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As processing speeds increase, I/O is becoming a bottleneck for certain classes 
of applications.  This is particularly true for applications that perform 
frequent check-pointing or frequently write out intermediate results. 
Traditional approaches to I/O typically result in poor performance.   MPI-I/O 
simplifies programming and potentially improves performance by allowing the 
programmer to make a single I/O call to access non-contiguous memory or file 
data, and by striping files and/or by marshaling values to combine many small 
reads/writes into a few large read/writes. 
 
This paper introduces parallel I/O with an emphasis on MPI-I/O.  Two production-
level EQM codes, which are experiencing I/O bottlenecks, are then presented.  
Solutions for reducing the bottleneck through the use of parallel I/O via the 
MPI-I/O interface are presented, along with a performance evaluation of these 
proposed solutions. 
 
 
 

1. INTRODUCTION 
 
 
“The speed, memory size, and disk capacity of parallel computers 
continue to grow rapidly, but the rate at which disk drives can 
read and write data is improving much more slowly” [1].   This is 
a simple, yet very important, observation.  This problem is 
exacerbated by the fact that most users of parallel computers have 
little or no inclination to learn the intricacies of I/O 
optimization.  Traditional approaches to I/O do not provide the 
performance needed for the problem sizes that can now be handled 
by today’s high performance computers.  This is resulting in 
applications whose size has traditionally been limited by the time 
needed to compute solutions now being limited by the time needed 
to read data or write results out to disk. 
 
Storage devices perform best when they transfer large, contiguous 
blocks of data.  This is referred to as coarse-grained access.  
Unfortunately, many scientific applications have fine-grained data 
access patterns, causing the I/O to perform many small reads or 
writes rather than a few large reads or writes.  Fewer larger 
reads or writes would perform better. 
 

                                                                 
+ Project Principle Investigator. Email address: fagg@cs.utk.edu 



 2 

As an example, consider a scientific application that needs to 
write a two dimensional array to disk.  Further, assume the two 
dimensional array in memory has a layer of ghost cells around the 
block of data (see figure 1).  This results in the data to be 

written to disk not being stored in a contiguous block of data, 
and thus each column (assuming column major storage) must be 
written separately.  To make the problem worse, most scientific 
code is written in Fortran and many scientists would write this 
data using an implied do loop, essentially causing each data 
element to be written separately.  The most efficient way to write 
this data would most likely be to marshal all the data into a 
contiguous output buffer, and then perform a single, direct, write 
to disk.  Why don’t more scientists use this method?  Simply 
because they are doing it the way it has always been done.  Many 
scientists simply accept that they will not get good performance 
for I/O and don’t look for even simple methods to improve the I/O 
performance.  This problem gets even worse if it is running in 
parallel and the block of data is a sub-section of a larger two 
dimensional array stored on disk (see figure 2).  In this 
situation the solution proposed above will not work because the 
data being accessed on disk is not stored contiguously. 
 
This type of problem is commonly handled in one of three different 
ways.  One solution is to for each process to write its data to a 
process specific file.  Then, once the computation is complete, a 
post-processing step is needed, where a single process reads each 
process specific file and handles the data appropriately.  Another 
common solution involves each process sending its data to a master 
process.  This master process then organizes the data 
appropriately and writes it out to disk.  A third common solution 
is for each process to use direct file access and write the data 
to the output file directly.  While the first two solutions 
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clearly provide no parallelism, the third solution at least has 
the appearance of parallelism.  In practice, however, the third 
solution typically provides poor performance.  This is due to a 
couple of factors.  One factor is the data typically are accessed 
in small blocks, and as discussed above, the best performance is 
attained when data is accessed in large blocks.  A more important 
factor, however, is that the user typically is not using a 
parallel file system (NSF if the most common one used) and thus 
even though the requests are made in parallel, the file system 
serializes the requests. 
 
This is a simple example using a very simple data access pattern.  
However, it is instructive in demonstrating the problems that may 
arise when performing I/O during a parallel computation.  Access 
patterns vary greatly across different scientific applications.  
Further, new high performance architectures are introduced 
regularly, and each may have very different I/O system 
characteristics [1].  This would mean that a scientist wanting 
good I/O performance would be required to learn the I/O system of 
every architecture on which his code might run.  The alternative 
is the use of a standard interface that is portable across many 
architectures.  The use of such a standard interface may simplify 
coding by reducing the number of I/O calls required, and by 
allowing the user to become familiar with a simple interface.  
Further, a standard interface allows simple access to libraries 
that are optimized for particular architectures, maximizing the 
chance of significantly improved performance.  
 
The rest of this paper is organized as follows: Section 2 presents 
an overview of parallel I/O and an introduction to the MPI-I/O 
interface.  Section 3 presents experiences with real life 
applications followed by conclusions and future work in Section 4.  
 
2. PARALLEL I/O 
 
Parallel I/O can be simply described as multiple processes 
requesting concurrent access to a single, shared file.  Often 
these processes are accessing non-contiguous data (both as stored 
in memory and as stored on disk) and users wish to make as few I/O 
calls as possible.  In order to perform parallel I/O, there must 
first be a parallel file system to provide parallel file access.  
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The first thing that is required in order to be able to supply 
parallel file access is multiple disks.  By having multiple disks, 
each with its own I/O node, different processes can have file 
access at the same time.  However, if a file is still stored on a 
single disk, concurrent access to the file by different processes 
is still not possible.  What a parallel file system may provide is 
the ability to stripe files across multiple disks.   That is, a 
single file is actually stored in blocks, which span multiple 
disks.  This provides the ability to grant different processes 
true parallel access to the same file (provided each process is 
accessing parts of the file stored on different disks). 
 
Once a parallel file system is in place, parallel I/O is possible.  
More important for the purpose of this paper, it is possible to 
provide a parallel I/O library to the user.  This library should 
present a simple interface and perform optimizations that lead to 
improved performance.  There are a number of optimizations that a 
parallel I/O library may be able to make.  In order to perform the 
best optimizations, the library may need some help.  This help is 
often supplied by hints provided by the user.  These hints may 
include such things an suggested striping factors (number of disks 
used to store a file), striping depth (size of blocks of data 
stored in round robin fashion on each disk), or other suggestions 
made to the library.  These may be used for better optimization.  
One such optimization involves marshaling many small non-
contiguous I/O requests into a single, larger, contiguous I/O 
request.  As discussed in Section 1, storage devices perform best 
when they transfer large, contiguous blocks of data.  Another 
potential optimization involves buffering.  If there are separate 
I/O nodes, computation and I/O can be overlapped by the I/O 
library buffering output and returning control to the calling 
process.  This allows the I/O node to complete writing the output 
to disk while the process continues to perform computations.   
 
While these optimizations (as well as others) may provide improved 
performance, they also introduce additional issues in terms of 
file consistency and semantics.  These issues may have profound 
effects on the correctness of some classes of parallel 
applications.  These issues will be discussed in more detail in 
specific reference to how they manifest themselves in the MPI-I/O 
interface. 
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2.1 MPI-I/O 
 
MPI-I/O is part of the MPI-2 standard, which is a set of 
extensions to the original MPI standard.  It is important to note 
that MPI is nothing more than an interface specification.  That 
is, it specifies the syntax and semantics of the various MPI 
routines, but is does not include any specification of how these 
routines should be implemented.  This means different MPI 
implementations may be very different in terms of performance.  
This will be pointed out repeatedly in the following sections as 
the potential benefits of different features are discussed.   
 
MPI-I/O provides routines for manipulating files and for accessing 
data.  The hope is that MPI-I/O will become the standard for 
performing parallel I/O.  It is already making inroads towards 
that goal as more and more vendors are providing efficient 
implementations of the MP-I/O interface.  This allows programs 
that use MPI-I/O to be portable across a large number of 
architectures. 
 
2.1.1 File Manipulation 
 
MPI-I/O provides several routines for file manipulation.  These 
include routines for deleting files, resizing files, and querying 
for file information.  The most basic routines, however, are for 
simply opening and closing files. 
 
When a user opens a file using MPI, a communicator must be 
supplied.  This communicator defines the group of processes 
involved in accessing the file.  Opening a file is a collective 
operation, which means all the processes in the group must open 
the file.  One of the parameters provided to the open call is a 
mode for opening the file, which must be the same at all 
processes.  These modes are similar to the standard file modes.  
If the create mode is included, the file will be created if it 
does not already exist.   When a file is opened, the user may pass 
hints to the library via a parameter called info.  Info may be 
used to give the library information such as file access patterns.  
The library need not use hints and different implementations will 
support different hints.  The only requirement is that unused 
hints are ignored.  This allows for portability between MPI 
implementations. 
 
Closing a file in MPI is also a collective routine.  This means 
that all the processes involved in opening the file must close the 
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file.  Like many collective routines in MPI, closing a file is not 
synchronizing.  This means that by closing a file, a process has 
no information regarding the state of other processes.  The other 
processes may or may not have closed the file.  While closing a 
file is not synchronizing in terms of other processes, it is 
locally synchronizing.  As mentioned previously, MPI has the 
option of buffering output before writing it to disk.  This means 
that just because a write operation has completed, there is no 
knowledge as to whether the data has been written to disk.  When 
closing a file is described as locally synchronizing, this means 
that closing a file forces any buffered data from the closing 
process has been flushed to the disk.  Again, this says nothing 
about other processes, only the local process.  Other processes 
may still have output data buffered. 
 
 
2.1.2 Derived Datatypes 
 
Though derived datatypes are part of the original MPI standard 
rather than MPI-2, they are used extensively with MPI-I/O.  For 
that reason a brief discussion is included here. 
 
Derived datatypes are used for I/O both for defining the data 
layout in memory as well as the data layout in the file.  When a 
datatype defines the data layout in a file, it is typically 
referred to as a filetype.  It is important, however, to realize 
that a filetype is simply a derived datatype, just like any other 
derived datatype.  It has no special meaning until it is used to 
set a file view.  This will be discussed in Section 2.1.2.1. 
 
As an example of why one would want to use a derived datatype to 
access memory when doing I/O, refer back to Figure 1.  Suppose the 
user wants to write just the resident (non-ghost) cells to disk.  
Using Unix style I/O, the user would need to make separate I/O 
calls for each column (assuming column major ordering).  However, 
by using derived datatypes, the user can define the memory access 
such that a single element represents just the resident cells.  
This would be done with a call to MPI_TYPE_SUBARRAY.  By providing 
the starting points and size of the resident subarray, the user 
can define the type and subsequently write the entire subarray 
with a single MPI-I/O call.  As will be seen in the following 
section, even if the data are not being stored on disk in a 
contiguous block of storage, the user need only make a single I/O 
call.  The ways this can improve performance will be covered in 
2.1.3.  Derived datatypes for accessing memory in I/O are used the 
same way as they are for message passing. 
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2.1.2.1 FILE VIEWS 
 
A file view in MPI defines how a process sees a file.  That is, it 
defines which portions of the file are visible to the process [2].  
A process may only read from and write to those portions of the 
file visible, as defined by the view of the file.  In fact, when 
reading (or writing), the parts of the file that are not visible 
to the process are automatically skipped.  File views are created 
by first creating a derived datatype that defines how the process 
sees the file.  This derived datatype is then used in a call to 
MPI_FILE_SET_VIEW.  Following the call that sets the view, the 
process accesses the file as if this view represented the entire 
file.  Additionally, views are set with a datatype that represents 
the elementary element types stored in the files.  This is the 
smallest element that may be read from or written to the file.  
For example, if this type is an integer, then individual bytes can 
not be accessed in the file. 
 
Returning to Figure 2, it is now possible to access the file with 
a single I/O call.  First a datatype must be defined that 
represents the process’ view of the file.  This can once again be 
done as a subarray.  By defining a subarray that represents just 
the shaded area of the larger array, the view has been defined.  
This datatype is then used as part of the call to set the view.  
Once this is done, the process can only access the shaded area of 
the file.  There are several ways that this file can be accessed.  
The user may simply read single elements from the file.  MPI will 
skip the non-shaded portions of the file automatically.  
Alternately, the user may access the shaded portion one column at 
a time.  The difference from the way this would have been done 
with Unix style I/O is that the user need not calculate where each 
column resides in the file.  Setting the view has done this.  
After reading the first column, MPI automatically adjusts the file 
pointer to skip the rest of the column and point to the start of 
the next column.  A third, and possible most efficient, way to 
access this data is to use both derived datatypes discussed above.  
A single element defined to represent the memory portion of Figure 
2 can be read from the file.  Since the datatype defined for the 
left side of Figure 2 tells MPI how to store the data inside the 
ghost cells, the user only needs to use a single element of this 
type with the file view discussed here.  This will cause a read 
operation to read just the shaded area from the file and store it 
in just the shaded area of the memory.  This not only makes the 
code easier to write and maintain, but as will be seen in Section 
2.1.3, may lead to greatly improved performance. 
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There are a number of common file access patterns that can be 
supported in this same way.  Some examples include block-cyclic 
data distribution (use MPI_TYPE_VECTOR to define the file view) 
and even irregularly distributed arrays.  By using a variety of 
datatype constructors, a user should be able to define about any 
memory and file layout.  This should allow the user to access non-
contiguous data in an easily recognized and straightforward 
manner. 
 
 
2.1.3 DATA ACCESS 
 
There are three aspects to data access: Positioning, synchronism, 
and coordination [3].  Figure 3 represents these three aspects.  
 
Positioning.  MPI provides three types of routines in regards to positioning: 
explicit offsets, individual file pointers, and shared file pointers. 

 
Explicit offset operations perform data access at the specific location given 
directly as an argument passed into the routine.  These calls do not update any 
file pointers.  These accesses are in relation to the file view discussed in 
Section 2.1.2.1 and the offsets are in terms of the elementary datatype used 
when setting the view.   
 
For each process, MPI maintains two file pointers for each open file.  One of 
these file pointers is the individual file pointer.  This is unique to each 
process and updates to it in one process do not affect the individual file 
pointers in other processes.  One can liken individual file pointers to file 
pointers used in Unix style I/O.  Individual file pointer operations access the 
file according to the implicit offset provided by the calling process’ 
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individual file pointer.  The calling process’ individual file pointer is 
updated accordingly upon completion of the operation. 
 
MPI also maintains a shared file pointer for each open file.  This pointer (as 
its name suggests) is shared between all processes.  Shared file pointer 
operations access the file according to the implicit offset provided by the 
shared file pointer.  The calling process’ individual file pointer is neither 
used nor updated.  Upon completion of the operation, the shared file pointer is 
updated, with this update being reflected at all processes that were part of 
opening the file. 
 
Synchronism.  Synchronism in MPI has nothing to do with other processes, but 
rather the ability to use data buffers involved in an operation.  It is 
important to keep this in mind.  MPI-I/O offers both blocking and non-blocking 
I/O routines.  Non-blocking operations return immediately.  It is not safe to 
reuse user buffers until the non-blocking operation has been completed with a 
test or a wait, just like non-blocking communication.  Blocking routines do not 
return until a user buffer can be safely re-used.  In terms of reads, this means 
the data has been read and is available in the user buffer.  Blocking operations 
performing writes to files do not return until the data has been copied out of 
the user buffer.  It is important to point out here that this does not mean the 
data has actually been written to disk when a blocking write returns or a non-
blocking write is completed (with a test or wait).  MPI is free to copy the data 
to a buffer and write it out to disk at a later time.  In fact, this method is 
often used for optimization.  The user must make no assumptions about data 
availability simply because a write operation has completed.  This is similar to 
the completion of a blocking send in MPI giving no information about whether the 
message has been received.  Methods for assuring data have been written to disk 
will be discussed in Section 2.1.5. 
 
Coordination.  MPI offers both collective and non-collective I/O routines.  
Non-collective operation depend on no other processes and work how one would 
expect them to work.  Collective routines, on the other hand, require the 
coordination of all the processes that opened the file.  While these routines 
are collective, they are not synchronizing.  Even if a process has completed a 
collective I/O call, no information is known about the status of the other 
processes. 
 
MPI provides a complete combination of these different data access 
aspects.  That is, each data access routine relating to 
positioning (explicit offset, individual file pointers, shared 
file pointers) has both a blocking and a non-blocking version.  
Further, each of these routines (explicit offset – blocking, 
explicit offset – non-blocking, etc) has both a non-collective and 
a collective version.  It should be noted that non-blocking 
collective routines are referred to as split-collectives and 
require both a start call and a finish call. 
 
The semantics of data access in MPI are fairly loose.  This gives 
implementers a lot of leeway for the purpose of performance 
optimization.  There are two primary ways improved performance is 
achieved.  The first is through buffering.  Buffering data that is 
to be written to disk offers two ways to optimize.  One way is to 
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keep the data in a buffer in case subsequent writes allow the 
library to marshal data into contiguous blocks of storage data.  
As has been mentioned, storage devices perform best with large, 
contiguous blocks of data.  Another way buffering can improve 
performance is by hiding the time needed to perform I/O.  If there 
are dedicated I/O nodes, buffering can allow these I/O nodes to 
perform I/O while the compute nodes are busy continuing with the 
computation. 
 
One of the most important ways performance can be improved is 
through collective operations.  By using collective routines, the 
user is letting the library know that all the processes are going 
to be performing I/O at about the same time.  The library can use 
this knowledge to better marshal data.  Returning to Figure 2, if 
the library knows that all four process are going to write to disk 
(and this constitutes the entire file) it can marshal all the data 
into a single output buffer and make a single write to disk.  
Without this knowledge it would most likely write each process’ 
data column by column, making many more disk access than 
necessary.  
 
As mentioned previously, buffering can cause difficulties in terms 
of file consistency between processes.  These issues will be 
covered in more detail in Section 2.1.5. 
 
 
2.1.4 FILE INTEROPERABILITY 
 
MPI says nothing about how routines should be implemented.  This 
extends to files created through MPI-I/O.  MPI says nothing about 
how these files should be stored.  Files may be stored as ordinary 
files, compressed, stripped across a disk array, or some other 
way.  The only constraint MPI places on file format is that if the 
file is not stored as a linear sequence of bytes (like a typical 
file), then there must be a utility provided for converting the 
file to a linear sequence of bytes, as well as utilities for 
common file operations such as copying and deleting.  This ensures 
that any non-MPI program will be able to read the file, though it 
may first need to be converted [2]. 
 
Some users may wish to create files on one architecture and then 
be able to read them on another architecture.  This is generally 
not possible due to different data representations on different 
architectures.  In order to do this there must be some sort of 
data conversion.  This is supported by MPI.  When a process sets a 
file view, it specifies if the data representation is to be 
native, internal, or external32.   
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When native representation is used, the data are stored in the 
file exactly as they are in memory.  This means that files created 
with this representation cannot be read on a different 
architecture.  This file can be read by programs using the same 
MPI implementation on the same architecture.  There is no 
guarantee it can be read using other MPI implementations because 
the file structure may be different.  This is a non-portable 
representation, but typically provides the best performance. 
 
The internal representation provides some degree of portability.  
The implementation may store the data in any format it chooses and 
will perform type conversions if necessary.  The environment in 
which the file can be re-used will be implementation dependent and 
must be documented [3].  A particular MPI implementation may use a 
data representation that allows the file to be read on any 
architecture using the same MPI. 
 
The external32 representation causes the data to be stored in a 
specific data format as defined by MPI.  This format is basically 
IEEE big-endian format.  This ensures that a file written with 
this data representation can be read by any MPI implementation on 
any architecture.  This is, of course, assuming external32 format 
is supported by the MPI implementation being used.  Since data 
conversion is being performed, there may be a loss of data 
precision and poorer performance can be expected. 
 
 
2.1.5 CONSISTENCY SEMANTICS 
 
As discussed previously, there are many instances where buffering 
data can improve performance.  This is particularly true with 
regards to writing data to disk.  Because of this possible 
buffering, file consistency becomes an issue.  One must remember 
that just because a write operation has completed, there is no 
guarantee the data are actually written to disk and available to 
other processes.  Keep in mind also that collective routines are 
not synchronizing. 
 
Consistency is only an issue if multiple processes are accessing 
the same file and at least one of the processes is writing to the 
file.  Further, if no two processes access the same location in 
the file, consistency is maintained.  Therefore, consistency 
semantics are of interest when multiple processes access the same 
location of the same file, with at least one process writing to 
the file. 
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Generally, there is only one way for a process to be guaranteed 
access to data written by another process.  The reading process 
must be sure the writing process has completed writing the data 
and some file synchronization has been performed.  There are three 
methods to ensure file synchronization: MPI_FILE_SET_ATOMICITY, 
MPI_FILE_SYNCH, and closing a file.  These are all collective 
operations and a process should complete the operation and know 
the other processes have completed the operation to be guaranteed 
consistency. 
 
MPI_FILE_SET_ATOMICITY is a collective operation that ensures all 
subsequent writes cause the data to be flushed to disk.  This 
means, if atomicity is true, once a process has returned from a 
blocking write (or completed a non-blocking write) the written 
data have been transferred to disk and are available to other 
processes.  Although this is a collective operation, it is not 
synchronizing.   
 
MPI_FILE_SYNCH is a collective operation that acts much like a 
flush.  A synch call causes any buffered output data to be written 
to disk.  Since it is collective, all processes must call it and 
this insures data written by other processes are accessible.  
Although this is a collective operation, it is not synchronizing. 
 
Closing a file is a collective operation that acts much like a 
synch, except it causes the file to be closed.  That is, it causes 
all buffered data to be written to disk before the file is closed.  
Thus, if a process closes a file and knows another process has 
closed the file, it also knows it can access all the data written 
by said process. Although this is a collective operation, it is 
not synchronizing. 
 
It is important to remember these are all collective operations 
and they must be used appropriately.  Knowing another process has 
called one of these routines is not enough to ensure consistency.  
The reading process must have called the synchronizing routine as 
well.  This is because MPI can buffer input data as well as output 
data.  MPI may pre-fetch data from the disk.  If the data on disk 
change after the pre-fetch, a subsequent read will get the out-of-
date data unless the consistency semantics have been followed. 
 
 
3. APPLICATIONS 
 
This section presents two EQM (Environmental Quality Modeling) 
applications that have been suffering from I/O bottlenecks.  The 
I/O characteristics of the code as well as the original approach 



 13 

to I/O are explained.  This is followed by a description of the 
approach taken for converting the existing I/O to MPI-I/O as well 
as a discussion of performance results where available. 
 
3.1 LBMPI 
 
LBMPI is a Contaminant Dispersion model EQM challenge code being 
used by Robert Maier at the Army HPC Research Center.  The code 
performs computation using what are conceptually four 3-
dimensional arrays.  In practice, however, the four 3-dimensional 
arrays are stored as a single 4-dimensiona array. This is done to 
achieve a better cache-hit ratio.  Each of the 3-dimensional 
arrays consists of interior resident cells as well as a layer of 
ghost cells.  The application uses a block-block data 
distribution.  This code is experiencing a severe I/O bottleneck.  
Running on an IBM SP2 using 512 processors, a typical run requires 
approximately 12 hours of compute time and an additional 12 hours 
of I/O time. 
 
 
3.1.1 I/O CHARACTERISTICS 
 
This code writes each of the conceptual 3-dimensional arrays out 
to a separate file.  The result is four global files that each 
contains the appropriate data from all the processes.  The 
resulting files store the data in their natural order.  That is, 
the data are written the same regardless of the number of 
processes. 
 
The code uses Fortran’s column major ordering with the first 
dimension being the number of conceptual 3-dimensional arrays 
(four in this case).  This results in no two adjacent values in 
one of the 3-dimensional arrays being stored in adjacent memory 
locations.  Thus the 3-dimensional arrays that need to be written 
are not stored in contiguous memory, and no two elements stored in 
adjacent memory locations.  Furthermore, since a block-block data 
distribution is used, the data from a particular process is not 
stored in a contiguous block on disk.  Each column from the 3-
dimensional array is stored in a contiguous block on disk, but 
adjacent columns are not. 
 
 
3.1.2 INITIAL SOLUTION 
 
The original solution attempted to get parallel performance using 
standard Unix style I/O calls.  When data was to be written to 
disk, each process would open the output file.  Once the file was 
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opened each process would calculate where in the file its data 
were to be stored.  Each process then wrote the data directly to 
the calculated offset using a standard “write” call.  A nested do 
loop was used to loop through every column in the 3-dimensional 
array, and an implied do loop was used to write each element of 
the column.  As was mentioned above, the column elements are not 
stored contiguously in memory, so it was impossible to write each 
column out as a single block of data. 
 
Although each process can make these calls concurrently, the 
application was not using a parallel file system.  Thus the I/O 
calls were serialized, resulting in no real parallelism.  
Furthermore, since the data were stored non-contiguously in memory 
and no marshaling of data was used, performance was poor. 
 
A final note on the original solution relates to convention.  The 
output is written to four separate files because it has always 
been done this way.  Since the data are stored in a single 4-
dimensional array, it would possibly be more efficient to write 
the data to a single output file.  This would allow contiguously 
stored blocks of memory to be written to disk. 
 
3.1.3 MPI-I/O SOLUTION 
 
There are two issues here that can be addressed through MPI.  
These are the memory access and the file access.  In both cases 
the application is accessing a portion of a large array.  The 
application accesses each conceptual 3-dimensional array 
separately.  These are really just sub-arrays of the larger 4-
dimensional array.  On disk, each process is accessing a 3-
dimensional block that it a part of the larger 3-dimensional 
global file.  Both situations lend themselves nicely to the MPI 
SUBARRAY datatype.  Thus SUBARRAYS are the basis for the MPI 
solution. 
 
Four distinct solutions were developed.  First, a solution writing 
to a single file and a solution writing to four separate files 
were developed.  Each of these solutions has a variation using 
non-collective I/O operations and a variation using collective I/O 
operations.  The basic steps taken for each solution are as 
follows: 
 

1. Set up arrays defining the sub-arrays in memory 
2. Set up arrays defining the sub-array on disk 
3. Construct new datatypes defining memory (mtype) and file (ftype) access 

(use MPI_TYPE_CREATE_SUBARRAY) 
4. Commit these new datatypes 
5. Open the file using MPI_FILE_OPEN 
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6. Set the file view using the datatype ftype, as defined in step 3 
7. Make a single call to MPI_FILE_WRITE to write a single element of type 

mtype, as defined in step 3 
8. Close the file using MPI_FILE_CLOSE 
9. Free the datatypes using MPI_TYPE_FREE 

 
 
3.1.4 PERFORMANCE  
 
Table 1 presents the benchmarking results of each of the four 
solutions.  These results were obtained by taking the average time 
for five execution runs on the Cray T3E located at the US Army 
Corps of Engineers ERDC in Vicksburg, MS.  These runs used the 
Cray T3E’s native MPI implementation.  The first column lists the 
number of files written to (one and four).  The second column 
lists the time in seconds used for I/O using non-collective 
operations.  Finally, the third column lists the time in seconds 
used for I/O using collective operations.  As a comparison, the 
original (non-MPI) solution used 5402 seconds to complete the I/O. 
 
 
Number of files Non-collective (time) Collective (time) 
        1 889.4 seconds 110.2 seconds 
        4 4144 seconds 58.64 seconds 

Table 1.  Total I/O time for LBMPI 
 
 
Some of these numbers may seem a bit surprising at first glance.  
Looking first at the numbers for non-collective operations, there 
is very little improvement when writing to four separate files, as 
compared to the non-MPI results.  This indicates that MPI is not 
marshaling the output data.  Better performance is achieved 
writing to a single file, but this can be attributed to writing 
large contiguous blocks from memory as opposed to completely non-
contiguous memory access as in the four-file case.  However, since 
collective operations are not used, MPI does not appear to marshal 
any data to allow larger blocks of data for file access. 
 
The numbers in the third column are very instructive.  It has been 
stated several times that collective operations present the best 
opportunity for I/O optimization.  This is reflected in these 
numbers.  Since collective operations were used, it appears MPI 
used the knowledge that each process would be performing I/O to 
marshal data and allow fewer disk accesses using larger blocks of 
data.  In the single file case, it may be possible to make just 
one disk access by marshaling the data from every process into a 
single output buffer. 
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The fact that using collective operations to write to four files 
outperforms using collective operations to write to a single file 
is also instructive.  No hints were used when creating these 
files.  It appears the MPI being used creates files on a single 
disk if no hints are offered.  This means there is no true 
parallelism available for the I/O (there is only a single 
read/write head per disk).  The reason writing to four files is 
faster is that each of the files may reside on different disks.  
This means each file can be accessed concurrently.  The next step 
to be taken will be to use hints to get MPI to have the file 
system stripe the single file across multiple disks.  This should 
introduce true parallelism to the I/O and performance should 
improve.  This performance improvement should be seen for both the 
single file case and the four file case.   
 
3.2 CE-QUAL-ICM 
 
CE-QUAL-ICM is an EQM code developed at the Army Corps of 
Engineers ERDC in Vicksburg, Mississippi.  The code performs 
computation using a large number of arrays with the parallel 
version distributing the arrays in an irregular fashion.  These 
arrays also contain a high percentage of ghost cells (typically 
20%-35%).  Typical production level executions perform ten-year 
simulations. 
 
3.2.1 I/O CHARACTERISTICS 
 
A typical execution run of this application writes intermediate 
results after every simulation month.  Each successive write of 
intermediate results is appended to the previous intermediate 
results.  These intermediate results consist of all the resident 
cells of all the arrays being used in the computation.  Since the 
arrays are irregularly distributed, no assumptions can be made 
about any two cells being stored in contiguous locations in the 
output file.  In fact, it is possible that two resident cells are 
stored in a different relative order on disk than in memory.  
Figure 4 shows an example of what this might look like.  There is 
a mapping available that defines where each resident cell in each 
process gets stored in the file.  This mapping is the same for 
each output array and for each output iteration.  That is, for a 
particular process, the same mapping is used many times. 
 
 
3.2.2 INITIAL SOLUTION 
 
The original solution requires post-processing.  Each process 
writes results to a process specific file.  During an output 



 17 

phase, each process opens its own file, and writes every array to 
that file.  The entire arrays are written including ghost cells.  
Additionally, the arrays are written in the same order as the are 
stored in memory. 
 
Following the execution run, a sequential post-processing step is 
required.  The post processor reads two mapping files.  The first 
mapping file defines which cells from each array, for each 
process, are resident cells.  The second mapping defines where  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 4. Irregular data distribution 
 
 
each resident cell, for each process, is to be stored in the 
global output file.  These mappings repeat for each array and for 
each iteration. 
 
Once the mappings have been read, the post processor opens a large 
global output file.  This is the file that will store the final 
results.  It then enters an outer loop to process each sequence of 
intermediate writes.  For each intermediate write, the post 
processor loops through the number of processes used to create the 
output.  For each process, the process’ output file is opened and 
all the data written for the particular iteration are read.  Then 
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each element of each array is checked to see if it is a resident 
cell.  If it is a resident cell, the second mapping is used to 
determine where in the global output the value belongs.  The value 
is stored in this location in the appropriate large global output 
array.  There is a global output array for each of the arrays 
written to the file. 
 
Once this has been done for all the processes, the global output 
arrays are full.  The post processor then simply writes each of 
the global output arrays to disk.  Once all the write iterations 
have been processed, the post processor closes the global output 
file.  Once this is complete, the process specific files may be 
discarded. 
 
3.2.3 MPI-I/O SOLUTION 
 
The challenge is to find an efficient solution using MPI that 
eliminates the post-processing step.  It must be a solution that 
does not increase the execution time substantially. 
 
Again there are two main issues that can be addressed by MPI.  
These are memory access and file access.  Since the arrays are 
irregularly distributed, file access is going to be irregular.  
Also, since there are ghost cells throughout the arrays (not just 
the beginning and end) memory access is irregular.  Irregular 
access lends itself very well to MPI’s indexed datatype.  MPI2 
offers a new datatype called INDEXED_BLOCK that defines a datatype 
with blocks of data all of the same size.  This is ideal for this 
problem.  One problem not mention previously is that any datatype 
used for defining a file view must provide for non-decreasing 
access to the file.  This means an indexed datatype that defines 
accesses like those shown in Figure 4 cannot be used for a file 
view.  No such restriction exists for memory access. 
 
The MPI solution is based on the INDEXED_BLOCK derived data type 
for both memory and file access.  The map arrays are already 
available as discussed in Section 3.2.2.  However, the mapping 
defining where each resident cell goes in the global file must be 
non-decreasing.  This is not guaranteed.  What is done is this map 
array is sorted.  At the same time, the map array that defines 
which cells are resident cells is permuted to match this sorting.  
At this point memory access may not be non-decreasing, but file 
access is.  These map arrays are used to construct a derived 
datatype using MPI_TYPE_CREATE_INDEXED_BLOCK.  The map array 
defining the resident cells is used to construct the datatype for 
memory access (mtype), and the map array defining where resident 
cells go in the global file is used to construct the datatype for 
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file access (ftype).  The file type (ftype) is then used to set 
the file view.  This file view needs to be updated after every 
write to reflect the new position in the file so previously 
written data is not overwritten. 
 
The MPI solution has a master process read some global data needed 
to calculate displacements into the file.  These data are 
broadcast to the rest of the processes.  The master process then 
reads the map arrays for each process and sends them to the 
appropriate processes.  Once this is complete, each process has 
all the information needed for I/O.  Each process must sort the 
appropriate map array while permuting the resident cell map array.  
Once this is done, each process constructs the two datatypes as 
describe above.  The first time any data are written, the file 
starts at the beginning.  On subsequent writes, however, the data 
previously written must be skipped.  This is possible by keeping 
track of the total number of bytes written.  This number is used 
when setting the file view. 
 
The basic outline of the MPI solution is as follows: 
 

1. Master process sends necessary information to other processes 
2. Each process constructs INDEXED_BLOCK datatypes as described above 
3. Each process opens the global output file 
4. Each process sets displacement to 0 
5. Each process sets the file view using ftype as described above 
6. For each array to be written,  

7. Each process writes a single element of type mtype as described 
above.  This causes all the resident cells to be written to the 
file in the appropriate location 

8. Displacement is updated by adding the total number of bytes 
written in step 7 

9. The file view is set again using the new displacement.  This 
causes all the previously written data to be skipped 

10. Steps 6 though 9 are repeated for each series of writes (typically 
every simulation month) 

 
Unfortunately, MPI_TYPE_CREATE_INDEXED_BLOCK is not supported by 
all implementations of MPI.  For this reason this type was 
replaced with the more general MPI_TYPE_INDEXED.  The INDEXED type 
is the same as the INDEXED_BLOCK type except the blocks can have 
different sizes.  By using an array of sizes where every size is 
1, the INDEXED type is the same as the INDEXED_BLOCKED type with 
block size of 1.  This is sufficient for the above solution. 
 
3.2.4 PERFORMANCE  
 
The above solution has been completely implemented.  
Unfortunately, the implementation is not yet in working order.  
The current status is that the code core dumps during 
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initialization.  While this is in a part of the code added to 
support the MPI-I/O solution, it is prior to any actual MPI-I/O 
activity.  It seems to be an obscure bug and the testers simply 
ran out of time prior to this writing.  Work on getting the code 
to run successfully continues. 
 
4. CONCLUSIONS AND FUTURE WORK 
 
The use of parallel I/O potentially offers significant improvement 
in I/O performance.  This can be accomplished by a number of 
methods, including striping files across multiple disks and 
marshaling data to achieve coarser-grained data access.  However, 
different architectures provide different parallel file systems, 
each with different characteristics.  In order for a user to be 
able to get good performance on many different architectures, the 
intricacies of the I/O subsystem of each architecture would need 
to be understood.  This is an unrealistic expectation for a 
typical user.  Therefore, a standard interface is needed.  MPI-I/O 
offers a simple API that is portable across many different 
architectures.  If a user takes the time to study the proper use 
of MPI-I/O, that user gains the ability to write code that 
performs parallel I/O on all architectures supporting the MPI-I/O 
subset. 
 
In addition to improved performance, programs that use MPI-I/O may 
be easier to maintain.  The use of derived datatypes with MPI-I/O 
makes it easier to understand what data and file access patterns 
are being used.  This makes it easier to understand the program 
and thus easier to maintain the program. 
 
Once the concepts of MPI-I/O are understood, it is not difficult 
to convert applications using traditional Unix style I/O to use 
parallel I/O through MPI.  Once the I/O characteristics had been 
studied and understood for the application discussed in Section 
3.1 (LBMPI), it took less than one week to add the MPI-I/O calls.  
Likewise, once the I/O characteristics of the application 
discussed in Section 3.2 were understood, it took less than a week 
to insert the necessary code to use MPI-I/O.   
 
Future work will involve continuing work on the applications 
discussed in this paper as well as some new initiatives.  Work on 
getting the MPI-I/O version of the CE-QUAL-ICM code running will 
continue.  Additional work on the LBMPI code will also continue.  
There are plans to investigate the effects of adding hints to the 
LBMPI code.  This should allow stripping of the output files, 
which should lead to improved performance. 
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There a re also plans to investigate the use of different data 
formats to support better file interoperability.  One such format 
is the Hierarchical Data Format (HDF). The HDF5 format will be 
studied and there are plans to investigate parallel I/O support 
for HDF5 [4]. 
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