
Parallel I/O for EQM Applications

David Cronk, Graham Fagg+, and Shirley Moore
Computer Science Department

University of Tennessee, Knoxville

As processing speeds increase, I/O is becoming a bottleneck for certain classes
of applications. This is particularly true for applications that perform
frequent check-pointing or frequently write out intermediate results.
Traditional approaches to I/O typically result in poor performance. MPI-I/O
simplifies programming and potentially improves performance by allowing the
programmer to make a single I/O call to access non-contiguous memory or file
data, and by striping files and/or by marshaling values to combine many small
reads/writes into a few large read/writes.

This paper introduces parallel I/O with an emphasis on MPI-I/O. Two production-
level EQM codes, which are experiencing I/O bottlenecks, are then presented.
Solutions for reducing the bottleneck through the use of parallel I/O via the
MPI-I/O interface are presented, along with a performance evaluation of these
proposed solutions.

1. INTRODUCTION

“The speed, memory size, and disk capacity of parallel computers
continue to grow rapidly, but the rate at which disk drives can
read and write data is improving much more slowly” [1]. This is
a simple, yet very important, observation. This problem is
exacerbated by the fact that most users of parallel computers have
little or no inclination to learn the intricacies of I/O
optimization. Traditional approaches to I/O do not provide the
performance needed for the problem sizes that can now be handled
by today’s high performance computers. This is resulting in
applications whose size has traditionally been limited by the time
needed to compute solutions now being limited by the time needed
to read data or write results out to disk.

Storage devices perform best when they transfer large, contiguous
blocks of data. This is referred to as coarse-grained access.
Unfortunately, many scientific applications have fine-grained data
access patterns, causing the I/O to perform many small reads or
writes rather than a few large reads or writes. Fewer larger
reads or writes would perform better.

+ Project Principle Investigator. Email address: fagg@cs.utk.edu

 2

As an example, consider a scientific application that needs to
write a two dimensional array to disk. Further, assume the two
dimensional array in memory has a layer of ghost cells around the
block of data (see figure 1). This results in the data to be

written to disk not being stored in a contiguous block of data,
and thus each column (assuming column major storage) must be
written separately. To make the problem worse, most scientific
code is written in Fortran and many scientists would write this
data using an implied do loop, essentially causing each data
element to be written separately. The most efficient way to write
this data would most likely be to marshal all the data into a
contiguous output buffer, and then perform a single, direct, write
to disk. Why don’t more scientists use this method? Simply
because they are doing it the way it has always been done. Many
scientists simply accept that they will not get good performance
for I/O and don’t look for even simple methods to improve the I/O
performance. This problem gets even worse if it is running in
parallel and the block of data is a sub-section of a larger two
dimensional array stored on disk (see figure 2). In this
situation the solution proposed above will not work because the
data being accessed on disk is not stored contiguously.

This type of problem is commonly handled in one of three different
ways. One solution is to for each process to write its data to a
process specific file. Then, once the computation is complete, a
post-processing step is needed, where a single process reads each
process specific file and handles the data appropriately. Another
common solution involves each process sending its data to a master
process. This master process then organizes the data
appropriately and writes it out to disk. A third common solution
is for each process to use direct file access and write the data
to the output file directly. While the first two solutions

 3

clearly provide no parallelism, the third solution at least has
the appearance of parallelism. In practice, however, the third
solution typically provides poor performance. This is due to a
couple of factors. One factor is the data typically are accessed
in small blocks, and as discussed above, the best performance is
attained when data is accessed in large blocks. A more important
factor, however, is that the user typically is not using a
parallel file system (NSF if the most common one used) and thus
even though the requests are made in parallel, the file system
serializes the requests.

This is a simple example using a very simple data access pattern.
However, it is instructive in demonstrating the problems that may
arise when performing I/O during a parallel computation. Access
patterns vary greatly across different scientific applications.
Further, new high performance architectures are introduced
regularly, and each may have very different I/O system
characteristics [1]. This would mean that a scientist wanting
good I/O performance would be required to learn the I/O system of
every architecture on which his code might run. The alternative
is the use of a standard interface that is portable across many
architectures. The use of such a standard interface may simplify
coding by reducing the number of I/O calls required, and by
allowing the user to become familiar with a simple interface.
Further, a standard interface allows simple access to libraries
that are optimized for particular architectures, maximizing the
chance of significantly improved performance.

The rest of this paper is organized as follows: Section 2 presents
an overview of parallel I/O and an introduction to the MPI-I/O
interface. Section 3 presents experiences with real life
applications followed by conclusions and future work in Section 4.

2. PARALLEL I/O

Parallel I/O can be simply described as multiple processes
requesting concurrent access to a single, shared file. Often
these processes are accessing non-contiguous data (both as stored
in memory and as stored on disk) and users wish to make as few I/O
calls as possible. In order to perform parallel I/O, there must
first be a parallel file system to provide parallel file access.

 4

The first thing that is required in order to be able to supply
parallel file access is multiple disks. By having multiple disks,
each with its own I/O node, different processes can have file
access at the same time. However, if a file is still stored on a
single disk, concurrent access to the file by different processes
is still not possible. What a parallel file system may provide is
the ability to stripe files across multiple disks. That is, a
single file is actually stored in blocks, which span multiple
disks. This provides the ability to grant different processes
true parallel access to the same file (provided each process is
accessing parts of the file stored on different disks).

Once a parallel file system is in place, parallel I/O is possible.
More important for the purpose of this paper, it is possible to
provide a parallel I/O library to the user. This library should
present a simple interface and perform optimizations that lead to
improved performance. There are a number of optimizations that a
parallel I/O library may be able to make. In order to perform the
best optimizations, the library may need some help. This help is
often supplied by hints provided by the user. These hints may
include such things an suggested striping factors (number of disks
used to store a file), striping depth (size of blocks of data
stored in round robin fashion on each disk), or other suggestions
made to the library. These may be used for better optimization.
One such optimization involves marshaling many small non-
contiguous I/O requests into a single, larger, contiguous I/O
request. As discussed in Section 1, storage devices perform best
when they transfer large, contiguous blocks of data. Another
potential optimization involves buffering. If there are separate
I/O nodes, computation and I/O can be overlapped by the I/O
library buffering output and returning control to the calling
process. This allows the I/O node to complete writing the output
to disk while the process continues to perform computations.

While these optimizations (as well as others) may provide improved
performance, they also introduce additional issues in terms of
file consistency and semantics. These issues may have profound
effects on the correctness of some classes of parallel
applications. These issues will be discussed in more detail in
specific reference to how they manifest themselves in the MPI-I/O
interface.

 5

2.1 MPI-I/O

MPI-I/O is part of the MPI-2 standard, which is a set of
extensions to the original MPI standard. It is important to note
that MPI is nothing more than an interface specification. That
is, it specifies the syntax and semantics of the various MPI
routines, but is does not include any specification of how these
routines should be implemented. This means different MPI
implementations may be very different in terms of performance.
This will be pointed out repeatedly in the following sections as
the potential benefits of different features are discussed.

MPI-I/O provides routines for manipulating files and for accessing
data. The hope is that MPI-I/O will become the standard for
performing parallel I/O. It is already making inroads towards
that goal as more and more vendors are providing efficient
implementations of the MP-I/O interface. This allows programs
that use MPI-I/O to be portable across a large number of
architectures.

2.1.1 File Manipulation

MPI-I/O provides several routines for file manipulation. These
include routines for deleting files, resizing files, and querying
for file information. The most basic routines, however, are for
simply opening and closing files.

When a user opens a file using MPI, a communicator must be
supplied. This communicator defines the group of processes
involved in accessing the file. Opening a file is a collective
operation, which means all the processes in the group must open
the file. One of the parameters provided to the open call is a
mode for opening the file, which must be the same at all
processes. These modes are similar to the standard file modes.
If the create mode is included, the file will be created if it
does not already exist. When a file is opened, the user may pass
hints to the library via a parameter called info. Info may be
used to give the library information such as file access patterns.
The library need not use hints and different implementations will
support different hints. The only requirement is that unused
hints are ignored. This allows for portability between MPI
implementations.

Closing a file in MPI is also a collective routine. This means
that all the processes involved in opening the file must close the

 6

file. Like many collective routines in MPI, closing a file is not
synchronizing. This means that by closing a file, a process has
no information regarding the state of other processes. The other
processes may or may not have closed the file. While closing a
file is not synchronizing in terms of other processes, it is
locally synchronizing. As mentioned previously, MPI has the
option of buffering output before writing it to disk. This means
that just because a write operation has completed, there is no
knowledge as to whether the data has been written to disk. When
closing a file is described as locally synchronizing, this means
that closing a file forces any buffered data from the closing
process has been flushed to the disk. Again, this says nothing
about other processes, only the local process. Other processes
may still have output data buffered.

2.1.2 Derived Datatypes

Though derived datatypes are part of the original MPI standard
rather than MPI-2, they are used extensively with MPI-I/O. For
that reason a brief discussion is included here.

Derived datatypes are used for I/O both for defining the data
layout in memory as well as the data layout in the file. When a
datatype defines the data layout in a file, it is typically
referred to as a filetype. It is important, however, to realize
that a filetype is simply a derived datatype, just like any other
derived datatype. It has no special meaning until it is used to
set a file view. This will be discussed in Section 2.1.2.1.

As an example of why one would want to use a derived datatype to
access memory when doing I/O, refer back to Figure 1. Suppose the
user wants to write just the resident (non-ghost) cells to disk.
Using Unix style I/O, the user would need to make separate I/O
calls for each column (assuming column major ordering). However,
by using derived datatypes, the user can define the memory access
such that a single element represents just the resident cells.
This would be done with a call to MPI_TYPE_SUBARRAY. By providing
the starting points and size of the resident subarray, the user
can define the type and subsequently write the entire subarray
with a single MPI-I/O call. As will be seen in the following
section, even if the data are not being stored on disk in a
contiguous block of storage, the user need only make a single I/O
call. The ways this can improve performance will be covered in
2.1.3. Derived datatypes for accessing memory in I/O are used the
same way as they are for message passing.

 7

2.1.2.1 FILE VIEWS

A file view in MPI defines how a process sees a file. That is, it
defines which portions of the file are visible to the process [2].
A process may only read from and write to those portions of the
file visible, as defined by the view of the file. In fact, when
reading (or writing), the parts of the file that are not visible
to the process are automatically skipped. File views are created
by first creating a derived datatype that defines how the process
sees the file. This derived datatype is then used in a call to
MPI_FILE_SET_VIEW. Following the call that sets the view, the
process accesses the file as if this view represented the entire
file. Additionally, views are set with a datatype that represents
the elementary element types stored in the files. This is the
smallest element that may be read from or written to the file.
For example, if this type is an integer, then individual bytes can
not be accessed in the file.

Returning to Figure 2, it is now possible to access the file with
a single I/O call. First a datatype must be defined that
represents the process’ view of the file. This can once again be
done as a subarray. By defining a subarray that represents just
the shaded area of the larger array, the view has been defined.
This datatype is then used as part of the call to set the view.
Once this is done, the process can only access the shaded area of
the file. There are several ways that this file can be accessed.
The user may simply read single elements from the file. MPI will
skip the non-shaded portions of the file automatically.
Alternately, the user may access the shaded portion one column at
a time. The difference from the way this would have been done
with Unix style I/O is that the user need not calculate where each
column resides in the file. Setting the view has done this.
After reading the first column, MPI automatically adjusts the file
pointer to skip the rest of the column and point to the start of
the next column. A third, and possible most efficient, way to
access this data is to use both derived datatypes discussed above.
A single element defined to represent the memory portion of Figure
2 can be read from the file. Since the datatype defined for the
left side of Figure 2 tells MPI how to store the data inside the
ghost cells, the user only needs to use a single element of this
type with the file view discussed here. This will cause a read
operation to read just the shaded area from the file and store it
in just the shaded area of the memory. This not only makes the
code easier to write and maintain, but as will be seen in Section
2.1.3, may lead to greatly improved performance.

 8

There are a number of common file access patterns that can be
supported in this same way. Some examples include block-cyclic
data distribution (use MPI_TYPE_VECTOR to define the file view)
and even irregularly distributed arrays. By using a variety of
datatype constructors, a user should be able to define about any
memory and file layout. This should allow the user to access non-
contiguous data in an easily recognized and straightforward
manner.

2.1.3 DATA ACCESS

There are three aspects to data access: Positioning, synchronism,
and coordination [3]. Figure 3 represents these three aspects.

Positioning. MPI provides three types of routines in regards to positioning:
explicit offsets, individual file pointers, and shared file pointers.

Explicit offset operations perform data access at the specific location given
directly as an argument passed into the routine. These calls do not update any
file pointers. These accesses are in relation to the file view discussed in
Section 2.1.2.1 and the offsets are in terms of the elementary datatype used
when setting the view.

For each process, MPI maintains two file pointers for each open file. One of
these file pointers is the individual file pointer. This is unique to each
process and updates to it in one process do not affect the individual file
pointers in other processes. One can liken individual file pointers to file
pointers used in Unix style I/O. Individual file pointer operations access the
file according to the implicit offset provided by the calling process’

 9

individual file pointer. The calling process’ individual file pointer is
updated accordingly upon completion of the operation.

MPI also maintains a shared file pointer for each open file. This pointer (as
its name suggests) is shared between all processes. Shared file pointer
operations access the file according to the implicit offset provided by the
shared file pointer. The calling process’ individual file pointer is neither
used nor updated. Upon completion of the operation, the shared file pointer is
updated, with this update being reflected at all processes that were part of
opening the file.

Synchronism. Synchronism in MPI has nothing to do with other processes, but
rather the ability to use data buffers involved in an operation. It is
important to keep this in mind. MPI-I/O offers both blocking and non-blocking
I/O routines. Non-blocking operations return immediately. It is not safe to
reuse user buffers until the non-blocking operation has been completed with a
test or a wait, just like non-blocking communication. Blocking routines do not
return until a user buffer can be safely re-used. In terms of reads, this means
the data has been read and is available in the user buffer. Blocking operations
performing writes to files do not return until the data has been copied out of
the user buffer. It is important to point out here that this does not mean the
data has actually been written to disk when a blocking write returns or a non-
blocking write is completed (with a test or wait). MPI is free to copy the data
to a buffer and write it out to disk at a later time. In fact, this method is
often used for optimization. The user must make no assumptions about data
availability simply because a write operation has completed. This is similar to
the completion of a blocking send in MPI giving no information about whether the
message has been received. Methods for assuring data have been written to disk
will be discussed in Section 2.1.5.

Coordination. MPI offers both collective and non-collective I/O routines.
Non-collective operation depend on no other processes and work how one would
expect them to work. Collective routines, on the other hand, require the
coordination of all the processes that opened the file. While these routines
are collective, they are not synchronizing. Even if a process has completed a
collective I/O call, no information is known about the status of the other
processes.

MPI provides a complete combination of these different data access
aspects. That is, each data access routine relating to
positioning (explicit offset, individual file pointers, shared
file pointers) has both a blocking and a non-blocking version.
Further, each of these routines (explicit offset – blocking,
explicit offset – non-blocking, etc) has both a non-collective and
a collective version. It should be noted that non-blocking
collective routines are referred to as split-collectives and
require both a start call and a finish call.

The semantics of data access in MPI are fairly loose. This gives
implementers a lot of leeway for the purpose of performance
optimization. There are two primary ways improved performance is
achieved. The first is through buffering. Buffering data that is
to be written to disk offers two ways to optimize. One way is to

 10

keep the data in a buffer in case subsequent writes allow the
library to marshal data into contiguous blocks of storage data.
As has been mentioned, storage devices perform best with large,
contiguous blocks of data. Another way buffering can improve
performance is by hiding the time needed to perform I/O. If there
are dedicated I/O nodes, buffering can allow these I/O nodes to
perform I/O while the compute nodes are busy continuing with the
computation.

One of the most important ways performance can be improved is
through collective operations. By using collective routines, the
user is letting the library know that all the processes are going
to be performing I/O at about the same time. The library can use
this knowledge to better marshal data. Returning to Figure 2, if
the library knows that all four process are going to write to disk
(and this constitutes the entire file) it can marshal all the data
into a single output buffer and make a single write to disk.
Without this knowledge it would most likely write each process’
data column by column, making many more disk access than
necessary.

As mentioned previously, buffering can cause difficulties in terms
of file consistency between processes. These issues will be
covered in more detail in Section 2.1.5.

2.1.4 FILE INTEROPERABILITY

MPI says nothing about how routines should be implemented. This
extends to files created through MPI-I/O. MPI says nothing about
how these files should be stored. Files may be stored as ordinary
files, compressed, stripped across a disk array, or some other
way. The only constraint MPI places on file format is that if the
file is not stored as a linear sequence of bytes (like a typical
file), then there must be a utility provided for converting the
file to a linear sequence of bytes, as well as utilities for
common file operations such as copying and deleting. This ensures
that any non-MPI program will be able to read the file, though it
may first need to be converted [2].

Some users may wish to create files on one architecture and then
be able to read them on another architecture. This is generally
not possible due to different data representations on different
architectures. In order to do this there must be some sort of
data conversion. This is supported by MPI. When a process sets a
file view, it specifies if the data representation is to be
native, internal, or external32.

 11

When native representation is used, the data are stored in the
file exactly as they are in memory. This means that files created
with this representation cannot be read on a different
architecture. This file can be read by programs using the same
MPI implementation on the same architecture. There is no
guarantee it can be read using other MPI implementations because
the file structure may be different. This is a non-portable
representation, but typically provides the best performance.

The internal representation provides some degree of portability.
The implementation may store the data in any format it chooses and
will perform type conversions if necessary. The environment in
which the file can be re-used will be implementation dependent and
must be documented [3]. A particular MPI implementation may use a
data representation that allows the file to be read on any
architecture using the same MPI.

The external32 representation causes the data to be stored in a
specific data format as defined by MPI. This format is basically
IEEE big-endian format. This ensures that a file written with
this data representation can be read by any MPI implementation on
any architecture. This is, of course, assuming external32 format
is supported by the MPI implementation being used. Since data
conversion is being performed, there may be a loss of data
precision and poorer performance can be expected.

2.1.5 CONSISTENCY SEMANTICS

As discussed previously, there are many instances where buffering
data can improve performance. This is particularly true with
regards to writing data to disk. Because of this possible
buffering, file consistency becomes an issue. One must remember
that just because a write operation has completed, there is no
guarantee the data are actually written to disk and available to
other processes. Keep in mind also that collective routines are
not synchronizing.

Consistency is only an issue if multiple processes are accessing
the same file and at least one of the processes is writing to the
file. Further, if no two processes access the same location in
the file, consistency is maintained. Therefore, consistency
semantics are of interest when multiple processes access the same
location of the same file, with at least one process writing to
the file.

 12

Generally, there is only one way for a process to be guaranteed
access to data written by another process. The reading process
must be sure the writing process has completed writing the data
and some file synchronization has been performed. There are three
methods to ensure file synchronization: MPI_FILE_SET_ATOMICITY,
MPI_FILE_SYNCH, and closing a file. These are all collective
operations and a process should complete the operation and know
the other processes have completed the operation to be guaranteed
consistency.

MPI_FILE_SET_ATOMICITY is a collective operation that ensures all
subsequent writes cause the data to be flushed to disk. This
means, if atomicity is true, once a process has returned from a
blocking write (or completed a non-blocking write) the written
data have been transferred to disk and are available to other
processes. Although this is a collective operation, it is not
synchronizing.

MPI_FILE_SYNCH is a collective operation that acts much like a
flush. A synch call causes any buffered output data to be written
to disk. Since it is collective, all processes must call it and
this insures data written by other processes are accessible.
Although this is a collective operation, it is not synchronizing.

Closing a file is a collective operation that acts much like a
synch, except it causes the file to be closed. That is, it causes
all buffered data to be written to disk before the file is closed.
Thus, if a process closes a file and knows another process has
closed the file, it also knows it can access all the data written
by said process. Although this is a collective operation, it is
not synchronizing.

It is important to remember these are all collective operations
and they must be used appropriately. Knowing another process has
called one of these routines is not enough to ensure consistency.
The reading process must have called the synchronizing routine as
well. This is because MPI can buffer input data as well as output
data. MPI may pre-fetch data from the disk. If the data on disk
change after the pre-fetch, a subsequent read will get the out-of-
date data unless the consistency semantics have been followed.

3. APPLICATIONS

This section presents two EQM (Environmental Quality Modeling)
applications that have been suffering from I/O bottlenecks. The
I/O characteristics of the code as well as the original approach

 13

to I/O are explained. This is followed by a description of the
approach taken for converting the existing I/O to MPI-I/O as well
as a discussion of performance results where available.

3.1 LBMPI

LBMPI is a Contaminant Dispersion model EQM challenge code being
used by Robert Maier at the Army HPC Research Center. The code
performs computation using what are conceptually four 3-
dimensional arrays. In practice, however, the four 3-dimensional
arrays are stored as a single 4-dimensiona array. This is done to
achieve a better cache-hit ratio. Each of the 3-dimensional
arrays consists of interior resident cells as well as a layer of
ghost cells. The application uses a block-block data
distribution. This code is experiencing a severe I/O bottleneck.
Running on an IBM SP2 using 512 processors, a typical run requires
approximately 12 hours of compute time and an additional 12 hours
of I/O time.

3.1.1 I/O CHARACTERISTICS

This code writes each of the conceptual 3-dimensional arrays out
to a separate file. The result is four global files that each
contains the appropriate data from all the processes. The
resulting files store the data in their natural order. That is,
the data are written the same regardless of the number of
processes.

The code uses Fortran’s column major ordering with the first
dimension being the number of conceptual 3-dimensional arrays
(four in this case). This results in no two adjacent values in
one of the 3-dimensional arrays being stored in adjacent memory
locations. Thus the 3-dimensional arrays that need to be written
are not stored in contiguous memory, and no two elements stored in
adjacent memory locations. Furthermore, since a block-block data
distribution is used, the data from a particular process is not
stored in a contiguous block on disk. Each column from the 3-
dimensional array is stored in a contiguous block on disk, but
adjacent columns are not.

3.1.2 INITIAL SOLUTION

The original solution attempted to get parallel performance using
standard Unix style I/O calls. When data was to be written to
disk, each process would open the output file. Once the file was

 14

opened each process would calculate where in the file its data
were to be stored. Each process then wrote the data directly to
the calculated offset using a standard “write” call. A nested do
loop was used to loop through every column in the 3-dimensional
array, and an implied do loop was used to write each element of
the column. As was mentioned above, the column elements are not
stored contiguously in memory, so it was impossible to write each
column out as a single block of data.

Although each process can make these calls concurrently, the
application was not using a parallel file system. Thus the I/O
calls were serialized, resulting in no real parallelism.
Furthermore, since the data were stored non-contiguously in memory
and no marshaling of data was used, performance was poor.

A final note on the original solution relates to convention. The
output is written to four separate files because it has always
been done this way. Since the data are stored in a single 4-
dimensional array, it would possibly be more efficient to write
the data to a single output file. This would allow contiguously
stored blocks of memory to be written to disk.

3.1.3 MPI-I/O SOLUTION

There are two issues here that can be addressed through MPI.
These are the memory access and the file access. In both cases
the application is accessing a portion of a large array. The
application accesses each conceptual 3-dimensional array
separately. These are really just sub-arrays of the larger 4-
dimensional array. On disk, each process is accessing a 3-
dimensional block that it a part of the larger 3-dimensional
global file. Both situations lend themselves nicely to the MPI
SUBARRAY datatype. Thus SUBARRAYS are the basis for the MPI
solution.

Four distinct solutions were developed. First, a solution writing
to a single file and a solution writing to four separate files
were developed. Each of these solutions has a variation using
non-collective I/O operations and a variation using collective I/O
operations. The basic steps taken for each solution are as
follows:

1. Set up arrays defining the sub-arrays in memory
2. Set up arrays defining the sub-array on disk
3. Construct new datatypes defining memory (mtype) and file (ftype) access

(use MPI_TYPE_CREATE_SUBARRAY)
4. Commit these new datatypes
5. Open the file using MPI_FILE_OPEN

 15

6. Set the file view using the datatype ftype, as defined in step 3
7. Make a single call to MPI_FILE_WRITE to write a single element of type

mtype, as defined in step 3
8. Close the file using MPI_FILE_CLOSE
9. Free the datatypes using MPI_TYPE_FREE

3.1.4 PERFORMANCE

Table 1 presents the benchmarking results of each of the four
solutions. These results were obtained by taking the average time
for five execution runs on the Cray T3E located at the US Army
Corps of Engineers ERDC in Vicksburg, MS. These runs used the
Cray T3E’s native MPI implementation. The first column lists the
number of files written to (one and four). The second column
lists the time in seconds used for I/O using non-collective
operations. Finally, the third column lists the time in seconds
used for I/O using collective operations. As a comparison, the
original (non-MPI) solution used 5402 seconds to complete the I/O.

Number of files Non-collective (time) Collective (time)
 1 889.4 seconds 110.2 seconds
 4 4144 seconds 58.64 seconds

Table 1. Total I/O time for LBMPI

Some of these numbers may seem a bit surprising at first glance.
Looking first at the numbers for non-collective operations, there
is very little improvement when writing to four separate files, as
compared to the non-MPI results. This indicates that MPI is not
marshaling the output data. Better performance is achieved
writing to a single file, but this can be attributed to writing
large contiguous blocks from memory as opposed to completely non-
contiguous memory access as in the four-file case. However, since
collective operations are not used, MPI does not appear to marshal
any data to allow larger blocks of data for file access.

The numbers in the third column are very instructive. It has been
stated several times that collective operations present the best
opportunity for I/O optimization. This is reflected in these
numbers. Since collective operations were used, it appears MPI
used the knowledge that each process would be performing I/O to
marshal data and allow fewer disk accesses using larger blocks of
data. In the single file case, it may be possible to make just
one disk access by marshaling the data from every process into a
single output buffer.

 16

The fact that using collective operations to write to four files
outperforms using collective operations to write to a single file
is also instructive. No hints were used when creating these
files. It appears the MPI being used creates files on a single
disk if no hints are offered. This means there is no true
parallelism available for the I/O (there is only a single
read/write head per disk). The reason writing to four files is
faster is that each of the files may reside on different disks.
This means each file can be accessed concurrently. The next step
to be taken will be to use hints to get MPI to have the file
system stripe the single file across multiple disks. This should
introduce true parallelism to the I/O and performance should
improve. This performance improvement should be seen for both the
single file case and the four file case.

3.2 CE-QUAL-ICM

CE-QUAL-ICM is an EQM code developed at the Army Corps of
Engineers ERDC in Vicksburg, Mississippi. The code performs
computation using a large number of arrays with the parallel
version distributing the arrays in an irregular fashion. These
arrays also contain a high percentage of ghost cells (typically
20%-35%). Typical production level executions perform ten-year
simulations.

3.2.1 I/O CHARACTERISTICS

A typical execution run of this application writes intermediate
results after every simulation month. Each successive write of
intermediate results is appended to the previous intermediate
results. These intermediate results consist of all the resident
cells of all the arrays being used in the computation. Since the
arrays are irregularly distributed, no assumptions can be made
about any two cells being stored in contiguous locations in the
output file. In fact, it is possible that two resident cells are
stored in a different relative order on disk than in memory.
Figure 4 shows an example of what this might look like. There is
a mapping available that defines where each resident cell in each
process gets stored in the file. This mapping is the same for
each output array and for each output iteration. That is, for a
particular process, the same mapping is used many times.

3.2.2 INITIAL SOLUTION

The original solution requires post-processing. Each process
writes results to a process specific file. During an output

 17

phase, each process opens its own file, and writes every array to
that file. The entire arrays are written including ghost cells.
Additionally, the arrays are written in the same order as the are
stored in memory.

Following the execution run, a sequential post-processing step is
required. The post processor reads two mapping files. The first
mapping file defines which cells from each array, for each
process, are resident cells. The second mapping defines where

Figure 4. Irregular data distribution

each resident cell, for each process, is to be stored in the
global output file. These mappings repeat for each array and for
each iteration.

Once the mappings have been read, the post processor opens a large
global output file. This is the file that will store the final
results. It then enters an outer loop to process each sequence of
intermediate writes. For each intermediate write, the post
processor loops through the number of processes used to create the
output. For each process, the process’ output file is opened and
all the data written for the particular iteration are read. Then

 18

each element of each array is checked to see if it is a resident
cell. If it is a resident cell, the second mapping is used to
determine where in the global output the value belongs. The value
is stored in this location in the appropriate large global output
array. There is a global output array for each of the arrays
written to the file.

Once this has been done for all the processes, the global output
arrays are full. The post processor then simply writes each of
the global output arrays to disk. Once all the write iterations
have been processed, the post processor closes the global output
file. Once this is complete, the process specific files may be
discarded.

3.2.3 MPI-I/O SOLUTION

The challenge is to find an efficient solution using MPI that
eliminates the post-processing step. It must be a solution that
does not increase the execution time substantially.

Again there are two main issues that can be addressed by MPI.
These are memory access and file access. Since the arrays are
irregularly distributed, file access is going to be irregular.
Also, since there are ghost cells throughout the arrays (not just
the beginning and end) memory access is irregular. Irregular
access lends itself very well to MPI’s indexed datatype. MPI2
offers a new datatype called INDEXED_BLOCK that defines a datatype
with blocks of data all of the same size. This is ideal for this
problem. One problem not mention previously is that any datatype
used for defining a file view must provide for non-decreasing
access to the file. This means an indexed datatype that defines
accesses like those shown in Figure 4 cannot be used for a file
view. No such restriction exists for memory access.

The MPI solution is based on the INDEXED_BLOCK derived data type
for both memory and file access. The map arrays are already
available as discussed in Section 3.2.2. However, the mapping
defining where each resident cell goes in the global file must be
non-decreasing. This is not guaranteed. What is done is this map
array is sorted. At the same time, the map array that defines
which cells are resident cells is permuted to match this sorting.
At this point memory access may not be non-decreasing, but file
access is. These map arrays are used to construct a derived
datatype using MPI_TYPE_CREATE_INDEXED_BLOCK. The map array
defining the resident cells is used to construct the datatype for
memory access (mtype), and the map array defining where resident
cells go in the global file is used to construct the datatype for

 19

file access (ftype). The file type (ftype) is then used to set
the file view. This file view needs to be updated after every
write to reflect the new position in the file so previously
written data is not overwritten.

The MPI solution has a master process read some global data needed
to calculate displacements into the file. These data are
broadcast to the rest of the processes. The master process then
reads the map arrays for each process and sends them to the
appropriate processes. Once this is complete, each process has
all the information needed for I/O. Each process must sort the
appropriate map array while permuting the resident cell map array.
Once this is done, each process constructs the two datatypes as
describe above. The first time any data are written, the file
starts at the beginning. On subsequent writes, however, the data
previously written must be skipped. This is possible by keeping
track of the total number of bytes written. This number is used
when setting the file view.

The basic outline of the MPI solution is as follows:

1. Master process sends necessary information to other processes
2. Each process constructs INDEXED_BLOCK datatypes as described above
3. Each process opens the global output file
4. Each process sets displacement to 0
5. Each process sets the file view using ftype as described above
6. For each array to be written,

7. Each process writes a single element of type mtype as described
above. This causes all the resident cells to be written to the
file in the appropriate location

8. Displacement is updated by adding the total number of bytes
written in step 7

9. The file view is set again using the new displacement. This
causes all the previously written data to be skipped

10. Steps 6 though 9 are repeated for each series of writes (typically
every simulation month)

Unfortunately, MPI_TYPE_CREATE_INDEXED_BLOCK is not supported by
all implementations of MPI. For this reason this type was
replaced with the more general MPI_TYPE_INDEXED. The INDEXED type
is the same as the INDEXED_BLOCK type except the blocks can have
different sizes. By using an array of sizes where every size is
1, the INDEXED type is the same as the INDEXED_BLOCKED type with
block size of 1. This is sufficient for the above solution.

3.2.4 PERFORMANCE

The above solution has been completely implemented.
Unfortunately, the implementation is not yet in working order.
The current status is that the code core dumps during

 20

initialization. While this is in a part of the code added to
support the MPI-I/O solution, it is prior to any actual MPI-I/O
activity. It seems to be an obscure bug and the testers simply
ran out of time prior to this writing. Work on getting the code
to run successfully continues.

4. CONCLUSIONS AND FUTURE WORK

The use of parallel I/O potentially offers significant improvement
in I/O performance. This can be accomplished by a number of
methods, including striping files across multiple disks and
marshaling data to achieve coarser-grained data access. However,
different architectures provide different parallel file systems,
each with different characteristics. In order for a user to be
able to get good performance on many different architectures, the
intricacies of the I/O subsystem of each architecture would need
to be understood. This is an unrealistic expectation for a
typical user. Therefore, a standard interface is needed. MPI-I/O
offers a simple API that is portable across many different
architectures. If a user takes the time to study the proper use
of MPI-I/O, that user gains the ability to write code that
performs parallel I/O on all architectures supporting the MPI-I/O
subset.

In addition to improved performance, programs that use MPI-I/O may
be easier to maintain. The use of derived datatypes with MPI-I/O
makes it easier to understand what data and file access patterns
are being used. This makes it easier to understand the program
and thus easier to maintain the program.

Once the concepts of MPI-I/O are understood, it is not difficult
to convert applications using traditional Unix style I/O to use
parallel I/O through MPI. Once the I/O characteristics had been
studied and understood for the application discussed in Section
3.1 (LBMPI), it took less than one week to add the MPI-I/O calls.
Likewise, once the I/O characteristics of the application
discussed in Section 3.2 were understood, it took less than a week
to insert the necessary code to use MPI-I/O.

Future work will involve continuing work on the applications
discussed in this paper as well as some new initiatives. Work on
getting the MPI-I/O version of the CE-QUAL-ICM code running will
continue. Additional work on the LBMPI code will also continue.
There are plans to investigate the effects of adding hints to the
LBMPI code. This should allow stripping of the output files,
which should lead to improved performance.

 21

There a re also plans to investigate the use of different data
formats to support better file interoperability. One such format
is the Hierarchical Data Format (HDF). The HDF5 format will be
studied and there are plans to investigate parallel I/O support
for HDF5 [4].

Acknowledgement

This work was supported in part by a grant of HPC time from the
DoD HPC Modernization
Program.

References

1. John M May, Parallel I/O for High Performance Computing, Academic Press, San

Diego, CA, 2001
2. William Gropp, Ewing Lusk, and Rajeev Thakur, Using MPI-2, Advanced Features

of the Message-Passing Interface, The MIT Press, Cambridge, MA 1999
3. William Gropp, et. Al., MPI – The Complete Reference, Volume 2, The MPI

Extensions, The MIT Press, Cambridge, MA 1999
4. The NCSA HDF Home Page, http://hdf.ncsa.uiuc.edu

