GRID-ENABLING PROBLEM SOLVING
ENVIRONMENTS: A CASE STUDY OF SCIRUN
AND NETSOLVE

Michelle Miller * Christopher Moulding T Jack Dongarra ¥ Christopher Johnson

Abstract

Combining the functionality of NetSolve, a grid-based middleware
solution, with SCIRun, a graphically-based problem solving environ-
ment (PSE), yields a platform for creating and executing grid-enabled
applications. Using this integrated system, hardware and/or software
resources not previously accessible to a user become available com-
pletely behind the scenes. Neither the SCIRun system nor the SCIRun
user need to know any details about how these resources are located
and utilized. A SCIRun module merely makes an RPC-style call to
NetSolve via the NetSolve C language API to invoke a certain routine
and to pass its data. Distributed computation and the details of re-
mote communication are completely abstracted away from the SCIRun
framework and its end user.

1 Overview

The idea of a compute grid [2] is analogous to the idea of the electric
power grid. One should be able to “plug in” to the compute grid
to obtain computing services the way one can plug into the electric
power grid to obtain electrical services. All the complicated details
of electrical power generation, storage, and dissemination are hidden
from the electricity user, who merely plugs devices requiring power

*Department of Computer Science, University of Tennessee, Knoxville, TN 37996
miller@cs.utk.edu

fSchool of Computing, University of Utah, Salt Lake City, UT 84112
moulding@cs.utah.edu

iDepartment of Computer Science, University of Tennessee, Knoxville, TN 37996
dongarra@cs.utk.edu

§School of Computing, University of Utah, Salt Lake City, UT 84112 crj@cs.utah.edu

into the electric power grid via a wall socket. In much the same way,
the details of the compute grid need to be hidden from the computing
user for ease of use. If applications cannot make use of computing
infrastructure easily, the infrastructure will remain unused.

However, there are many issues involved in grid-enabling software,
specifically applications and entire problem solving environments. Grid
computing [2] seeks to go beyond mere networked computing by pro-
viding some infrastructure to support the use of resources in the way
one would access/utilize a single machine, instead of a network of them.
For example, Globus provides a number of services which resemble the
services provided by a traditional single machine operating system,
such as UNIX. The question is how to build applications or executa-
bles for such a system. Usually, one compiles executables on the target
architecture (i.e.,UNIX flavor), so that the executable is properly con-
figured to run on that platform (or even on a specific machine). To
extend the operating system metaphor to the compute grid, we must
ask how a grid application is constructed, compiled, or executed. Must
it be written from scratch to take into account that its runtime envi-
ronment will be a grid or can an existing application be easily modified
to be grid-enabled? This question of writing grid-enabled applications
really extends our notion of portable code. Taking into consideration
running in a grid environment, truly portable code must be able to
run on many hardware platforms as well as a variety of metacomput-
ing environments, such as Condor [?], Globus [?], Legion [?], Ninf, and
NetSolve. Is this a reasonable burden to place on application code?
How can we make grid environments easier to program to?

NetSolve [?], with its simple RPC semantics, exemplifies an easy-
to-use plug to enable applications to plug into the compute grid. Net-
Solve is a grid-enabled middleware system that allows users to access
computational resources, both hardware and software, that are dis-
tributed across a network. It provides mechanisms to permit users to
call remote libraries simply. Scientists and engineers can make use of
libraries without the need to locate, configure, compile, install, and
upgrade these libraries.

SCIRun [?, 3] is a Problem Solving Environment (PSE) that could
benefit from having access to the compute grid, particularly access
to remote numerical libraries. SCIRun is a scientific problem solv-
ing environment that allows the interactive construction, debugging,
and steering of large-scale, typically parallel, scientific computation-
s. SCIRun can be envisioned as a “computational workbench,” in
which a scientist can design and modify simulations interactively via
a component-based visual programming tool.

We provide a case study of grid-enabling a problem solving envi-
ronment, in this case using NetSolve to grid-enable SCIRun. Using
NetSolve as a mechanism to plug SCIRun into the grid is simple and

fairly unobtrusive to the PSE. SCIRun can leverage grid software re-
sources, such as existing tuned numerical libraries, without needing to
fold library source code into its releases. Also, SCIRun doesn’t need
to worry about portability for these libraries. NetSolve facilitates het-
erogeneous environments, so a user can run a client from a different
machine architecture than the one running the library (server). In this
way, NetSolve solves the portability problem: libraries that are tied
to one or two machine architectures can be used by a NetSolve client
running on almost any type of machine.

2 Composing SCIRun and NetSolve
2.1 SCIRun

SCIRun is designed to provide high-level control over parameters in an
efficient and intuitive way, through graphical user interfaces and scien-
tific visualization. The cause-effect relationships within the simulation
become more evident as the scientist adjusts parameters, thus allow-
ing the scientist to develop more intuition about the effect of problem
parameters, to detect program errors, to develop insight into the op-
eration of an algorithm, or to deepen an understanding of the physics
of the problem(s) being studied. SCIRun fosters the asking of “What
if?” questions.

SCIRun attempts to be a single-stop, useable, interactive problem
solving environment for scientists and engineers. SCIRun provides a
“whole” solution by integrating the normally discrete processing phas-
es of modeling, simulation, and visualization into one problem solving
environment. An integrated system frees the user from learning mul-
tiple systems and the data conversion headaches of moving data from
one program to another. Next, in presenting a visual programming
language, SCIRun appeals to the engineer/scientist with little “tra-
ditional” programming knowledge. Finally, SCIRun allows a user to
interact with the running simulation by manipulating various parame-
ters, in effect guiding or steering the computation. These mechanisms
allow a user to adjust the computation without losing all of the calcu-
lations already performed, but only those that need to be redone due
to changes in the parameter space. We believe that allowing a scientist
more interaction with her simulation yields a more satisfying scientific
tool.

The SCIRun architecture is built around the metaphor of a dataflow
graph of computational modules constructed by the user, which is in
effect a visual program. The modules are at a coarse grain of function-
ality. The modules, represented visually as boxes, are linked together
using wires (data pipes). Data flows from modules at the top of the

graph to modules at the bottom of the graph. The linkage enforces da-
ta type checking, as one cannot wire together a module with an output
parameter that does not match the input parameter of the downstream
module.

Execution is multi-threaded to optimize performance. Each S-
CIRun module has its own thread of execution and runs as soon as
it receives all of its input parameters. In other words, concurrent
execution based on data dependency analysis, or task parallelism, is
provided. SCIRun is targeted toward shared memory symmetric mul-
tiprocessor (SMP) machines such as the SGI Origin 2000 and SMP
Linux PCs. SCIRun limits itself to the shared memory environment to
avoid using copying and/or marshaling to pass data between the vari-
ous components that make up the SCIRun system. This self-imposed
limit makes it difficult to extend SCIRun to be usable in a distributed
memory environment.

Computational steering is achieved by a user either manipulating
a geometrical object, or widget, within the visualization window or by
altering a parameter associated with a module through that module’s
GUL A dataflow dependency analysis is then performed to identify the
extent of the change to the dataflow graph. Only the modules affected
by the change will be recomputed. In this way, a user can interact with
her simulation without losing work unnecessarily.

2.2 NetSolve

NetSolve is designed to be a simple-to-use middleware system. Net-
Solve allows users to access additional hardware and/or software re-
sources available remotely. In this way, it promotes the sharing of these
resources within and between research communities in the computa-
tional sciences. A scientist can make calls to a library routine without
worrying about where the code is really installed. Through the use of
an intelligent agent, NetSolve automatically selects the nearest, least
busy machine that has the required software installed to execute the
requested routines.

A simple RPC-style call gives access to complicated software rou-
tines. NetSolve tracks which machines have computational servers run-
ning and with which library services they are provisioned. NetSolve
also tracks the workload of each server to yield the best choice of serv-
er for a given client request. In other words, NetSolve takes care of
the details of finding a machine on which to run the software routine.
In addition, NetSolve provides the ability to harness diverse machine
architectures to work together on a computation (heterogeneous com-
puting).

NetSolve seeks to reduce the headaches of maintaining software li-
braries. It addresses portability by permitting non-portable code to be

run from virtually any machine architecture. In addition, legacy codes
can be easily wrapped for use with new systems by using NetSolve.
add my picture?

NetSolve seeks to provide a blue collar grid computing solution
by tying together PSEs and grid resources (metacomputing environ-
ments). NetSolve functions both as the middleware between PSEs and
metacomputing backends and as a metacomputing backend that pro-
vides grid services to clients. NetSolve acts as a middleware plug to
the grid by supporting interfaces to various front-ends, such as PSEs,
and to various grid backends, such as Globus.

NetSolve’s interfaces to PSEs such as Matlab and Mathematica ex-
tend the functionality of PSEs to software and hardware not supported
by the native PSEs. In this way, NetSolve enables PSEs to make use
of software without requiring that the routines be provided by the
PSE. For example, a user could invoke ScaLAPACK routines on an
Massively Parallel Processor (MPP) through a NetSolve call within a
Matlab interface even though native Matlab does not run on an MPP,
nor does it have access to ScaLAPACK routines. In this way, we can
extend the hardware and software on which these PSEs can operate
(i.e.,run routines on platforms outside of those supported by the PSE).

The NetSolve architecture is based on a client/server design with
an intelligent agent that keeps the state of the system so a client only
needs to know where an agent is located. NetSolve works through
the use of persistent servers that service requests made by a user call
invoking the NetSolve client. Each NetSolve server is preconfigured to
run a set of services (or wrapped library routines) at compile time. The
server registers itself and its set of services with the NetSolve agent with
which it chooses to be associated upon startup. Then, the agent takes
in client service requests and returns the “best” server for the client to
use based on proximity and machine workload. Next, the client sends
the library routine call and data to the server for processing. Finally,
the server returns the result to the client.

NetSolve provides simple RPC-style calls as its client APL. All a
client sees is that it makes a call and a result is returned. All the intel-
ligence in the system happens “behind the scenes.” NetSolve supports
APIs for C and Fortran programming languages, as well as for Matlab
and Mathematica problem solving environments to facilitate use by
programmers and non-programmers alike.

Finally, NetSolve provides extensible service creation. NetSolve
provides a Problem Description File (PDF), which is merely an IDL,
for generating wrappers to library code. The various problems in a
Problem Description File then become NetSolve services which can
be enabled by server instances. In this way, one can create NetSolve
services that can be run by NetSolve servers from any standalone code
module.

Different proxies support multiple metacomputing backends. Net-
Solve supports different grid computing backends through the use of
client proxies which know how to talk to the different backends. For
now, one cannot mix backends, but must choose one grid backend.

All elements of NetSolve run on most UNIX platforms. In addition,
NetSolve has a Windows 95/98/NT client interface.

3 Grid-enabling the SCIRun PSE

Must a grid application be written from scratch to take into account
that its runtime environment will be a grid or can an existing applica-
tion be easily modified to be grid-enabled? We believe it is impossible
to not take into account the runtime environment of the applications
code. There are too many assumptions that must be made about the
environment to make a totally general piece of code. However, grid
environments should not be complex to program. NetSolve should
provide a middle layer between an applications programmer/PSE and
a grid environment to abstract away the details of interacting with a
grid. Tt should present the simplest of interfaces to programmers/users.

NetSolve, as grid middleware, provides an easy-to-use plug for an
existing application to grid-enable itself. However, grid-enablement is
not automatic — application programmers must instrument their code
with calls to use grid resources.

3.1 Methods

Our goal is to allow a SCIRun user to easily choose whether or not to
use NetSolve within their application. Creating a set of grid-runnable
components (modules) that are either interchangeable with pre-existing
SCIRun components or are new components is a clear, but unobtru-
sive way of integrating NetSolve capabilities into the SCIRun PSE. A
SCIRun applications programmer must target their application to be
run on the grid by selecting grid-enabled modules. But these modules
are simple to grid-enable through the use of a few calls to NetSolve.
The application does not have to jump through alot of hoops to in-
strument their application and get it running on a NetSolve grid.
Our initial approach is to extend the functionality of a few SCIRun
modules in a domain-specific way. We built a NetSolve-enabled s-
parse matrix solver module, and plan to create a matrix solver for
dense problems next. The NetSolve-enabled matrix solver modules
use highly tuned numerical libraries which are accessible through Net-
Solve’s client API. In this way, we extend the functionality of the S-
CIRun framework, while also providing a mechanism for distributing
the compute-intensive code, the solve, to an MPP. Using NetSolve to

call these sparse and dense numerical library routines allows us the
ability to run MPI on distributed memory processors for free (i.e.,we
didn’t have to find a way to merge SCIRun’s multi-threaded environ-
ment with MPT). Since each module in SCIRun has a separate thread
of execution, the module functions essentially as an atom or unit of
computation. This execution model fits well with NetSolve’s black box
approach. NetSolve takes care of finding a server that can run the
package (e.g.,PETSc) and it knows how to talk MPI, so all of those
details are abstracted away from the PSE.

The NetSolve-enabled modules are patterned after the existing S-
CIRun matrix solver module, SolveMatrix, that supports sparse matri-
ces and provides several iterative methods (e.g.,variations of conjugate
gradient, Jacobi, Richardson, and minimal residual methods). The o-
riginal module allows a user to choose the method to be used and to
adjust parameters such as error tolerance, maximum number of iter-
ations, and preconditioner. The NetSolve SparseSolve module allows
the user to choose a numerical package to use for the solve as well
setting the error tolerance and maximum number of iterations. Sparse
iterative and sparse direct methods are supported, enabling a user to
choose either PETSc or Aztec for an iterative solve or MA28 or Su-
perLU for a direct solve. Depending on the method chosen, a netsolve
call is formatted and a client request created for one of the services
listed above. We used a NetSolve blocking call, so the call waits until
it receives the result back from whichever server the NetSolve agent
assigns to the request. The user must specify a NetSolve agent in her
environment before executing this module. Also, we had to build and
link the NetSolve client library into the SCIRun PSE executable.

In general, a module writer must translate between the SCIRun
object/datatype (C++ class) and the parameters required by the Net-
Solve API to the target numerical library or user-defined service. A
SCIRun module receives its input from input ports of particular types
and sends out its output through output ports that are also typed. So,
input data must be converted for the call to NetSolve, and the output
from NetSolve must be converted back into the SCIRun datatype.

In our specific case, we sought to make components plug-compatible
or interchangeable which required us to preserve the SCIRun solver
“interface” (i.e.,the number and types of module inputs and outputs).
Both modules take essentially the same input: a sparse matrix and a
vector (right-hand side), although it is conceivable that one could wire
a dense matrix into the normal SCIRun solver and that is prohibit-
ed with the NetSolve SparseSolve module. A dense matrix would be
treated as a sparse matrix by the normal SCIRun solver, so it is not
pragmatic to do so. Both modules output a vector (left-hand side).
So, the original SCIRun module and the NetSolve-enable SparseSolve
module are interchangeable within any given SCIRun application.

3.2 Preliminary Results

Creating a SCIRun module to make use of a NetSolve service was sim-
ple. Three lines of code enabled a SCIRun module to utilize NetSolve
for the numerical solve. We created a SparseSolve module which can
be used in place of the normal SCIRun SolveMatrix module. The only
difference is that the module uses NetSolve to call a standard sparse
package to do the solve. Preliminary results show the NetSolve-enabled
PETSc service able to solve problems the normal SCIRun solver cannot
solve.

4 Related Research

Work investigating grid-enabling entire problem solving environments
is relatively new, with many open research questions. The most pop-
ular and widespread Problem Solving Environments (PSEs) are “pro-
grammed” in the language of math: Matlab, Mathematica, and Maple.
NetSolve provides interfaces to Matlab and Mathematica, allowing
users of these PSEs to leverage the power of the grid via NetSolve
(i.e.,gain access to additional hardware and software that is not pro-
vided within these systems).

As far as work investigating running applications on the grid, most
of the work has focused on writing new applications which presuppose
the existence of a grid. This allows them to program to the specifics of
a particular grid environment. The Globus team wrote an interesting
grid application that gathers data from a remote high-end instrument,
a synchrotron light source; configures the resources needed to perfor-
m tomographic image reconstruction from grid resources; and allows
a user to steer the computation by selecting and altering parameter
values and to visualize the results [4].

However, some investigations have used some pre-existing code to
cobble together grid applications. Casanova, et al. [1] grid-enabled
an existing Monte Carlo simulator for neuron functions called MCell.
They used AppLeS [?] and NetSolve to collect resources and schedule
a massively parallel parameter space search that allowed biomedical
researchers to make strides in their research.

Finally, previous work on a distributed version of the SCIRun PSE
investigated executing portions of a SCIRun application program re-
motely. This work showed feasibility [?], but the work stopped short
of grid-enabling the SCIRun problem solving environment. However,
since it was woven into the fabric of the SCIRun runtime environment,
this work provided a more generalized solution to distributed comput-
ing within SCIRun.

5 Conclusions and Future Work

To answer the question about burdens on application programmers to
achieve portability, we must conclude that indeed some design must
be targeted toward grid environments, but grid environments need to
be easy to plug into. In our case, we created separate modules to
achieve our grid-enablement of SCIRun. But we found that it is sim-
ple and feasible to create SCIRun modules that use NetSolve to utilize
remote services. Further, a SCIRun user gained access to grid soft-
ware services, specifically numerical libraries, easily through a simple
call to NetSolve. Neither does the SCIRun source tree need to keep
the PETSc source, avoiding a maintenance and packaging nightmare.
With the NetSolve interface in place, it will now be relatively easy to
access other grid platforms, such as Condor, Globus, Legion, and N-
inf, through the NetSolve plug since NetSolve is building interfaces to
these metacomputing backends.

It would be nice to have a user select modules to be run remote-
ly and have the proper code emitted to configure a NetSolve server
comprised of the modules selected, and have the NetSolve client call
formatted and invoked automatically (under the hood). Unfortunate-
ly, the SCIRun infrastructure gets in our way. There is just no easy
way to hook NetSolve into the persistent I/O SCIRun routines. It is
a simple to add the sockets calls at this level, but we need a layer of
abstraction above raw sockets or file manipulations to automatically
emit NetSolve code that could execute normal SMP-targeted SCIRun
code remotely.

In addition, a number of areas of future work in NetSolve would
help the integration with SCIRun. First, NetSolve does not support
steering. NetSolve services are a black box. There is no way within
NetSolve to halt a computation while it is running and restart it with
new parameters, in other words to steer the computation. Guiding
the computation in this way is one of the hallmarks of SCIRun, so
allowing user interaction is important. Second, a variety of interfaces
from NetSolve to numerical libraries should be supported. SCIRun
needs an interface that exposes lots of parameters which a user can
interact with or steer; whereas, a typical Matlab user of NetSolve may
want the simplest interface to a library. One can think of these as
expert and non-expert APIs.

Acknowledgments: SCIRun receives funding from the NSF, DOE,
and NIH. NetSolve receives funding from the NSF under GRANT
#ACI-9876895.

References

[1]

[2]

[4]

H. Casanova, G. Obertelli, F. Berman, and R. Wolski. The AppLeS
Parameter Sweep Template: User-Level Middleware for the Grid.
In Proceedings of SuperComputing 2000 (SC’00), Nov. 2000. to
appear.

I. Foster and C. Kesselman, editors. The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufmann, San Francisco,
CA, 1999.

S.G. Parker, M. Miller, C.D. Hansen, and C.R. Johnson. An inte-
grated problem solving environment: The SCIRun computational
steering system. In Proceedings of the 31st Hawaii International
Conference on System Sciences (HICSS-31). IEEE Computer So-
ciety Press, Jan. 1998.

G. von Laszewski, J.A. Insley, I. Foster, J. Bresnahan, C. Kessel-
man, M. Su, M. Thiebaux, M.L. Rivers, S. Wang, B. Tieman, and
I. McNulty. Real-time analysis, visualization, and steering of mi-
crotomography experiments at photon sources. In Ninth SIAM
Conference on Parallel Processing for Scientific Computing, Apr.
1999.

10

