Parallel 1/0O for EQM Applications

Davi d Cronk, Graham Fagg®*, and Shirley Mdore
Conput er Sci ence Depart nent
Uni versity of Tennessee, Knoxville

As processing speeds increase, |I/Ois becomng a bottleneck for certain classes

of applications. This is particularly true for applications that perform
frequent check-pointing or frequently wite out intermediate results.
Tradi ti onal approaches to |I/O typically result in poor performance. MPI-1/0

simplifies progranming and potentially inproves performance by allowing the
progranmer to make a single 1/0O call to access non-contiguous nmenory or file
data, and by striping files and/or by marshaling values to conbine many small
reads/wites into a few large read/ wites.

Thi s paper introduces parallel I/Owth an enphasis on MPI-1/O. Two production-
| evel EQM codes, which are experiencing |1/0O bottlenecks, are then presented.
Solutions for reducing the bottleneck through the use of parallel 1/0O via the
MPI-1/0O interface are presented, along with a performance evaluation of these
proposed sol utions.

1. 1 NTRODUCTI ON

“The speed, nenory size, and disk capacity of parallel conputers
continue to grow rapidly, but the rate at which disk drives can
read and wite data is inproving nmuch nore slowy” [1]. This is
a sinple, yet very inportant, observation. This problem is
exacerbated by the fact that nost users of parallel conputers have
little or no inclination to learn the intricacies of 1/0

optim zati on. Traditional approaches to |I/O do not provide the
performance needed for the problem sizes that can now be handl ed
by today’s high performance conputers. This is resulting in

applications whose size has traditionally been limted by the tine
needed to conpute solutions now being limted by the tinme needed
to read data or wite results out to disk.

St orage devices perform best when they transfer |arge, contiguous
bl ocks of data. This is referred to as coarse-grained access
Unfortunately, many scientific applications have fine-grained data
access patterns, causing the 1/O to perform many snall reads or
wites rather than a few large reads or wites. Fewer | arger
reads or wites would performbetter.

“Project Principle Investigator. Email address: fagg@s. utk.edu

As an exanple, consider a scientific application that needs to

wite a two dinensional array to disk. Further, assune the two
di mensi onal array in menory has a |ayer of ghost cells around the
bl ock of data (see figure 1). This results in the data to be

Figure . 20 arvay with ghost cells

witten to disk not being stored in a contiguous block of data,

and thus each colum (assumng colum mjor storage) nust be
witten separately. To nake the problem worse, nost scientific
code is witten in Fortran and nmany scientists would wite this
data using an inplied do loop, essentially causing each data
element to be witten separately. The nost efficient way to wite
this data would nost likely be to marshal all the data into a
conti guous output buffer, and then performa single, direct, wite
to disk. Wy don’'t nore scientists use this nethod? Sinply
because they are doing it the way it has always been done. Nany
scientists sinply accept that they will not get good perfornance
for 1/O and don’t |look for even sinple nethods to inprove the I/0
per f or mance. This problem gets even worse if it is running in
paral l el and the block of data is a sub-section of a larger two
di mrensional array stored on disk (see figure 2). In this
situation the solution proposed above w Il not work because the
data being accessed on disk is not stored contiguously.

This type of problemis commonly handled in one of three different
ways. One solution is to for each process to wite its data to a
process specific file. Then, once the conputation is conplete, a
post - processing step is needed, where a single process reads each
process specific file and handl es the data appropriately. Another
common sol ution involves each process sending its data to a master
process. This master process then organizes the data
appropriately and wites it out to disk. A third common sol ution
is for each process to use direct file access and wite the data
to the output file directly. Wiile the first two solutions

.

ITELm

dizk

Figure 2. 2D army stared as part ef a favger 20 army

clearly provide no parallelism the third solution at |east has
t he appearance of parallelism In practice, however, the third
solution typically provides poor perfornmance. This is due to a
couple of factors. One factor is the data typically are accessed
in small blocks, and as discussed above, the best perfornmance is
attained when data is accessed in large blocks. A nore inportant
factor, however, 1is that the wuser typically is not using a
parallel file system (NSF if the nbst common one used) and thus
even though the requests are nmade in parallel, the file system
serializes the requests.

This is a sinple exanple using a very sinple data access pattern.
However, it is instructive in denonstrating the problens that may
arise when performng 1/0O during a parallel conputation. Access
patterns vary greatly across different scientific applications.

Furt her, new high perfornmance architectures are introduced
regul arly, and each my have very different /O system
characteristics [1]. This would nmean that a scientist wanting

good I/ O performance would be required to learn the 1/0O system of
every architecture on which his code mght run. The alternative
is the use of a standard interface that is portable across many
architectures. The use of such a standard interface may sinplify
coding by reducing the nunmber of 1/0O calls required, and by
allowing the user to beconme familiar with a sinple interface.
Further, a standard interface allows sinple access to libraries
that are optimzed for particular architectures, maximzing the
chance of significantly inproved perfornmance.

The rest of this paper is organized as follows: Section 2 presents
an overview of parallel 1/0 and an introduction to the MI-1/0
i nterface. Section 3 presents experiences wth real Ilife
applications followed by conclusions and future work in Section 4.

2. PARALLEL |/0O

Parallel 1/0O can be sinply described as nultiple processes
regquesting concurrent access to a single, shared file. Oten
t hese processes are accessing non-contiguous data (both as stored
in menory and as stored on disk) and users wish to nmake as few I/ O
calls as possible. In order to perform parallel /O there nust
first be a parallel file systemto provide parallel file access.

The first thing that is required in order to be able to supply
parallel file access is nmultiple disks. By having nultiple disks,
each with its own 1/0 node, different processes can have file

access at the sanme tinme. However, if a file is still stored on a
single disk, concurrent access to the file by different processes
is still not possible. What a parallel file systemmy provide is
the ability to stripe files across multiple disks. That is, a
single file is actually stored in blocks, which span nultiple
di sks. This provides the ability to grant different processes

true parallel access to the sane file (provided each process is
accessing parts of the file stored on different disks).

Once a parallel file systemis in place, parallel /O is possible.

More inmportant for the purpose of this paper, it is possible to
provide a parallel /O library to the user. This library should
present a sinple interface and perform optim zations that lead to
i nproved performance. There are a nunber of optim zations that a
parallel 1/Olibrary may be able to make. In order to performthe
best optim zations, the library may need sone help. This help is
often supplied by hints provided by the user. These hints may
i ncl ude such things an suggested striping factors (nunber of disks
used to store a file), striping depth (size of blocks of data
stored in round robin fashion on each disk), or other suggestions
made to the library. These nmay be used for better optim zation.

One such optimzation involves marshaling many small non-
contiguous 1/0 requests into a single, larger, contiguous 1/0
request. As discussed in Section 1, storage devices perform best

when they transfer |arge, contiguous blocks of data. Anot her
potential optimzation involves buffering. |[If there are separate
|/ O nodes, conputation and [I/O can be overlapped by the 1/0
library buffering output and returning control to the calling
process. This allows the 1/0O node to conplete witing the out put

to disk while the process continues to perform conputations.

Wil e these optim zations (as well as others) may provide inproved
performance, they also introduce additional issues in ternms of

file consistency and senmanti cs. These issues nmay have profound
effects on the ~correctness of some classes of par al | el
appl i cations. These issues will be discussed in nore detail in

specific reference to how they manifest thenselves in the MPI-I/O
i nterface.

2.1 MPI-1/0O

MPI-1/O is part of the MI-2 standard, which is a set of
extensions to the original MPI standard. It is inportant to note
that MPI is nothing nore than an interface specification. That
is, it specifies the syntax and semantics of the various MPI
routines, but is does not include any specification of how these

routines should be inplenented. This neans different M
i npl ementations may be very different in terns of performance.
This will be pointed out repeatedly in the follow ng sections as

the potential benefits of different features are di scussed.

MPI-1/0O provides routines for mani pulating files and for accessing

dat a. The hope is that MPI-1/O will becone the standard for
performng parallel /0O It is already making inroads towards
that goal as nore and nore vendors are providing efficient
i npl emrentations of the MP-1/0 interface. This allows prograns

that use MPI-1/O to be portable across a |l|arge nunber of
archi tectures.

2.1.1 File Manipul ation

MPI-1/O provides several routines for file manipulation. These
include routines for deleting files, resizing files, and querying
for file information. The nost basic routines, however, are for
sinply opening and closing files.

When a user opens a file wusing MI, a communicator nust be
suppl i ed. This communi cator defines the group of processes
involved in accessing the file. Opening a file is a collective
operation, which neans all the processes in the group nust open

the file. One of the paraneters provided to the open call is a
nmode for opening the file, which nust be the sane at al

processes. These nodes are simlar to the standard file nodes.
If the create node is included, the file will be created if it
does not al ready exi st. When a file is opened, the user nay pass
hints to the library via a paraneter called info. Info may be

used to give the library information such as file access patterns.
The library need not use hints and different inplenentations wll
support different hints. The only requirement is that unused
hints are ignored. This allows for portability between M
i npl enent ati ons.

Closing a file in MPI is also a collective routine. Thi s neans
that all the processes involved in opening the file nust close the

file. Like many collective routines in MPI, closing a file is not
synchroni zi ng. This nmeans that by closing a file, a process has
no information regarding the state of other processes. The other
processes nmay or may not have closed the file. While closing a
file is not synchronizing in ternms of other processes, it is
[ocally synchronizing. As nmentioned previously, Ml has the
option of buffering output before witing it to disk. This neans
that just because a wite operation has conpleted, there is no
know edge as to whether the data has been witten to disk. When
closing a file is described as locally synchronizing, this neans
that closing a file forces any buffered data from the closing

process has been flushed to the disk. Again, this says nothing
about other processes, only the |ocal process. Ot her processes
may still have out put data buffered.

2.1.2 Derived Dat atypes

Though derived datatypes are part of the original MI standard
rather than MPlI -2, they are used extensively with MPI-1/0O For
that reason a brief discussion is included here.

Derived datatypes are used for 1/0O both for defining the data
layout in nmenory as well as the data layout in the file. Wen a
datatype defines the data layout in a file, it 1is typically
referred to as a filetype. It is inmportant, however, to realize
that a filetype is sinply a derived datatype, just |ike any other
derived dat atype. It has no special nmeaning until it is used to
set afile view This will be discussed in Section 2.1.2. 1.

As an exanple of why one would want to use a derived datatype to
access nmenory when doing 1/O, refer back to Figure 1. Suppose the
user wants to wite just the resident (non-ghost) cells to disk
Using Unix style I/O the user would need to nmake separate 1/0
calls for each colum (assumi ng columm major ordering). However,
by using derived datatypes, the user can define the nenory access
such that a single elenent represents just the resident cells.
This woul d be done with a call to MPI_TYPE SUBARRAY. By providing
the starting points and size of the resident subarray, the user
can define the type and subsequently wite the entire subarray
with a single MPI-1/0O call. /5 will be seen in the follow ng
section, even if the data are not being stored on disk in a
conti guous block of storage, the user need only nmake a single 1/0O
cal l. The ways this can inprove performance will be covered in
2.1.3. Derived datatypes for accessing nenory in |I/O are used the
sanme way as they are for nessage passing.

2.1.2.1 FILE VI EW5

Afile viewin MPI defines how a process sees a file. That is, it

defines which portions of the file are visible to the process [2].
A process may only read from and wite to those portions of the
file visible, as defined by the view of the file. In fact, when
reading (or witing), the parts of the file that are not visible
to the process are automatically skipped. File views are created
by first creating a derived datatype that defines how the process
sees the file. This derived datatype is then used in a call to
MPI _FI LE SET VI EW Following the call that sets the view, the
process accesses the file as if this view represented the entire
file. Additionally, views are set with a datatype that represents
the elementary elenent types stored in the files. This is the
smal l est elenent that may be read from or witten to the file
For exanple, if this type is an integer, then individual bytes can
not be accessed in the file.

Returning to Figure 2, it is now possible to access the file with
a single [/0 call. First a datatype nust be defined that
represents the process’ view of the file. This can once again be
done as a subarray. By defining a subarray that represents just
the shaded area of the larger array, the view has been defined.
This datatype is then used as part of the call to set the view
Once this is done, the process can only access the shaded area of
the file. There are several ways that this file can be accessed.
The user may sinply read single elenents fromthe file. Ml wll
skip the non-shaded ©portions of the file automatically.
Al ternately, the user may access the shaded portion one colum at

a tine. The difference from the way this would have been done
with Unix style I/Ois that the user need not cal cul ate where each
colum resides in the file. Setting the view has done this

After reading the first colum, MPlI automatically adjusts the file
pointer to skip the rest of the colum and point to the start of
the next colum. A third, and possible nost efficient, way to
access this data is to use both derived datatypes di scussed above.
A single elenent defined to represent the nmenory portion of Figure
2 can be read fromthe file. Since the datatype defined for the
left side of Figure 2 tells MPI how to store the data inside the
ghost cells, the user only needs to use a single elenent of this
type with the file view discussed here. This will cause a read
operation to read just the shaded area fromthe file and store it
in just the shaded area of the nenory. This not only makes the
code easier to wite and maintain, but as will be seen in Section
2.1.3, may lead to greatly inproved performnce.

There are a nunber of common file access patterns that can be

supported in this sane way. Sone exanples include block-cyclic
data distribution (use MPI_TYPE VECTOR to define the file view
and even irregularly distributed arrays. By using a variety of

dat atype constructors, a user should be able to define about any
menory and file layout. This should allow the user to access non-
contiguous data in an easily recognized and straightforward
manner .

2.1. 3 DATA ACCESS

There are three aspects to data access: Positioning, synchronism
and coordination [3]. Figure 3 represents these three aspects.

Posi ti oni ng. MPl provides three types of routines in regards to positioning:
explicit offsets, individual file pointers, and shared file pointers.

Explicit
Offsets \
Individula

File Pointers /

Non-Blocking Collective

Coodination
Shared

File Pointers Synchonism

Blocking Non-Collective

Pasitioning

Figure 3. Data access methods

Explicit offset operations perform data access at the specific |ocation given
directly as an argunent passed into the routine. These calls do not update any
file pointers. These accesses are in relation to the file view discussed in
Section 2.1.2.1 and the offsets are in terns of the elenentary datatype used
when setting the view

For each process, MPI maintains two file pointers for each open file. One of

these file pointers is the individual file pointer. This is unique to each
process and updates to it in one process do not affect the individual file
pointers in other processes. One can liken individual file pointers to file
pointers used in Unix style I/Q I ndividual file pointer operations access the

file according to the inplicit offset provided by the calling process’

i ndividual file pointer. The calling process’ individual file pointer is
updat ed accordi ngly upon conpl etion of the operation

MPI also maintains a shared file pointer for each open file. This pointer (as

its nane suggests) is shared between all processes. Shared file pointer
operations access the file according to the inplicit offset provided by the
shared file pointer. The calling process’ individual file pointer is neither

used nor updated. Upon conpletion of the operation, the shared file pointer is
updated, with this update being reflected at all processes that were part of
opening the file.

Synchroni sm Synchronismin MPI has nothing to do with other processes, but

rather the ability to use data buffers involved in an operation. It is
important to keep this in mnd. MI-1/0 offers both blocking and non-bl ocki ng
/O routines. Non- bl ocki ng operations return imediately. It is not safe to
reuse user buffers until the non-blocking operation has been conpleted with a
test or a wait, just like non-blocking comrunication. Bl ocki ng routines do not
return until a user buffer can be safely re-used. |In terns of reads, this neans
the data has been read and is available in the user buffer. Bl ocking operations
performng wites to files do not return until the data has been copied out of
the user buffer. It is inportant to point out here that this does not nean the

data has actually been witten to disk when a blocking wite returns or a non-
bl ocking wite is conpleted (with a test or wait). Ml is free to copy the data
to a buffer and wite it out to disk at a later tine. In fact, this nethod is
often used for optimnzation. The wuser nust nmake no assunptions about data
availability sinply because a wite operation has conpleted. This is simlar to
the conpletion of a blocking send in MPI giving no i nformati on about whether the
nmessage has been received. Methods for assuring data have been witten to disk
will be discussed in Section 2.1.5

Coor di nat i on. MPI offers both collective and non-collective I/0O routines.
Non-col | ective operation depend on no other processes and work how one would
expect them to work. Col l ective routines, on the other hand, require the

coordination of all the processes that opened the file. Wi le these routines
are collective, they are not synchroni zing. Even if a process has conpleted a
collective 1/0O call, no information is known about the status of the other
processes.

MPI provides a conplete conbination of these different data access
aspects. That is, each data access routine relating to
posi tioning (explicit offset, individual file pointers, shared
file pointers) has both a blocking and a non-bl ocking version.
Further, each of these routines (explicit offset - blocking,
explicit offset — non-blocking, etc) has both a non-collective and
a collective version. It should be noted that non-bl ocking
collective routines are referred to as split-collectives and
require both a start call and a finish call.

The semantics of data access in MPI are fairly |oose. This gives
i mpl enenters a lot of Ileeway for the purpose of performance
optim zation. There are two prinmary ways inproved performance is
achieved. The first is through buffering. Buffering data that is
to be witten to disk offers two ways to optimze. One way is to

keep the data in a buffer in case subsequent wites allow the
library to marshal data into contiguous blocks of storage data
As has been nentioned, storage devices perform best with |arge
contiguous blocks of data. Anot her way buffering can inprove
performance is by hiding the tinme needed to performI1/QO |If there
are dedicated 1/0O nodes, buffering can allow these 1/0O nodes to
perform 1/0O while the conpute nodes are busy continuing with the
comput at i on.

One of the nost inportant ways performance can be inproved is
t hrough coll ective operations. By using collective routines, the
user is letting the library know that all the processes are going
to be performng 1/0O at about the sane tinme. The library can use
this know edge to better marshal data. Returning to Figure 2, if
the library knows that all four process are going to wite to disk
(and this constitutes the entire file) it can marshal all the data
into a single output buffer and nmake a single wite to disk.
Wthout this knowl edge it would nost |likely wite each process

data columm by <columm, nmaking many nore disk access than
necessary.

As nentioned previously, buffering can cause difficulties in terns
of file consistency between processes. These issues wll be
covered in nore detail in Section 2.1.5.

2.1.4 FI LE | NTEROPERABI LI TY

MPI says not hing about how routines should be inplenented. Thi s
extends to files created through MPI-1/0O. MPlI says nothing about
how these files should be stored. Files may be stored as ordinary
files, conpressed, stripped across a disk array, or sonme other
way. The only constraint MPI places on file format is that if the
file is not stored as a linear sequence of bytes (like a typica

file), then there nust be a utility provided for converting the

file to a linear sequence of bytes, as well as utilities for
common file operations such as copying and deleting. This ensures
that any non-MPI programw ||l be able to read the file, though it

may first need to be converted [2].

Some users nmay wish to create files on one architecture and then
be able to read them on another architecture. This is generally
not possible due to different data representations on different
archi tectures. In order to do this there nust be some sort of
data conversion. This is supported by MPI. Wen a process sets a
file view, it specifies if the data representation is to be
native, internal, or external 32

10

When native representation is used, the data are stored in the
file exactly as they are in menory. This neans that files created
with this representation cannot be read on a different
architecture. This file can be read by prograns using the sane

MPI inplenmentation on the sanme architecture. There is no
guarantee it can be read using other Ml inplenentations because
the file structure nmay be different. This is a non-portable

representation, but typically provides the best perfornance.

The internal representation provides sonme degree of portability.

The inplenentation nay store the data in any format it chooses and
will perform type conversions if necessary. The environment in
which the file can be re-used will be inplenentati on dependent and
nmust be documented [3]. A particular MPlI inplenmentation my use a
data representation that allows the file to be read on any
architecture using the sane M

The external 32 representation causes the data to be stored in a
specific data format as defined by MPI. This format is basically
| EEE bi g-endian format. This ensures that a file witten wth
this data representation can be read by any Ml inplenentation on
any architecture. This is, of course, assum ng external 32 fornat
is supported by the MPI inplenentation being used. Si nce data
conversion is being performed, there may be a loss of data
preci sion and poorer performance can be expect ed.

2. 1.5 CONSI STENCY SEMANTI CS

As discussed previously, there are many instances where buffering
data can inprove performance. This is particularly true wth
regards to witing data to disk. Because of this possible
buffering, file consistency becones an issue. One nust renenber
that just because a wite operation has conpleted, there is no
guarantee the data are actually witten to disk and available to
ot her processes. Keep in mnd also that collective routines are
not synchroni zi ng.

Consistency is only an issue if nultiple processes are accessing
the same file and at |east one of the processes is witing to the
file. Further, if no two processes access the sane |ocation in
the file, ~consistency is nmaintained. Therefore, consistency
semantics are of interest when nultiple processes access the sane
| ocation of the sanme file, with at |east one process witing to
the file.

11

Cenerally, there is only one way for a process to be guaranteed
access to data witten by another process. The readi ng process
must be sure the witing process has conpleted witing the data
and sone file synchronization has been perfornmed. There are three
methods to ensure file synchronization: Ml _FILE SET_ATOM CI TY,
MPI _FILE SYNCH, and closing a file. These are all collective
operations and a process should conplete the operation and know
t he other processes have conpleted the operation to be guaranteed
consi st ency.

MPI _FILE SET ATOMCITY is a collective operation that ensures all
subsequent wites cause the data to be flushed to disk. Thi s
means, if atomcity is true, once a process has returned from a
bl ocking wite (or conpleted a non-blocking wite) the witten
data have been transferred to disk and are available to other
processes. Al though this is a collective operation, it is not
synchroni zi ng.

MPI _FILE SYNCH is a collective operation that acts nuch like a
flush. A synch call causes any buffered output data to be witten
to disk. Since it is collective, all processes nust call it and
this insures data witten by other processes are accessible.
Al though this is a collective operation, it is not synchroni zing.

Closing a file is a collective operation that acts nuch like a
synch, except it causes the file to be closed. That is, it causes
all buffered data to be witten to disk before the file is closed.
Thus, if a process closes a file and knows another process has
closed the file, it also knows it can access all the data witten
by said process. Although this is a collective operation, it is
not synchroni zi ng.

It is inmportant to renenber these are all collective operations
and they nust be used appropriately. Know ng another process has
call ed one of these routines is not enough to ensure consistency.
The readi ng process nust have called the synchronizing routine as

well. This is because MPI can buffer input data as well as output
data. Ml may pre-fetch data fromthe disk. |[If the data on disk
change after the pre-fetch, a subsequent read wll get the out-of-

date data unless the consistency semanti cs have been fol |l owed.

3. APPLI CATI ONS

This section presents two EQM (Environnental Quality Modeling)
applications that have been suffering from I/O bottl enecks. The
|/ O characteristics of the code as well as the original approach

to 1/0O are explained. This is followed by a description of the
approach taken for converting the existing I/Oto MPI-1/0O as wel
as a discussion of performance results where avail abl e.

3.1 LBMPI

LBMPI is aContam nant Dispersion nodel EQM chall enge code being
used by Robert Mier at the Arny HPC Research Center. The code
performs conputation using what are conceptually four 3-
di mensi onal arrays. In practice, however, the four 3-dinensional
arrays are stored as a single 4-dinensiona array. This is done to
achieve a better cache-hit ratio. Each of the 3-dinensiona

arrays consists of interior resident cells as well as a |ayer of
ghost cells. The application wuses a Dblock-block data
distribution. This code is experiencing a severe I/O bottleneck

Runni ng on an | BM SP2 using 512 processors, a typical run requires
approxi mately 12 hours of conpute tine and an additional 12 hours
of I/Otinme.

3.1.1 1/ O CHARACTERI STI CS

This code wites each of the conceptual 3 dinensional arrays out
to a separate file. The result is four global files that each
contains the appropriate data from all the processes. The
resulting files store the data in their natural order. That is,
the data are witten the sane regardless of the nunber of
processes.

The code uses Fortran’s colum major ordering with the first
di mension being the nunber of conceptual 3-dinensional arrays
(four in this case). This results in no tw adjacent values in
one of the 3-dinensional arrays being stored in adjacent nenory
| ocations. Thus the 3-dinensional arrays that need to be witten
are not stored in contiguous nmenory, and no two elenents stored in
adj acent nenory | ocations. Furthernore, since a bl ock-block data
distribution is used, the data from a particular process is not
stored in a contiguous block on disk. Each colum from the 3
di mensional array is stored in a contiguous block on disk, but
adj acent columms are not.

3.1.2 NI TIAL SOLUTI ON

The original solution attenpted to get parallel performance using
standard Unix style 1/0 calls. Wien data was to be witten to
di sk, each process would open the output file. Once the file was

13

opened each process would calculate where in the file its data
were to be stored. Each process then wote the data directly to
the cal cul ated offset using a standard “wite” call. A nested do
| oop was used to |oop through every colum in the 3 dinensional
array, and an inplied do loop was used to wite each elenent of
the colum. As was nentioned above, the columm elenments are not
stored contiguously in nenory, so it was inpossible to wite each
colum out as a single block of data.

Al t hough each process can nmake these calls concurrently, the
application was not using a parallel file system Thus the 1/0
calls were serialized, resulting in no real paral |l elism
Furthernore, since the data were stored non-contiguously in nmenory
and no marshaling of data was used, perfornmance was poor.

A final note on the original solution relates to convention. The
output is witten to four separate files because it has always
been done this way. Since the data are stored in a single 4-
di mrensional array, it would possibly be nore efficient to wite
the data to a single output file. This would allow contiguously
stored bl ocks of nenory to be witten to disk.

3.1.3 MPI-1/0O SOLUTI ON

There are two issues here that can be addressed through MPI

These are the nenory access and the file access. In both cases
the application is accessing a portion of a large array. The
application accesses each concept ual 3-di mensi onal array
separately. These are really just sub-arrays of the |arger 4-
di mensi onal array. On disk, each process is accessing a 3-
di mensional block that it a part of the |arger 3-dinensional
gl obal file. Both situations lend thenselves nicely to the MI

SUBARRAY dat at ype. Thus SUBARRAYS are the basis for the WMPI
sol uti on.

Four distinct solutions were developed. First, a solution witing
to a single file and a solution witing to four separate files

wer e devel oped. Each of these solutions has a variation using
non-col l ective I/O operations and a variation using collective I/0O
oper ati ons. The basic steps taken for each solution are as
foll ows:

1. Set up arrays defining the sub-arrays in nenory

2. Set up arrays defining the sub-array on disk

3. Construct new datatypes defining menory (nmtype) and file (ftype) access
(use MPI _TYPE_CREATE_SUBARRAY)

4. Commit these new datatypes

5. Open the file using MPI _FILE OPEN

14

6. Set the file view using the datatype ftype, as defined in step 3

7. Make a single call to MPI_FILE WRITE to wite a single elenment of type
ntype, as defined in step 3

8. Close the file using MPI _FILE CLCSE

9. Free the datatypes using MPI_TYPE FREE

3. 1. 4 PERFORVMANCE

Table 1 presents the benchmarking results of each of the four
solutions. These results were obtained by taking the average tine
for five execution runs on the Cray T3E located at the US Arny
Corps of Engineers ERDC in Vicksburg, WMS. These runs used the
Cray T3E' s native MPI inplenentation. The first colum lists the

nunber of files witten to (one and four). The second colum
lists the tine in seconds wused for 1/0O using non-collective
oper ati ons. Finally, the third colum lists the tine in seconds

used for 1/0O using collective operations. As a conparison, the
original (non-MPl) solution used 5402 seconds to conplete the I/QO

Nunmber of files Non-col | ective (tine) |Collective (tine)
1 889. 4 seconds 110. 2 seconds
4 4144 seconds 58. 64 seconds

Table 1. Total 1/Otime for LBMPI

Some of these nunmbers may seem a bit surprising at first glance.
Looking first at the nunbers for non-collective operations, there
is very little inprovenment when witing to four separate files, as
conpared to the non-MPl results. This indicates that MPI is not
mar shaling the output data. Better performance is achieved
witing to a single file, but this can be attributed to witing
| arge contiguous bl ocks from nenory as opposed to conpletely non-
conti guous nmenory access as in the four-file case. However, since
coll ective operations are not used, MPI does not appear to marshal
any data to allow |l arger blocks of data for file access.

The nunbers in the third colum are very instructive. It has been
stated several times that collective operations present the best
opportunity for 1/O optimzation. This is reflected in these
nunbers. Since collective operations were used, it appears M

used the know edge that each process would be performng /O to
mar shal data and allow fewer disk accesses using |arger blocks of
dat a. In the single file case, it may be possible to make just
one disk access by marshaling the data from every process into a
si ngl e output buffer.

15

The fact that using collective operations to wite to four files
out perforns using collective operations to wite to a single file

is also instructive. No hints were used when creating these
files. It appears the MPI being used creates files on a single
disk if no hints are offered. This neans there is no true
parallelism available for the 1/O (there is only a single
read/ wite head per disk). The reason witing to four files is

faster is that each of the files nmay reside on different disks.
This neans each file can be accessed concurrently. The next step
to be taken wll be to use hints to get MPI to have the file
system stripe the single file across nmultiple disks. This should
introduce true parallelism to the [/0O and perfornmance should
i nprove. This performance inprovenent should be seen for both the
single file case and the four file case.

3.2 CE-QUAL-ICM

CE-QUAL-ICM is an EM code developed at the Arny Corps of
Engineers ERDC in Vicksburg, M ssissippi. The code perforns
conputation using a large nunber of arrays with the parallel
version distributing the arrays in an irregular fashion. These
arrays also contain a high percentage of ghost cells (typically
20% 359 . Typi cal production |evel executions perform ten-year
si mul ati ons.

3.2.1 1/ O CHARACTERI STI CS

A typical execution run of this application wites internedi ate

results after every sinulation nonth. Each successive wite of
internediate results is appended to the previous internediate
results. These internediate results consist of all the resident

cells of all the arrays being used in the conputation. Since the
arrays are irregularly distributed, no assunptions can be nade
about any two cells being stored in contiguous locations in the
output file. In fact, it is possible that two resident cells are
stored in a different relative order on disk than in nenory.
Figure 4 shows an exanple of what this mght |look |ike. There is
a mappi ng avail able that defines where each resident cell in each
process gets stored in the file. This mapping is the sane for
each output array and for each output iteration. That is, for a
particul ar process, the sanme mapping is used many timnes.

3.2.2 NI TIAL SOLUTI ON

The original solution requires post-processing. Each process
wites results to a process specific file. During an output

16

phase, each process opens its own file, and wites every array to
that file. The entire arrays are witten including ghost cells.
Additionally, the arrays are witten in the sane order as the are
stored in nenory.

Foll owi ng the execution run, a sequential post-processing step is
requi red. The post processor reads two mapping files. The first
mapping file defines which cells from each array, for each
process, are resident cells. The second mappi ng defines where

b :

Figure 4. Irregular data distribution

each resident cell, for each process, is to be stored in the

gl obal output file. These mappings repeat for each array and for
each iteration

Once the mappi ngs have been read, the post processor opens a | arge
gl obal output file. This is the file that will store the final
results. It then enters an outer |oop to process each sequence of
internediate wites. For each internediate wite, the post
processor |oops through the nunber of processes used to create the
output. For each process, the process’ output file is opened and
all the data witten for the particular iteration are read. Then

17

each el enent of each array is checked to see if it is a resident
cell. If it is a resident cell, the second mapping is used to
determ ne where in the global output the value belongs. The val ue
is stored in this location in the appropriate |arge global output
array. There is a global output array for each of the arrays
witten to the file.

Once this has been done for all the processes, the global output
arrays are full. The post processor then sinply wites each of
the global output arrays to disk. Once all the wite iterations
have been processed, the post processor closes the global output
file. Once this is conplete, the process specific files may be
di scar ded.

3.2.3 MPI-1/0O SOLUTI ON

The challenge is to find an efficient solution using Ml that
el imi nates the post-processing step. It nmust be a solution that
does not increase the execution tine substantially.

Again there are two main issues that can be addressed by M.
These are nenory access and file access. Since the arrays are
irregularly distributed, file access is going to be irregular.
Al so, since there are ghost cells throughout the arrays (not just
the beginning and end) nenory access is irregular. | rregul ar
access lends itself very well to MPI’'s indexed datatype. VPl 2
offers a new datatype called | NDEXED BLOCK that defines a datatype
with blocks of data all of the sanme size. This is ideal for this
problem One problem not nention previously is that any datatype
used for defining a file view nust provide for non-decreasing
access to the file. This nmeans an indexed datatype that defines
accesses like those shown in Figure 4 cannot be used for a file
view. No such restriction exists for nmenory access.

The MPI solution is based on the | NDEXED BLOCK derived data type
for both menory and file access. The map arrays are already
avai l able as discussed in Section 3.2. 2. However, the mapping
defining where each resident cell goes in the global file nust be
non-decreasing. This is not guaranteed. What is done is this map
array is sorted. At the sane tinme, the map array that defines
which cells are resident cells is pernuted to match this sorting.
At this point nenory access may not be non-decreasing, but file
access is. These map arrays are used to construct a derived
datatype wusing MPI_TYPE CREATE | NDEXED BLOCK. The nmap array
defining the resident cells is used to construct the datatype for
menory access (ntype), and the map array defining where resident
cells go in the global file is used to construct the datatype for

18

file access (ftype). The file type (ftype) is then used to set
the file view This file view needs to be updated after every
wite to reflect the new position in the file so previously
witten data is not overwitten.

The MPI solution has a nmaster process read sone gl obal data needed
to calculate displacenents into the file. These data are
broadcast to the rest of the processes. The master process then
reads the map arrays for each process and sends them to the
appropriate processes. Once this is conplete, each process has
all the information needed for 1/0 Each process nust sort the
appropriate nmap array while permuting the resident cell nmap array.
Once this is done, each process constructs the two datatypes as
descri be above. The first tinme any data are witten, the file
starts at the beginning. On subsequent wites, however, the data
previously witten nust be skipped. This is possible by keeping
track of the total nunber of bytes witten. This nunber is used
when setting the file view

The basic outline of the MPI solution is as foll ows:

1. Master process sends necessary information to other processes

2. Each process constructs | NDEXED BLOCK dat at ypes as descri bed above
3. Each process opens the global output file

4. Each process sets displacenent to O

5. Each process sets the file view using ftype as described above

6. For each array to be witten,

7. Each process wites a single elenent of type mype as described
above. This causes all the resident cells to be witten to the
file in the appropriate |ocation

8. Displacenent is updated by adding the total nunmber of bytes
written in step 7

9. The file view is set again using the new displacenent. Thi s
causes all the previously witten data to be skipped

10. Steps 6 though 9 are repeated for each series of wites (typically

every simnulati on nonth)

Unfortunately, MPI_TYPE CREATE |INDEXED BLOCK is not supported by
all inplenentations of MPI. For this reason this type was
replaced with the nore general MPI_TYPE | NDEXED. The | NDEXED type
is the sane as the | NDEXED BLOCK type except the blocks can have
di fferent sizes. By using an array of sizes where every size is
1, the I NDEXED type is the sanme as the | NDEXED BLOCKED type with
bl ock size of 1. This is sufficient for the above sol ution.

3. 2. 4 PERFORMANCE

The above sol ution has been conpl etely i npl enent ed.
Unfortunately, the inplenentation is not yet in working order.
The current status is that the code core dunps during

19

initialization. Wiile this is in a part of the code added to
support the MPI-1/0O solution, it is prior to any actual MI-I1/0O
activity. It seens to be an obscure bug and the testers sinply
ran out of time prior to this witing. Wrk on getting the code
to run successfully continues.

4. CONCLUSI ONS AND FUTURE WORK

The use of parallel /O potentially offers significant inprovenent
in 1/0O performance. This can be acconplished by a nunber of
methods, including striping files across mnultiple disks and
mar shal i ng data to achi eve coarser-grained data access. However
different architectures provide different parallel file systens,
each with different characteristics. In order for a user to be
able to get good performance on many different architectures, the
intricacies of the I/0O subsystem of each architecture would need
to be understood. This is an wunrealistic expectation for a
typical user. Therefore, a standard interface is needed. WMPI-1/0O
offers a sinple APl that is portable across nany different
architectures. If a user takes the tine to study the proper use
of MPI-1/0O that wuser gains the ability to wite code that
perfornms parallel 1/0O on all architectures supporting the MPI-1/0
subset .

In addition to i nproved performance, prograns that use MPI-1/0 may
be easier to nmaintain. The use of derived datatypes with MPI-1/0
makes it easier to understand what data and file access patterns
are being used. This makes it easier to understand the program
and thus easier to maintain the program

Once the concepts of MPI-I1/O are understood, it is not difficult
to convert applications using traditional Unix style 1/O to use
parallel 1/0O through MPI. Once the 1/0 characteristics had been
studied and understood for the application discussed in Section
3.1 (LBMPI), it took Iess than one week to add the MPI -1/0 calls.
Li kew se, once the 1/0O characteristics of the application
di scussed in Section 3.2 were understood, it took |less than a week
to insert the necessary code to use MPI-1/Q

Future work wll involve continuing work on the applications
di scussed in this paper as well as sonme new initiatives. Wrk on
getting the MPI-1/0O version of the CE QUAL-I1CM code running wll
conti nue. Additional work on the LBMPI code will also continue

There are plans to investigate the effects of adding hints to the
LBMPI code. This should allow stripping of the output files,
whi ch should | ead to i nproved performance.

20

There a re also plans to investigate the use of different data
formats to support better file interoperability. One such format
is the Herarchical Data Format (HDF). The HDF5 format will be
studied and there are plans to investigate parallel 1/0O support
for HDF5 [4].

Acknow edgenent

This work was supported in part by a grant of HPC tinme fromthe
DoD HPC Moder ni zati on
Program

Ref er ences

1. John M May, Parallel /0O for Hi gh Performance Conputing, Academ c Press, San
Di ego, CA, 2001

2. WIlliam G opp, Ewi ng Lusk, and Rajeev Thakur, Using MPI-2, Advanced Features
of the Message-Passing Interface, The MT Press, Canbridge, MA 1999

3. Wlliam Gopp, et. A., MI - The Conplete Reference, Volune 2, The MI
Ext ensi ons, The M T Press, Canbridge, MA 1999

4. The NCSA HDF Hone Page, http://hdf.ncsa. uiuc. edu

21

