and GASS
which provides a simple POSIX file IO style API for accessing remote data using
URL naming. GASS then utilizes local caching to improve repeated IO access rates.
One advantage of GASS over AFS is that the caching is user configurable via an
exposed cache management API.

PACX-MPI PIO aims to support functionality in-between these two levels and is
very close to systems such as RIO [9], Stampi [4] and the Grid Data Farm [10]. RIO
was aimed at supporting MPI Parallel IO access patterns via a server client model.
Unlike traditional server client models, the clients are parallel applications and the
servers can directly access multiple parallel IO file servers, thus ensuring that per-
formance of the parallel file system was passed onto the client side. The implementa-
tion contained forwarder nodes on the client side that translate local IO access re-
quests and pass these via the network to the server side which then accesses the real
file servers in parallel. The Grid Data Farm is a Petascale data-intensive computing
project initiated in Japan as part of the Asian Pacific Grid. In common with RIO it
has specialized file server daemons (known as gfsd’s) but it supports a specialized
API that uses a RPC mechanism much like that of NFS for actual file access by re-
mote processes. This was needed as it did not directly support the MPI API. An in-
teresting feature of the system is that the file server nodes can also perform computa-
tion as well as IO, in which case they attempt to process only on local data, rather
than more expensive to access remote data.

MPI_Conn_IO is equivalent to a mix of GASS and RIO. It has additional calls to
access remote files, which in effect are pre-staging calls that cache the complete
requested data fully onto a local Parallel File System via MPI-IO operations. It has
special file handling daemons like the RIO server processes, although it does not
support their on demand access operation.

The target implementation of PACX-MPI is hoped to be a system that allows for a
mode of operation anywhere between the GASS/MPI_Conn_IO fully cached method
and the RIO on demand method. The authors believe that there are many different
styles of access pattern to file data within parallel and meta/grid applications and
that only by supporting a range of methods can reasonable performance be obtained
for a wide range of applications [2].

3. PACX-MPI PIO aims

The current aims of PACX-MPI-PIO are:
(A) Support a single MPI-2 Parallel IO file view across any MPI communicator

(assuming it is distributed across multiple MPPs)
(B) Allow access to files via the MPI-2 API using the efficient vendor supplied

Parallel IO libraries where possible

Lecture Notes in Computer Science 7

(C) Do not force the application developer to use any additional API calls unless
they are in the form of performance hints

(D) Reduce any file management to a minimum
(E) Support a number of caching and transmission operations

As PACX allows communicators (A) to be across multiple machines the IO layer has
to move file data between sites automatically if they are to support reduced file man-
agement (D). A consequence of (D) is that one of the execution sites is considered
the ‘home’ site where the data files will reside but we will not restrict all files to be
at the same home site. Allowing PACX-MPI-PIO to work without forcing the use of
any additional calls (unlike MPI_Conn_IO) requires the MPI-2 file PIO calls to be
profiled using the MPI profiling interface so that the file movement is hidden from
the users application. (B) forces the profiled library to call the MPI-2 PIO API di-
rectly. (C) and (E) mean that any application level requests to change the system
transfer options and caching methods should be in the form of MPI attributes calls,
or even compile time flags.

To simplify initial development a number of restrictions are placed on the user
applications use of the MPI Parallel IO API. Firstly, the applications open files for
reading, writing or appending, but not for mixed read and write operations. Secondly
once a file has been opened, it can set its file view but not modify this file view with-
out reopening the file. This restriction maybe removed in a future version if there is a
need, but currently the authors have not found any application that need this func-
tionality. Lastly, shared file pointers between multiple MPPs are not supported.

3.1 PACX-MPI PIO file manipulation and transmission modes

Manipulation of files and transmission of file data can be broken into a number of
issues.

(A) Naming. As the target files exist at one of the execution sites, the need for
any global naming scheme is negated and the local names can be used in-
stead. The requirement is that users specify which site is the home site to
the PACX system. This can be done via an entry in the PACX host file, or
over ridden by an MPI attribute call. Any data stored in a cache at another
site uses a one time temporary name.

(B) Caching of data. Is the complete file replicated across all MPPs, or just sec-
tions of it. Is the data stored on the local PIO system or purely in memory.

(C) Who does the remote access? Are additional daemons required or can the
PACX communication daemons do the work.

The initial test implementation of PACX-MPI PIO only supports two modes of

remote file access with various options:
1. Direct access
2. Proxy access

Lecture Notes in Computer Science 8

3.2 PACX-MPI PIO Direct access

Direct access is where the data on the remote (i.e. non home) site is stored on the
PIO system as a data file on disk and the MPI-2 PIO application calls translate di-
rectly to MPI-2 PIO library calls. This is just the same as the original MPI_Conn_IO
library, except there is not a specialized File server and thus less data needs to be
transferred, and there are no API changes or global names needed.

In this mode of operation, when the applications make the collective
MPI_File_set_view call, the local (home site) application reads the file data in via
parallel MPI IO calls, and then sends the data via the communications daemons to
the remote nodes, which then write the data via the MPI IO calls to their local tem-
porary parallel files. The applications can then proceed as normal handling the data
with the profiled MPI Parallel IO API calls. The use of MPI IO calls to store the data
is important as the authors have found that on some systems such as the Cray T3E,
the data is not automatically stripped if just a single processes writes it out and thus
performance drops to that of a single disk for IO access.

The data storage and access at the remote sites can be in one of three forms:

1. Complete File Copy (CFC). In this mode all sites have an identical copy
of the complete file. This is useful for small files where the cost of mov-
ing all or part of the file is negligible compared to the overall execution
time. It is also useful for supporting multiple changes to the file view
during a single application run. This mode of distribution is show in
figure 4.

2. Partial File Copy (PFC) with full extent. This is where only the data
needed on each of the distributed systems is copied to them. This re-
duced the amount of data to be copied. The file is stored with the same
extent as the original copy, i.e. it is sparse storage. This mode is useful
as it does not require any remote file view translation allowing for mul-
tiple file view support. The only disadvantage is that it requires the
same amount of storage at each site as the original file which maybe
considerable. An example of this is shown in figure 5.

3. Partial File Copy (PFC) with compacted storage. This is the same as
above except that the storage is compacted so that no gaps in the remote
files exist as shown in figure 6. This has three consequences. The first
is the file uses much less space. The second is that it requires all the file
view API calls on the remote machines to be translated so that they cor-
rectly address the new data layout. This translation is automatic and
only performed once. The third consequence is multiple file views are
not supportable, and that the temporary file would have to be com-
pletely rebuilt each time the file view was changed.

Lecture Notes in Computer Science 9

Fig 4. File view for data stripping on MPPs with complete data files

Fig 5. File view for stripping of data across two MPPs with full file extent.

Lecture Notes in Computer Science 10

Fig 6. File view for stripping data across two MPPs with compacted file storage (reduced

extent)

3.3 PACX-MPI PIO Proxy access

Proxy access is when the file data only exists on the home/local site and all other
applications pass their IO access requests to the primary application, which then
performs the accesses on their behalf. The overall structure is similar to RIO and the
Data Grid Farm as shown in figure 7. Due to its nature it is known as On Demand
Access (ODA) as IO calls are made dynamically as demanded by remote processes,
or Cached as the remote system reads and writes data from a memory buffer in the
form of a message queue. The number and size of pending IO accesses can be varied
dynamically. Another feature is that pre-fetching of read requests can be performed
as the file view is known in advance, which leads to more efficient latency hiding.

A number of issues exist which effect overall performance. Firstly, the local appli-
cation has to perform all the IO operations which can reduce the level of parallelism
within the Parallel IO subsystem. Secondly the amount of intersystem communica-
tion dramatically increases, and even with pre-catching, intersystem bandwidth be-
come a dominating factor.

Lecture Notes in Computer Science 11

Fig 7. Proxy, On Demand Access (ODA) cached access structure.

4. PACX-MPI IO experiments

Initial experiments were conducted on a Cray T3E-900 with 512 nodes at the Uni-
versity of Stuttgart. Unfortunately the version of MPI-2 PIO installed was based on a
version ROMIO that utilized only the POSIX file IO calls and thus the raw PIO
performance was poor [5].

We ran several different classes of experiment to characterize the IO subsystem:
(A) Basic Parallel IO benchmarks using only collective blocking calls

(MPI_Read/Write_ALL).
(B) Partition to partition TCP performance (to test interconnection speeds)
(C) Single machine, single partition tests
(D) Single machine, multiple partition tests (each partition runs a separately

initiated MPI application under PACX-MPI) with a single coherent file
view across the whole PACX-MPI job.

Out of the different caching, file transfer and storage methods described in section 3
we present only the partial file copy (PFC) with compacted storage (modified file
view) and (ODA) on-demand access (system cached) for the distributed multiple
MPI application cases as these best represent the current issues in a final implemen-
tation. These are compared against the single application in terms of both aggregate
IO bandwidth and application execution time.

The data files used were all over 150 Mbytes to avoid multi-level system caching
effects, and from previous experience with real CFD applications [2] we varied the
granularity of individual node IO accesses from small/fine, i.e. 100 doubles per node
per access to very large/course, i.e. 100,000 doubles per node per IO access.

Lecture Notes in Computer Science 12

Figure 8 shows the aggregate IO bandwidths for accessing a large (150+ Mbyte)
using the MPI-2 parallel IO API using a total of 32 nodes.

The first line is for reading on a single partition with 32 nodes and peaks at
around 25 MB/Second. The second line shows the write bandwidth which is much
lower with a peak of only 10.5 MB/Second. The third line shows the bandwidth of
accessing the file with two separate 16 node partitions using the PFC method. This
method includes all file transfers and its performance is dominated by the slow paral-
lel file write IO operations. The forth line shows twice the interconnection band-
width. This is show as it is the limit for file transfers. (Twice is shown as we are
utilizing the compacted file view so only half the file is transferred and we are meas-
uring the aggregate bandwidth being sum of all individual node bandwidths).

The forth line shows the on demand access (ODA/cached) method which per-
forms much better than the PFC method at around 10.5 MB/Second for large ac-
cesses. As the IO performance goes up the effects of interconnection will dominate
this method. The effects of latency for this method, can be hidden by increasing the
pre-fetch buffer size. This technique becomes infeasible for course grain accesses on
larger numbers of nodes due to memory constraints.

Figure 9 shows the single application single partition version compared to PFC
and ODA/cached methods in terms of time rather than bandwidth for different
granularities of access. Here the degradation in performance of using the PFC ver-
sion is more apparent especially for smaller accesses, although the ODA version
appears to perform remarkably well.

Fig 8. Aggregate Bandwidth of different method as a function of access granularity

Lecture Notes in Computer Science 13

Fig 9. Overall application IO times for various access methods.

5. Conclusions and future work

The PACX-MPI PIO initial implementation appears to be a good vehicle to experi-
ment with various caching, data access and storage mechanisms while supporting the
portable use of the MPI-2 Parallel IO API. The PIO system is transparent in use and
requires no code changes from that of a standalone application even when executing
transparently on multiple MPPs. The system also utilizes the concept of a home site
for the storage of files, which reduces the work load of the application users as they
no-longer have to handle file staging manually when performing multi-site applica-
tion runs.

Currently future work is aimed at automatically improving performance, espe-
cially for the class of applications that perform regular user directed check-pointing.

6. References

1. G. E. Fagg, K. S. London, and J. J. Dongarra, “MPI_Connect: managing heterogeneous MPI applications
interoperation and process control”, in V. Alexandrov and J. Dongarra, editors, Recent advances in Par-
allel Virtual Machine and Message Passing Interface, volume 1497 of Lecture notes of Computer
Science, pages 93-96. Springer, 1998. 5th European PVM/MPI User’s Group Meeting.

2. D. Cronk, G. Fagg, and S. Moore, “ Parallel I/O for EQM Applications”, Department of Computer
Science technical report, University of Tenneesee, Knoxville, July 2000.

3. E. Gabriel, M. Resch, T. Beisel and R. Keller “Distributed Computing in a heterogeneous computing
environment”, in V. Alexandrov and J. Dongarra, editors, Recent advances in Parallel Virtual Ma-
chine and Message Passing Interface, volume 1497 of Lecture notes of Computer Science, pages
180-188. Springer, 1998. 5th European PVM/MPI User’s Group Meeting.

Lecture Notes in Computer Science 14

4. T. Imamura, Y. Tsujita, H. Koide, and H. Takemiya, “An architecture of Stampi: MPI library on a
cluster of parallel computers”, in J. Dongarra, P. Kacsuk, and N. Podhorszki, editors, Recent advances
in Parallel Virtual Machine and Message Passing Interface, volume 1908 of Lecture notes of Com-
puter Science, pages 200-207. Springer, 2000. 7th European PVM/MPI User’s Group Meeting.

5. Rolf Rabenseifner and Alice E. Koniges, “Effective File-I/O Bandwidth Benchmark”, in A. Bode, T.
Ludwig, R. Wissmüller, editors, Proceedings of Euro-Par 200, pages 1273-1283, Springer 2000.

6. B. Allock et all, “Secure, Efficient Data Transport and Replica Management for High-Performance Data-
Intensive Computing”, submitted to IEEE Mass Storage Conference, April 2001.

7. R. Thakur, W. Gropp, and E. Lusk, “On Implementing MPI-IO Portably and with High Performance”, in
Proc. Of the Sixth Workshop on I/O in Parallel and Distributed Systems, May 1999, pages 23-32.

8. J. Bester, I. Foster, C. Kesselmann, J. Tedesco, S. Tuecke, “GASS: A Data Movement and Access Ser-
vice for Wide Area Computing Systems”, in Sixth Workshop on I/O in Parallel and Distributed Sys-
tems, 1999.

9. I. Foster, D. Kohr, R. Krishnaiyer, J. Mogill, “Remote I/O: Fast Access to Distant Storage”, in Proc.
Workshop on I/O in Parallel and Distributed Systems, (IOPADS), pages 14-25, 1997.

10. O. Tatebe et all., “Grid Data Fram for Petascale Data Instensive Computing”, Elechtrotechnical Labora-
tories, Technical Report, TR-2001-4, http://datafarm.apgrid.org.

11. B. Tierny, W. Johnston, J. Lee, M. Thompson, “A Data Intensive Distributed Computing Architecture
for Grid Applications”, Future Generation Computer Systems, volume 16 no 5, pages 473-481, Elsevier
Science, 2000.

12. J. Morris, M. Satyanarayanan, M. Conner, J. Howard, D. Rosenthal and F. Smith. “Andrew: A distrib-
uted personal computing environment”, Communications of the ACM, 29(3):184-201, 1986.

13. William Gropp, et. Al., MPI – The Complete Reference, Volume 2, The MPI Extensions, The MIT Press,
Cambridge, MA 1999

14. William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2, Advanced Features of the Message-
Passing Interface, The MIT Press, Cambridge, MA 1999

15. James S. Plank, Micah Beck, Wael R. Elwasif, Terry Moore, Martin Swany, Rich Wolski “The Internet
Backplane Protocol: Storage in the Network”, NetStore99: The Network Storage Symposium, (Seattle,
WA, 1999)

[Notes to reviewers
Even though the paper is long we need to add results on multi-file check-pointing of user data as this is the most
common bottleneck we have found in real applications. I.e where the applications every Nth iteration dumps its
entire vector fields for either restart or visualization use.]

