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Abstract. Parallel IO (PIO) support for larger scale computing is becoming 
more important as application developers better understand its importance in 
reducing overall execution time by avoiding IO overheads. This situation has 
been made more critical as processor speed and overall system size has in-
creased at a far greater rate than sequential IO performance. Systems such as 
MPI_Connect and PACX-MPI allow multiple MPPs to be interconnected, 
complicating IO issues further. MPI_Connect implemented Parallel IO support 
for distributed applications in the MPI_Conn_IO package by transferring com-
plete sections of files to remote machines, supporting the case that all the ap-
plications and the file storage were completely distributed. This system had a 
number of performance drawbacks compared to the more common usage of 
metacomputing where some files and applications have an affinity to a home 
site and thus less data transfer is required. Here we present the new PACX-
MPI PIO system based initially on MPI_Connect IO, and attempt to demon-
strate multiple methods of handling MPI PIO that cover a greater number of 
possible usage scenarios. Given are some preliminary performance results as 
well as a comparison to other PIO grid systems such as the Asian Pacific 
GridFarm, and Globus gridFTP, GASS and RIO. 

1. Introduction 

Although MPI [13] is currently the de-facto standard system used to build high 
performance applications for both clusters and dedicated MPP systems, it is not with-
out some issues. Initially MPI was designed to allow for very high efficiency and 
thus performance on a number of early 1990s MPPs, that at the time had limited OS 
runtime support. This led to the current MPI-1 design of a static process model. 
While this model was possible to implement for MPP vendors, easy to program for, 
and more importantly something that could be agreed upon by a standards commit-
tee. During the late 90s a number of systems similar to MPI_Connect [1] and PACX-
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MPI [3] were developed that allowed multiple MPPs running MPI applications to be 
interconnected while allowing for internal MPP communications to take advantage 
of vendor tuned software rather than using a TCP socket based portable implementa-
tion only. 

While MPI_Connect and PACX-MPI solved some of the problems of executing 
application across multiple platforms they did not solve the problem of file distribu-
tion and collection or handling multiple specialized file subsystems. Initially this was 
not a problem as many parallel applications were developed from sequential versions 
and they continued to utilize sequential IO operations. In many cases only the root 
processor would perform IO. This state of affairs was compounded by the initial 
version of MPI not having any Parallel IO API calls, thus forcing users of Parallel IO 
to use non portable proprietary interfaces. The MPI-2 standard did however include 
some Parallel IO operations, which were quickly implemented by a number of ven-
dors. The work presented here is built on the MPI-2 Parallel IO interface and the 
appication supported are expected to use the MPI-2 Parallel IO interface to maintain 
portability.  

1.1 MPI-2 Parallel IO 

Parallel  I/O can be described as multiple access of multiple processes to the same, 
shared file. The goal of using parallel File I/O within MPI applications is to improve 
the performance of reading or writing data, since I/O is often a bottleneck, especially 
for applications, which are frequently check-pointing intermediate results. With the 
MPI-2 standard, an interface is designed which enables the portable writing of code, 
which makes use of parallel I/O.  

MPI–I/O provides routines for manipulating files and for accessing data. The rou-
tines for file manipulation include opening and closing files, as well as deleting and 
resizing files.  Most file manipulation routines have to provide as an argument an 
MPI communicator, thus these operations are collective. 

For reading or writing data, the user has several options. MPI-I/O gives the appli-
cation developer the possibility to work either with explicit offsets, with individual 
file pointers or with shared file pointers. The operations are implemented as blocking 
and non-blocking routines. Additionally, most routines are available in both collec-
tive and non-collective versions. Taking it all together, the user may choose between 
more than 28 routines, which fits best to his applications IO access pattern. 

1.2 MPI_Connect and MPI_Conn_IO 

 MPI_Connect is a software package that allows heterogeneous parallel applica-
tions running on different Massively Parallel Processors (MPPs) to interoperate and 
share data, thus creating Meta-applications. The software package is designed to 
support applications running under vendor MPI implementations and allow inter-
connection between these implementations by using the same MPI send and receive 
calls as developers already use within their own applications. This precludes users 
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from learning a new method for interoperating, as the syntax for sending data be-
tween applications is identical to what they already use. The support of vendor MPI 
implementations means that internal communications occur via the optimized ven-
dor versions and thus incur no performance degradation as opposed to using only 
TCP/IP, the only other option previously available. Unlike systems such as PACX-
MPI, each application maintains its own MPI_COMM_WORLD communicator, and 
this allows each application to connect and disconnect at will with other MPI appli-
cations as shown in figure 1. 

 
Fig 1. MPI_Connect overview 

 
The MPI_Conn_IO API was developed to support multi-site multi-application 

execution using shared files. The three primary requirements were to provide: 
(A) Local parallel file system access rates 
(B) Global single name space naming for all files 
(C) Single points of storage 
 

To provide (A) the system had to utilize the MPI-2 PIO API for file access. To pro-
vide (B) which is important for GRID applications where location independence is 
required to handle uncertainties caused by runtime scheduling, a dedicated nam-
ing/resolution service was created. (C) single point of storage is where the input and 
output files are stored in well known locations as known by the naming service so 
that users do not have to distribute their files at every location where an execution is  
possible. This required the use of dedicated file serving daemons. An overview of the 
MPI_Conn_IO system is given in figure 2. 

To allow applications the ability to handle this distributed access to Parallel IO the 
users had to add two additional library calls, one to gain access to the global/shared 
file and the other to release it. The call to access the file was one of two variations: 
(A) MPI_Conn_getfile(globalfname, localfname, outsize) 
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(B) MPI_Conn_getfile_view(globalfname, localfname, my_app, num_apps, dtype,         
outsize, comm) 
 

Both calls would access the naming/resolution service to locate the file server with 
the required file. Variant (A) would then copy the complete file onto all the systems 
in the MPI_Connect system. The individual applications themselves would then have 
to handle the portioning of the file so that they each accessed the correct sections of 
data. In variant (B) the call is a combination of opening a file and setting the access 
pattern in the terms of access derived data types and relative numbers of nodes in 
each part of the MetaApplication. This allows the file daemons to partition the files 
at  the source so that file distribution and transmission costs are reduced. For exam-
ple, if two applications of sizes 96 and 32 nodes opened the same file with the first 
setting my_app=0, num_apps=2 and dtype to MPI_DOUBLE, and the second opened 
the file with my_app=1, num_apps=2 and dtype = MPI_DOUBLE then the file 
would get stripped between the two sites. The first site would get the first 96 doubles 
with the second site getting then next 32 doubles and so on. The files on the local 
Parallel IO subsystems would be named by the user supplied localfname parameter. 

Once the file has been globally opened it can then be opened via the standard 
MPI-2 Parallel IO call MPI_File_open (com, localfname, mode, info, fhandle). 

After the application has finished with the file, the application needs to release its 
references to the global version of the file via the MPI_Conn_releasefile API call. If 
the file was created or modified locally its globally stored version would be updated 
by this call. 

To further reduce the time it takes to transfer a file, the TCP/IP routing of the files 
contents can be explicitly controlled by store and forwarding through a number of 
IBP [15] network caches at various locations throughout the network. This scheme is 
used to avoid known network bottlenecks at peak times. 

 
Fig 2. MPI_Conn_IO overview 
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1.2 PACX-MPI 

PACX-MPI is an implementation of the MPI standard optimized for clustered wide-
area systems. The concept of PACX-MPI relies on three major ideas: First, in clus-
tered systems, the library has to deal with two different levels of quality of communi-
cation. Therefore, PACX-MPI uses two completely independent layers to handle 
operations on both communication subsystems. Second, for communication between 
processes on the same machine, the library makes use of the vendor-MPI, since this 
allows it to fully exploit the capacity of the underlying communication subsystem in 
a portable manner. And third, for communication between processes on different 
machines, PACX-MPI introduces two communication daemons. These daemons 
allow buffering and packing of multiple wide area communications as well as han-
dling security issues centrally. 
 

 
 

Fig 3.  Concept of PACX-MPI 

2. Distributed and Grid Parallel IO issues 

The requirements and implementation issues of Distributed and Grid based file sys-
tems overlap heavily. Although the topic is very complex and broad it can be simpli-
fied to a number of key issues. 

Distributed File Systems (DFS) such as AFS [12] primarily focus on performance 
through mechanisms such as caching, and specialized file locking techniques at the 
OS layer and are typically aimed at supporting sequential (POSIX style) access pat-
terns across a wide area network rather than an unreliable global one. They assume 
that restrictions such as single user IDs and a single coherent file name space. 

Grid based tools are primarily aimed at simplified transmission of file data, where 
the actual data IO is done locally from some temporary storage location. Here the 
issues become those of single point authentication, efficient handling of different 
backend file services, mapping of multiple user Ids, and handling the naming and 
resolution of multiple replicated copies of data [6][11]. The replicated issue becom-
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ing more important as more systems utilize caching and pre-staging of data to reduce 
access latencies to remote storage. Systems such as gridFTP and Global Access to 
Secondary Storage (GASS) [8] exemplify this. GridFTP provides an FTP abstraction 
that hides multiple access, transmission and authentication methods, and GASS 
which provides a simple POSIX file IO style API for accessing remote data using 
URL naming. GASS then utilizes local caching to improve repeated IO access rates. 
One advantage of GASS over AFS is that the caching is user configurable via an 
exposed cache management API. 

PACX-MPI PIO aims to support functionality in-between these two levels and is 
very close to systems such as RIO [9], Stampi [4] and the Grid Data Farm [10]. RIO 
was aimed at supporting MPI Parallel IO access patterns via a server client model. 
Unlike traditional server client models, the clients are parallel applications and the 
servers can directly access multiple parallel IO file servers, thus ensuring that per-
formance of the parallel file system was passed onto the client side. The implementa-
tion contained forwarder nodes on the client side that translate local IO access re-
quests and pass these via the network to the server side which then accesses the real 
file servers in parallel. The Grid Data Farm is a Petascale data-intensive computing 
project initiated in Japan as part of the Asian Pacific Grid. In common with RIO it 
has specialized file server daemons (known as gfsd’s) but it supports a specialized 
API that uses a RPC mechanism much like that of NFS for actual file access by re-
mote processes. This was needed as it did not directly support the MPI API. An in-
teresting feature of the system is that the file server nodes can also perform computa-
tion as well as IO, in which case they attempt to process only on local data, rather 
than more expensive to access remote data. 

MPI_Conn_IO is equivalent to a mix of GASS and RIO. It has additional calls to 
access remote files, which in effect are pre-staging calls that cache the complete 
requested data fully onto a local Parallel File System via MPI-IO operations. It has 
special file handling daemons like the RIO server processes, although it does not 
support their on demand access operation. 

The target implementation of PACX-MPI is hoped to be a system that allows for a 
mode of operation anywhere between the GASS/MPI_Conn_IO fully cached method 
and the RIO on demand method. The authors believe that there are many different 
styles of access pattern to file data within parallel and meta/grid applications and 
that only by supporting a range of methods can reasonable performance be obtained 
for a wide range of applications [2]. 

 

3. PACX-MPI PIO aims 

The current aims of PACX-MPI-PIO are: 
(A) Support a single MPI-2 Parallel IO file view across any MPI communicator 

(assuming it is distributed across multiple MPPs) 
(B) Allow access to files via the MPI-2 API using the efficient vendor supplied 

Parallel IO libraries where possible 



Lecture Notes in Computer Science      7 

(C) Do not force the application developer to use any additional API calls unless 
they are in the form of performance hints 

(D) Reduce any file management to a minimum 
(E) Support a number of caching and transmission operations 
 

As PACX allows communicators (A) to be across multiple machines the IO layer has 
to move file data between sites automatically if they are to support reduced file man-
agement (D). A consequence of (D) is that one of the execution sites is considered 
the ‘home’ site where the data files will reside but we will not restrict all files to be 
at the same home site. Allowing PACX-MPI-PIO to work without forcing the use of 
any additional calls (unlike MPI_Conn_IO) requires the MPI-2 file PIO calls to be 
profiled using the MPI profiling interface so that the file movement is hidden from 
the users application. (B) forces the profiled library to call the MPI-2 PIO API di-
rectly. (C) and (E) mean that any application level requests to change the system 
transfer options and caching methods should be in the form of MPI attributes calls, 
or even compile time flags. 

To simplify initial development a number of restrictions are placed on the user 
applications use of the MPI Parallel IO API. Firstly, the applications open files for 
reading, writing or appending, but not for mixed read and write operations. Secondly 
once a file has been opened, it can set its file view but not modify this file view with-
out reopening the file. This restriction maybe removed in a future version if there is a 
need, but currently the authors have not found any application that need this func-
tionality. Lastly, shared file pointers between multiple MPPs are not supported. 

3.1 PACX-MPI PIO file manipulation and transmission modes  

Manipulation of files and transmission of file data can be broken into a number of 
issues. 

(A) Naming. As the target files exist at one of the execution sites, the need for 
any global naming scheme is negated and the local names can be used in-
stead.  The requirement is that users specify which site is the home site to 
the PACX system. This can be done via an entry in the PACX host file, or 
over ridden by an MPI attribute call. Any data stored in a cache at another 
site uses a one time temporary name. 

(B) Caching of data. Is the complete file replicated across all MPPs, or just sec-
tions of it. Is the data stored on the local PIO system or purely in memory. 

(C) Who does the remote access? Are additional daemons required or can the 
PACX communication daemons do the work.  

 
The initial test implementation of PACX-MPI PIO only supports two modes of 

remote file access with various options: 
1. Direct access 
2. Proxy access 
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3.2 PACX-MPI PIO Direct access 

Direct access is where the data on the remote (i.e. non home) site is stored on the 
PIO system as a data file on disk and the MPI-2 PIO application calls translate di-
rectly to MPI-2 PIO library calls. This is just the same as the original MPI_Conn_IO 
library, except there is not a specialized File server and thus less data needs to be 
transferred, and there are no API changes or global names needed.  

In this mode of operation, when the applications make the collective 
MPI_File_set_view call, the local (home site) application reads the file data in via 
parallel MPI IO calls, and then sends the data via the communications daemons to 
the remote nodes, which then write the data via the MPI IO calls to their local tem-
porary parallel files. The applications can then proceed as normal handling the data 
with the profiled MPI Parallel IO API calls. The use of MPI IO calls to store the data 
is important as the authors have found that on some systems such as the Cray T3E, 
the data is not automatically stripped if just a single processes writes it out and thus 
performance drops to that of a single disk for IO access. 

 
The data storage and access at the remote sites can be in one of three forms: 

1. Complete File Copy (CFC). In this mode all sites have an identical copy 
of the complete file. This is useful for small files where the cost of mov-
ing all or part of the file is negligible compared to the overall execution 
time. It is also useful for supporting multiple changes to the file view 
during a single application run. This mode of distribution is show in 
figure 4. 

2. Partial File Copy (PFC) with full extent. This is where only the data 
needed on each of the distributed systems is copied to them. This re-
duced the amount of data to be copied. The file is stored with the same 
extent as the original copy, i.e. it is sparse storage. This mode is useful 
as it does not require any remote file view translation allowing for mul-
tiple file view support. The only disadvantage is that it requires the 
same amount of storage at each site as the original file which maybe 
considerable. An example of this is shown in figure 5. 

3. Partial File Copy (PFC) with compacted storage. This is the same as 
above except that the storage is compacted so that no gaps in the remote 
files exist as shown in figure 6. This has three consequences. The first 
is the file uses much less space. The second is that it requires all the file 
view API calls on the remote machines to be translated so that they cor-
rectly address the new data layout. This translation is automatic and 
only performed once. The third consequence is multiple file views are 
not supportable, and that the temporary file would have to be com-
pletely rebuilt each time the file view was changed. 
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Fig 4. File view for data stripping on MPPs with complete data files 

 
Fig 5. File view for stripping of data across two MPPs with full file extent. 
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Fig 6. File view for stripping data across two MPPs with compacted file storage (reduced 

extent) 

3.3 PACX-MPI PIO Proxy access 

Proxy access is when the file data only exists on the home/local site and all other 
applications pass their IO access requests to the primary application, which then 
performs the accesses on their behalf. The overall structure is similar to RIO and the 
Data Grid Farm as shown in figure 7. Due to its nature it is known as On Demand 
Access (ODA) as IO calls are made dynamically as demanded by remote processes, 
or Cached as the remote system reads and writes data from a memory buffer in the 
form of a message queue. The number and size of pending IO accesses can be varied 
dynamically. Another feature is that pre-fetching of read requests can be performed 
as the file view is known in advance, which leads to more efficient latency hiding.  

A number of issues exist which effect overall performance. Firstly, the local appli-
cation has to perform all the IO operations which can reduce the level of parallelism 
within the Parallel IO subsystem. Secondly the amount of intersystem communica-
tion dramatically increases, and even with pre-catching, intersystem bandwidth be-
come a dominating factor. 
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Fig 7. Proxy, On Demand Access (ODA) cached access structure. 

4. PACX-MPI IO experiments 

Initial experiments were conducted on a Cray T3E-900 with 512 nodes at the Uni-
versity of Stuttgart. Unfortunately the version of MPI-2 PIO installed was based on a 
version ROMIO that utilized only the POSIX file IO calls and thus the raw PIO 
performance was poor [5]. 

We ran several different classes of experiment to characterize the IO subsystem: 
(A) Basic Parallel IO benchmarks using only collective blocking calls 

(MPI_Read/Write_ALL). 
(B) Partition to partition TCP performance (to test interconnection speeds) 
(C) Single machine, single partition tests 
(D) Single machine, multiple partition tests (each partition runs a separately 

initiated MPI application under PACX-MPI) with a single coherent file 
view across the whole PACX-MPI job. 

 
Out of the different caching, file transfer and storage methods described in section 3 
we present only the partial file copy (PFC) with compacted storage (modified file 
view) and (ODA) on-demand access (system cached) for the distributed multiple 
MPI application cases as these best represent the current issues in a final implemen-
tation. These are compared against the single application in terms of both aggregate 
IO bandwidth and application execution time. 

The data files used were all over 150 Mbytes to avoid multi-level system caching 
effects, and from previous experience with real CFD applications [2] we varied the 
granularity of individual node IO accesses from small/fine, i.e. 100 doubles per node 
per access to very large/course, i.e. 100,000 doubles per node per IO access. 
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Figure 8 shows the aggregate IO bandwidths for accessing a large (150+ Mbyte) 
using the MPI-2 parallel IO API using a total of 32 nodes. 

The first line is for reading on a single partition with 32 nodes and peaks at 
around 25 MB/Second. The second line shows the write bandwidth which is much 
lower with a peak of only 10.5 MB/Second. The third line shows the bandwidth of 
accessing the file with two separate 16 node partitions using the PFC method. This 
method includes all file transfers and its performance is dominated by the slow paral-
lel file write IO operations. The forth line shows twice the interconnection band-
width. This is show as it is the limit for file transfers. (Twice is shown as we are 
utilizing the compacted file view so only half the file is transferred and we are meas-
uring the aggregate bandwidth being sum of all individual node bandwidths). 

The forth line shows the on demand access (ODA/cached) method which per-
forms much better than the PFC method at around 10.5 MB/Second for large ac-
cesses. As the IO performance goes up the effects of interconnection will dominate 
this method. The effects of latency for this method, can be hidden by increasing the 
pre-fetch buffer size. This technique becomes infeasible for course grain accesses on 
larger numbers of nodes due to memory constraints.  

Figure 9 shows the single application single partition version compared to PFC 
and ODA/cached methods in terms of time rather than bandwidth for different 
granularities of access.  Here the degradation in performance of using the PFC ver-
sion is more apparent especially for smaller accesses, although the ODA version 
appears to perform remarkably well. 

 
 

 
 

Fig 8. Aggregate Bandwidth of different method as a function of access granularity 
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Fig 9. Overall application IO times for various access methods. 

5. Conclusions and future work 

The PACX-MPI PIO initial implementation appears to be a good vehicle to experi-
ment with various caching, data access and storage mechanisms while supporting the 
portable use of the MPI-2 Parallel IO API. The PIO system is transparent in use and 
requires no code changes from that of a standalone application even when executing 
transparently on multiple MPPs. The system also utilizes the concept of a home site 
for the storage of files, which reduces the work load of the application users as they 
no-longer have to handle file staging manually when performing multi-site applica-
tion runs.  

Currently future work is aimed at automatically improving performance, espe-
cially for the class of applications that perform regular user directed check-pointing.  
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[Notes to reviewers 
Even though the paper is long we need to add results on multi-file check-pointing of user data as this is the most 
common bottleneck we have found in real applications. I.e where the applications every Nth iteration dumps its 
entire vector fields for either restart or visualization use.] 


