
The GrADS Project: Software Support for High-Level

Grid Application Development�

Francine Berman, Andrew Chien, Keith Cooper, Jack Dongarra, Ian Foster,

Dennis Gannon, Lennart Johnsson, Ken Kennedy, Carl Kesselman,

John Mellor-Crummey, Dan Reed, Linda Torczon, and Rich Wolski

August 1, 2001

Abstract

Advances in networking technologies will soon make it possible to use the global information in-
frastructure in a qualitatively di�erent way|as a computational as well as an information resource. As
described in the recent book \The Grid: Blueprint for a New Computing Infrastructure," this \Grid"
will connect the nation's computers, databases, instruments, and people in a seamless web of computing
and distributed intelligence, that can be used in an on-demand fashion as a problem-solving resource in
many �elds of human endeavor|and, in particular, for science and engineering.

The availability of Grid resources will give rise to dramatically new classes of applications, in which
computing resources are no longer localized, but distributed, heterogeneous, and dynamic; computation
is increasingly sophisticated and multidisciplinary; and computation is integrated into our daily lives,
and hence subject to stricter time constraints than at present. The impact of these new applications
will be pervasive, ranging from new systems for scienti�c inquiry, through computing support for crisis
management, to the use of ambient computing to enhance personal mobile computing environments.

To realize this vision, signi�cant scienti�c and technical obstacles must be overcome. Principal among
these is usability. Because the Grid will be inherently more complex than existing computer systems,
programs that execute on the Grid will reect some of this complexity. Hence, making Grid resources
useful and accessible to scientists and engineers will require new software tools that embody major
advances in both the theory and practice of building Grid applications.

The goal of the Grid Application Development Software (GrADS) Project is to simplify distributed
heterogeneous computing in the same way that the World Wide Web simpli�ed information sharing
over the Internet. To that end, the project is exploring the scienti�c and technical problems that must
be solved to make it easier for ordinary scienti�c users to develop, execute, and tune applications on
the Grid. In this paper we describe the vision and strategies underlying the GrADS project, including
the base software architecture for Grid execution and performance monitoring, strategies and tools for
construction of applications from libraries of Grid-aware components, and development of innovative new
science and engineering applications that can exploit these new technologies to run e�ectively in Grid
environments.

GrADS will foster research and technology transfer programs contributing to revolutionary new ways
of utilizing the global information infrastructure as a platform for computation, changing the way scien-
tists and engineers solve their everyday problems.

1 Introduction

Imagine remote, biodegradable sensors in the ocean, monitoring temperature, biological materials, and

key chemical concentrations, transmitting the measurements via wireless technology to digital libraries of

oceanographic data, mining and visualizing this data directly to derive new insights, using the re�ned data

in large scale predictive models, redeploying the sensors to re�ne the system as a result of the predictions,

�This material is based upon work supported by the National Science Foundation under Grant No. 9975020.

1

and �nally, triggering nanoactuators to remove inappropriate concentrations of e�uent or other non-native

materials.

Imagine an earthquake engineering system that integrates \teleobservation" and \teleoperation" to enable

researchers to control experimental tools|seismographs, cameras, or robots at remote sites. Combining real-

time, remote access to data generated by those tools, along with video and audio feeds, large-scale computing

facilities for coupled simulation, data archives, high-performance networks, and structural models, researchers

will be able to improve the seismic design of buildings, bridges, utilities, and other infrastructure in the United

States.

Imagine a personal digital assistant integrated into eyeglasses, powered by body heat, and capable of

calling upon ambient computing, information, and network resources so that when you enter a building, your

personal information space is available to you, local computing power o�oads tasks such as face recognition,

translation, and navigation, and you can be simultaneously monitoring your latest earthquake engineering

experiment|or your stock portfolio.

These examples illustrate what we believe will be three dominant themes in 21st Century computing:

computing resources are no longer localized, but distributed|and hence heterogeneous and dynamic; com-

putation is increasingly sophisticated and multidisciplinary; and computation is integrated into our daily

lives, and hence subject to stricter time constraints than at present.

None of these examples is that far-fetched: revolutionary changes in broadband communications and

wireless networking, as well as relentless miniaturization, provide the necessary technical underpinnings.

Furthermore, ambitious research programs in ubiquitous computing and Grid middleware are targeting key

challenges at the infrastructure level: security, resource discovery, resource management, power management,

and the like. However, existing e�orts are not addressing one fundamental problem: the programming of

these highly complex and dynamic systems. This challenging problem is the focus of the Grid Application

Development Software (GrADS) project, established by the authors with support from the NSF Next Gen-

eration Software Program in 1999. In this paper, we present the vision and strategies underlying the GrADS

e�ort.

The Grid Programming Problem

Our use of the term \Grid" is inspired by a recently-published volume entitled \The Grid: Blueprint for a New

Computing Infrastructure" [24], which established a compelling vision of a computational and information

resource that will change the way that everyone, from scientist and engineer to business professional, teacher,

and citizen uses computation [63, 24]. Just as the Internet de�nes fundamental protocols that ensure uniform

and quasi-ubiquitous access to communication, so the Grid will provide uniform access to computation, data,

sensors, and other resources. Grid concepts are being pursued aggressively by many groups and are at the

heart of major application projects and infrastructure deployment e�orts, such as NASA's Information Power

Grid (IPG) [40], the NSF PACI's National Technology Grid [63] and Distributed Terascale Facility, the NSF's

2

Grid Physics Network, and the European Union's EU Data Grid and Eurogrid projects. These and many

other groups recognize the tremendous potential of an infrastructure that allows us to conjoin disparate and

powerful resources dynamically to meet user needs.

Despite this tremendous potential, enthusiasm, and commitment to the Grid paradigm, the dynamic

and complex nature of the Grid environment, and the sophistication of the applications being discussed,

the challenges are daunting. Few software tools exist. Our understanding of algorithms and methods is

extremely limited. Middleware exists, but its suitability for a broad class of applications remains uncon�rmed.

Impressive applications have been developed, but only by teams of specialists [48, 15, 23, 24, 28, 44, 59].

Entirely new approaches to software development and programming are required for Grid computing to

become broadly accessible.

It is this combination of the national importance of the problem and the need for multidisciplinary research

advances that has led the authors to initiate the GrADS project and focus it on the goal of conducting

fundamental research leading to the development, in prototype form, of technologies needed to make the

Grid usable on a daily basis by scientists and engineers. Collectively, the challenges that must be overcome to

achieve this goal can be summarized in a single requirement: We need application development technologies

that make it easy to construct and execute applications with reliable [and often high] performance in the

constantly-changing environment of the Grid.

As we pursue this goal, we can draw upon a signi�cant body of knowledge and technology in distrib-

uted computing, the Internet, and Grid middleware. However, while traditional distributed computing

technologies provide critical building blocks and frameworks for Grid application development, distributed

computing is not concerned with, and does not address the large-scale and dynamic resource sharing, fre-

quently stringent performance requirements, large resource needs, and the multidisciplinary nature of Grid

applications. Although emerging Internet, peer-to-peer, and Grid middleware technologies are meeting the

need for large-scale resource sharing, they do nothing to simplify application development.

The GrADS project has begun to develop the knowledge and technology base required to support appli-

cation execution in this new computing environment, along with application development strategies to make

it accessible to ordinary scientists, engineers, and software developers for problem solving. To do this, we are

pursuing research in four major areas: (1) collaboration on the design and implementation in prototype form

of important scienti�c applications for the Grid; (2) the design of programming systems and problem-solving

environments that support the development of con�gurable Grid applications by end users in high-level lan-

guages close to the notation of their application domain; (3) the design and implementation of execution

environments that dynamically match con�gurable applications to available resources in order to provide

consistent, reliable performance; and (4) the design and construction of hardware and software testbeds for

experimentation with the GrADS program preparation and execution system and the applications developed

to use them.

We anticipate that the successful completion of this research program will lead to revolutionary new

3

ways of utilizing the global information infrastructure as a platform for computation, data sharing, and

collaboration.

1.1 Applications

Just as the emergence and usability of the World Wide Web has ushered in new paradigms in application

development and access to information, the maturing of the Grid and its natural extension to peer-to-peer

platforms, wireless endpoints, remote instruments, and sensors will engender innovative new application

paradigms and new environments for application development and execution. Such environments will support

application adaptivity, portability, ubiquity and performance. Emerging Grid applications will provide the

driving force behind the architecture, research and prototypes that will be developed by researchers in the

Center for Grid Application Development Software. Over the next decade, Grid applications will address

a wide variety of critical challenges in science and engineering. New applications in computational biology,

bioinformatics, genomics, high energy physics, crisis management, and other domains will require real-time

data collection, mining and analysis, simulation, and visualization of results.

There are several key challenges that must be addressed for Grid computing to be e�ective. Applications

must be able to nimbly adapt to a dynamic set of target resources and to incorporate huge amounts of

information from heterogeneous sources and distant endpoints (sensors, target computational resources on

peer-to-peer networks). Moreover, the Grid software infrastructure to which the applications themselves are

targeted is complex, heterogeneous, and dynamic. Globus [25], NetSolve [8], Condor [45, 46], Legion [33, 30],

and commercial infrastructure systems have di�erent levels of robustness and operate on di�erent resource

subsets. Over the next ten years, applications will need to be able to adapt and perform with respect to the

infrastructure provided by ambient resources. The design of development environments and run-time systems

for such adaptable and \ultra-portable" applications constitutes an extremely challenging and comprehensive

set of problems.

The success of the Grid as a computing platform is dependent on development of performance-e�cient

applications that can e�ectively exploit a wide range of cooperating resources. Software that supports

development and execution of such applications is critical to making Grid programming tractable. During

the research associated with the Center for Grid Application Development Software, a collection of emerging

Grid-enabled applications will focus our research goals, and help set research priorities. These applications

provide a means for critical evaluation and assessment of the Grid application development software resulting

from our research. The following examples are representative of major classes of a new generation of Grid

applications.

On-Demand Applications A critical aspect of computational Grids is their ability to concentrate the

massive computational and information resources required for real-time, on-demand applications. To under-

stand the importance of on-demand application development for the Grid, consider the problem faced by a

crisis manager after a major disaster such as an earthquake. Although the component operations that are

4

essential to crisis management are known in advance, each crisis presents unique requirements. The crisis

manager must integrate information from many di�erent sources to determine the actions needed to respond

to the particular crisis at hand. For example, she must be able to understand the state of the current

infrastructure, possibly by aggregating sensors in buildings, power lines, and utility conduits into a network

that can report the changing state of the basic infrastructure. She must be able to integrate reports from

emergency crews with patient information to ensure that emergency treatments are consistent with the needs

of each patient. Finally, she needs to be able to access mesoscale weather models, fueled by information from

a grid of Doppler radars, to identify weather patterns that may exacerbate the crisis. There may also be a

need to simulate the ow of groundwater contaminants through the soil.

Ubiquitous Applications During the next decade, an increasing number of users will develop applica-

tions for execution on a platform where the user does not know (or care) where the application might be

executed. Current examples of such software platforms include SETI@home [22] and Entropia [19] (which

target largely embarrassingly parallel applications to compute on \throw away" endpoints), Condor (which

targets individual, migratable and largely embarrassingly parallel jobs on workstation clusters) and APST

(middleware that targets parameter sweep applications on a wide variety of grid environments). Such systems

demonstrate the potential for the Grid, but the research community must improve application programming

models for Grid execution. As part of the GrADS research, we intend to develop more sophisticated (and

dependable) programming models that can execute ubiquitously and reliably in large-scale Grid environ-

ments.

Robust, Portable Applications Much as the World-Wide Web has catalyzed the creation of immense

collections of private data, and supports easy accessibility to large quantities of public data, we anticipate

that the emergence of the Grid will spawn public Grid resources (computing, storage, etc.). Already, we see

signi�cant development underway for production Grid systems (e.g., the NASA IPG [32], NSF GriPhyN [34]

and NEESgrid [21], and European Data Grid [31]) based on a existing software infrastructures (e.g., Globus

in the four examples just cited). To capitalize on such resources, a new generation of portable, Grid-aware

applications is needed.

The user community's desire to exploit Grid resources and to protect their software development invest-

ment is important driver for developing portable, standard services that support robust Grid applications.

In the long run, convincing the developers of Grid applications|users, scientists, and third party commercial

organizations (ISVs)|must depend on the development of standard interfaces for critical Grid services that

enable both portability forward to new software infrastructures and platforms and access to very large num-

bers of resources. However, current Grid software infrastructures lack the capabilities to support exible,

robust Grid applications in a world of heterogeneous systems, unreliable networks, and asynchronous re-

source revocation. The core research that has begun under the aegis of the GrADS project includes support

for adaptivity, resource negotiation, and performance contracts. These capabilities will help applications

5

operate e�ectively in an ever-changing Grid environment. In addition, the proposed research will develop

the understanding that enables de�nition of standard shared libraries that export these capabilities.

Integrated Data Analysis and Simulation Data-oriented applications will constitute one of the most

active and critical areas for the next decade in science and engineering. Many research communities collect,

analyze, and mine immense amounts of data in collections that are often not co-located with the compu-

tational servers. For example, there is considerable e�ort currently being devoted to the development of

parallel and distributed applications that use genomic data to assess, evaluate and develop structural models

and to answer fundamental questions about life.

In addition, the GriPhyN [34, 11] project is developing a distributed analysis environment for physics

experiments that will serve thousands of users. A crucial concept being pioneered by GriPhyN is virtual data,

i.e., derived data products that are de�ned by the computations to produce them. Given a set of virtual data

de�nitions, a user request for data value(s) can be translated into computations and data movements. We

anticipate collaboration with GriPhyN in two areas: estimation of the computational requirements of virtual

data computations, along with scheduling of computations and data movement based on compiler-detected

query pro�les.

Another important area in which integrated data assimilation from distributed resources is becoming

more important is in weather forecasting, exempli�ed by the Integrated Forecasting System (IFS) developed

by European Center for Medium Range Weather Forecasting (ECMWF), and in climate analysis, exempli�ed

by the ERA-40 project covering the time period from 1957 - 2001 pursued jointly between NCAR, NOAA,

NESDIS, ECMWF and several other organizations. The IFS has real-time aspects and uses a wide range of

sensor and network technologies and is an excellent application for GrADSoft technologies.

The GrADS project is collaborating with both developing applications and mature Grid exemplar codes

to guide our design and development e�orts. In the long term we plan to work with developers of exemplar

applications in each of the application classes to prototype program development software that meets the

needs of current Grid applications as well as the new generation of applications that evolve to reap the

bene�ts of the Grid. During our research into application development software, we expect to gain new

insights into how to design and implement grid applications. Thus, our research agenda includes the study

of new types of applications, as well as new approaches to application design and implementation.

1.2 Vision

For the Grid to become a really useful computational environment|one that will be routinely employed by

ordinary scientists, engineers, and other problem solvers|it must be relatively easy to develop new applica-

tions. Currently applications must be developed atop existing software infrastructures, such as Globus, by

developers who are experts on Grid software implementation. Although many useful applications have been

produced this way, it is too di�cult for Grid computing to achieve widespread acceptance.

In our vision, the end user should be able to specify applications in high-level, domain-speci�c problem-

6

solving languages and expect these applications to seamlessly access the Grid to �nd required resources when

needed. In these environments, users would be free to concentrate on how to solve a problem rather than on

how to map a solution onto the available Grid resources.

To realize this vision we must solve two fundamental technical problems. First, we must understand

how to build programming interfaces that insulate the end user from the underlying complexity of the Grid

execution environment without sacri�cing application execution e�ciency. Second, we must provide an

execution environment that automatically adapts the application to the dynamically-changing resources of

the Grid. Our overall approach to addressing these challenges is described in the next section.

2 The GrADS Software Architecture

To address the fundamental challenge of program development for Grid environments, GrADS has initiated a

coordinated and far-reaching program of research, prototyping, and technology transfer aimed at the central

problems of programming models, algorithms, programming systems, and applications.

Underlying and unifying our diverse investigations is a basic assumption: that e�ective application de-

velopment for Grid environments requires a new approach to the design, implementation, execution, and

optimization of applications. A new strategy is needed because the traditional development cycle of separate

code, compile, link, and execute stages assumes that the properties of underlying resources are static and

relatively simple. In the Grid, this assumption is not valid. (Needless to say, the alternative approach,

frequently adopted in distributed computing, of hand coding applications with socket calls or remote proce-

dure calls is not viable either.) We require a software development environment that enables the e�ects of

dynamism to be mitigated and controlled.

Figure 1 presents the new program development structure that we believe is required. In what we refer

to as the GrADSoft architecture, the discrete steps of application creation, compilation, execution, and post-

mortem analysis are replaced with a continuous process of adapting applications to a changing Grid and to a

speci�c problem instance. Two key concepts are critical to the working of this system. First, an application

must be encapsulated as a con�gurable object program, which can be optimized rapidly for execution on a

speci�c collection of Grid resources. Second, the system relies upon performance contracts that specify the

expected performance of modules as a function of available resources. Our research and development e�ort

has begun to address the various elements of this architecture. In the remainder of the paper, we summarize

the key ideas underlying the GrADS e�ort and explain in detail the technical challenges to be addressed and

the approach to be followed in each area.

GrADS Program Preparation System. The left side of Figure 1 depicts the tools used to construct

con�gurable object programs. We expect that most application developers will use high-level problem solving

environments (PSEs) to assemble Grid applications from a toolkit of domain-speci�c components. Another

path allows developers to build the specialized components that form these PSE toolkits (e.g., a library for

solving PDEs on computational grids) or to create new modules for their speci�c problem domain.

7

GrADS
Compiler

GrADS
Libraries

PCPC
PC

PC
Performance
Contract

Iterative
runtime process

P
S
E

Dynamic
Optimizer

Realtime
Monitor

Performance
Contract
Violation

Service
Negotiator

Scheduler

Grid
Runtime
System

Appli-
cation

Config-
urable
Object

Program

PC PC
Software

Components

PCPC
PC

Performance
Feedback

Negotiation

GrADS Execution
Environment

GrADS Program
Preparation S ys tem

Figure 1: GrADS Program Preparation and Execution Architecture

In either scenario, modules are written in derivatives of standard languages with Grid-speci�c extensions

(e.g., data or task distribution primitives). They are bound together into larger components, libraries, and

applications with a coordination language. This process creates malleable modules, annotated with infor-

mation about their resource needs and predicted performance for a wide variety of resource con�gurations.

The goal is to build tools that free the user from many of the low-level concerns that arise in programming

for the Grid today, and to permit the user to focus on high-level design and performance tuning for the

heterogeneous distributed computing environment.

GrADS Execution Environment. When a con�gurable object program is delivered to the execution

environment, the GrADSoft infrastructure must �rst determine what resources are available and secure an

appropriate subset for the application. Using annotations from performance contracts and results from

compiler analysis, service negotiators will broker the allocation and scheduling of module components on

Grid resources. Next, the infrastructure will invoke the dynamic optimizer to tailor the recon�gurable object

program for good performance with the available resources. This step will also insert sensors and actuators

to help the performance monitoring system control application execution.

During program execution, a real-time monitor tracks program behavior and validates observed behavior

against performance contract guarantees. Should a performance contract be violated, the monitor will

respond by interrupting execution through an actuator, leading to several possible actions. The actuator

can invoke the dynamic optimizer with more information (from performance monitoring) to improve program

behavior in the current execution context, negotiate a new execution context where the existing executable is

more likely to satisfy the old contract, or do both by negotiating a new context and tailoring the executable

for it. Dynamic forecasts of resource performance and Grid capacity will be used to reduce renegotiation

overhead. The goal of this closed loop system is to ensure that execution of the application proceeds reliably,

meeting the speci�cations of its performance contracts, in the constantly changing Grid environment.

8

3 Program Preparation System

Developing a parallel program for e�cient execution on the Grid currently requires a level of expertise

that few possess. Unless Grid programming can be greatly simpli�ed, the power of Grid computing will

be inaccessible to many. To address this issue, the GrADS project is conducting research on program

preparation systems, focusing on the design and construction of software that simpli�es building and running

Grid-enabled applications.

To simplify development of Grid-enabled applications, we are focusing on a methodology in which most

users will compose applications in a high-level, domain-speci�c language built upon pre-existing component

libraries. This approach hides Grid-level details and lets the user express a computation in terms that make

sense to an expert in the application domain. Underneath the domain-speci�c language, and supporting it,

will be a layer of software that manages the complex task of computing on the Grid. This software, embedded

in a collection of libraries, will include not only the base algorithms, but also composable performance

models and dynamic mapping strategies for each method. To manage heterogeneity and the late binding of

resources without sacri�cing performance, we are developing a dynamic optimizer that does load-time code

optimization.

For this approach to succeed, we are undertaking the following scienti�c and technical challenges: (1) de-

velopment of programming models and compiler technology to support e�cient high-level programming;

(2) development of programming models that help library writers cope with properties of the Grid such as

variation in latency and performance, or even failure; (3) design of composable performance models for use

in selecting resources, in tailoring code to runtime resources and in detecting performance problems; (4) in-

corporation of partial evaluation strategies in the GrADS compiler to support rapid runtime tailoring for

e�cient execution; and (5) investigation of the impact of essential activities such as checkpointing, reporting,

and monitoring on overall performance and devising strategies to mitigate these e�ects. These issues cannot

be addressed at a chalkboard. To �nd appropriate solutions we have adopted a methodology that includes

extensive experimentation and exploration in the context of the GrADS applications e�ort. By repeatedly

moving solutions into prototype tools and using these tools in the next generation of applications, we will

re�ne our approaches and improve both their e�ectiveness and usability.

A Framework for Grid Application Development A Grid programming system should make it easy

for end users to build applications that execute e�ciently on the Grid. Such a systems should provide several

ways to construct applications. We expect that the most common approach will be to compose applications

from pre-written, domain-speci�c, library components as is done with CCAT [29], Khoros [43], SciRun [7]

and NetSolve [7]. These systems allow users to \script" an application by con�guring and composing software

components or services that run elsewhere into a single distributed application. Scripts are either composed

graphically, or they are written using a high level scripting language like Python [47] or Matlab [37].

To bridge the gap between these comfortable, high-level, scripting languages and an e�cient, Grid-enabled

9

Domain
Library

TeleGen
Translator
Generator

Enhanced
Language
Compiler

Script
Script

Translator

Optimized
Object

Program

Vendor
Optimizing
Compiler

Figure 2: Telescoping Languages

executable, we must develop a novel and e�ective compilation system. Our strategy has two novel compo-

nents: an implementation technique for the domain-speci�c languages that we call telescoping languages [42],

and a tool for load-time tailoring that we call the dynamic optimizer.

Telescoping Languages The telescoping languages approach makes extensive use of whole-program

analysis and optimization to automate the construction of extensible languages. We will build a system

called the TeleGen compiler, shown in Figure 2. TeleGen will read an annotated, domain-speci�c library,

analyze it, and produce a customized optimizer that understands the library entry points (including their

execution properties) as if they were native primitives in the base language. It will also create a version of

the library that includes optimized versions of some entries. TeleGen's compilation approach builds upon

work in high-level axiom-driven optimization [50, 49], call-site analysis and library routine implementation

selection [36], and interprocedural optimization of high-level languages [16, 10].

The resulting optimizer behaves as a compiler for a new language|the base language (e.g., C) augmented

with the functions of the domain-speci�c language. In this scheme, a domain-speci�c scripting language can

be implemented as a preprocessor that translates scripts into base language programs that call the library

components. The optimizer should produce highly optimized code from such an input. This implementation

strategy can be applied iteratively to several di�erent levels of libraries|telescoping them into one translator.

The success of the telescoping languages strategy depends upon the existence of sophisticated component

libraries that are specially prepared for Grid execution by professional library developers. (The challenges of

developing such libraries are detailed below.) These libraries will be annotated by the developers with map-

ping strategies, performance models, hints on how to optimize calls to individual components in various con-

texts, and algebraic speci�cations of library operations (e.g., commutativity, transitivity, associativity [69])

to facilitate high-level optimization.

A critical issue for this work is constructing TeleGen so that the optimizers it generates can, themselves,

produce con�gurable object programs suitable for use in the GrADS execution system. The optimizer must

understand all of the components of a library|code, performance model, and mapping strategy|and must

manipulate them to create the con�gurable object program.

Research issues include the design of high-level optimizers for the Grid, methods for selecting the right

10

code variants for a given collection of Grid resources, mechanisms for generating and managing the myriad

variants that the system will need, and the design of tools to help the library designer build useful library

annotations.

Dynamic Optimizer The dynamic optimizer is a component of the program preparation system that

lives in the execution environment. It is invoked at load time to tailor the con�gurable object program

to the actual runtime environment. The dynamic optimizer queries the target machine for con�guration

data, inserts the sensors and actuators needed by the runtime system, and rewrites the object program into

an executable that will run e�ciently on the target machine. Deferring code generation into the dynamic

optimizer, should simplify con�gurable object programs, reduce their size, and provide more consistent

optimization.

Libraries and Algorithms Modeling, simulation, and data intensive computing have become staples of

scienti�c research. This has exposed the di�cult aspects of scienti�c computing to a broader audience of

scientists and engineers. While access to computing has improved dramatically over the past decade, e�cient

scienti�c computing still requires specialized knowledge in numerical analysis, computer architectures, and

programming languages. Many working researchers do not have the time, the energy, or the inclination to

acquire such expertise. Scientists expect their computing tools to serve them, not the other way around.

Unfortunately, the growing desire to tackle interdisciplinary problems with more realistic simulations on

increasingly complex computing platforms, will only exacerbate the problem. The classic solution to this

problem was to encode the requisite expertise into easily used libraries. While traditional numerical libraries

(e.g. LAPACK [4], Ellpack [38], ScaLAPACK [6], PETSc [5]) have brought immense bene�ts, the radical

changes occurring in scienti�c computing are creating new challenges that these libraries, in their current

form, cannot meet. that despite the immense bene�ts such traditional numerical libraries

To address this challenge, we are developing a new generation of Self-adapting Numerical Software (SaNS)

systems. These SaNS will not only meet today's challenges; they should address future changes in scienti�c

computing as well. We will design and build a framework for SaNS for numerical libraries and algorithms.

This system will operate as \black box" software; intended for use by domain scientists who need not

understand the algorithmic and programming complexities it encapsulates. To manage the complexities of

the Grid and to adapt in ways that maximizes their e�ectiveness, SaNS must encapsulate far more intelligence

than standard libraries. The work described below will make it possible to produce a SaNS system that:

(1) automatically analyzes the logical and numerical structure of the data to let the library choose the

best algorithmic strategy for solving the problem; (2) embodies a set of rules, progressively self-tuned over

time, for choosing the appropriate algorithm for a given linear system, based on its analysis of the data and

any hints provided by the user; (3) encodes metadata about the user's data, about its own characteristics,

and about the known implementations of the algorithm it selects, so that the system can schedule the

computation e�ectively on the available resources; and (4) uses a scripting language that generalizes the

11

decision procedure that the SaNS follows and enable scienti�c programmers to easily make use of it.

Using SaNS libraries should improve the ability of computational scientists to solve challenging problems

e�ciently|without requiring much extra-domain expertise. As these innovations become generally available,

they will create a dynamic computational environment that automatically selects and integrates the most

e�ective library components for a given problem, data set, and collection of resources. The SaNS metadata

scheme will let us capture this self-adaptive process in databases, creating an indispensable resource for

future library developers. Current numerical libraries, whose limitations are increasingly obvious, are now

threatened with obsolescence. This investigation will lay the foundation needed to meet the challenging

demands of computational science over the next decade.

4 An Execution Environment for Grid Applications

As we explained above, our research seeks to allow future Grid applications to operate in highly dynamic envi-

ronments, adapting their resource demands and behavior to the environments in which they �nd themselves|

and also, when possible, adapting the environment to �t their requirements.

The realization of this overall goal requires the development of new mechanisms for information and con-

trol ow between program preparation system, program, and environment, so that (1) information about the

environment, and program behavior in that environment, can be discovered and communicated to program

components in meaningful terms, and (2) program requirements can be communicated to the environment,

and to program components, in ways that admits to e�ective control.

These two goals de�ne, collectively, the purpose of the GrADSoft execution environment. They have

led us to focus our research in this area on three key issues, namely the protocols, services, and methods

required to (1) discover and disseminate information about the dynamically changing structure and state of

Grid resources (Grid information service); (2) select, allocate, and control collections of Grid resources, and

communicate requirements among resource providers and consumers (resource management service); and (3)

monitor and, as necessary, control adaptively an executing program. These protocols and services represent

what is sometimes called middleware [1]: code that executes in the network in support of applications.

As in other areas of the Grid, we are concerned with achieving a separation of concerns between resource

protocols that must be broadly deployed and collective protocols and services that can be localized in more

application-speci�c code [27].

The following scenario illustrates some of the issues that arise in the Execution Environment. We imagine

the Program Preparation System generating an executable image, a set of performance requirements, and a

budget for executing the application that is expressed in some Grid currency. These latter two abstractions

serve as the basis of a \performance contract" between the application and the resources it uses. The

Execution Environment then launches the program by submitting it to the application monitoring and

adaptive control service (service (3)). To do so, this system consults the Grid information service (service

(1)) to determine what resources are available and appropriate, and the resource management service (service

12

(2)) to ensure that those resources are allocated for the execution, subject to demand and supply respectively.

In pursuing these goals, we are working initially within the context of the Grid architecture de�ned

by the Globus Toolkit [25], due its widespread adoption within the scienti�c community, and signi�cant

experience and code base. At the Connectivity and Resource levels in a Grid architecture, the Globus Toolkit

de�nes standard authentication and authorization protocols, information service protocols, and resource

management protocols. At the Collective level, it provides resource discovery, brokering, and co-allocation

functions. (Other relevant protocols and services are being discussed within the Global Grid Forum, for

example for event delivery.) The adoption of this framework has allowed us to focus our attention on

the central problems (for us) of how to obtain, organize, and exploit monitoring and control information,

problems that can be expressed in terms of interactions among cooperating services and resources. Issues

of security, resource access, and the like can be relegated to Globus|and/or to complementary industrial

standards and trends such as Jini [67] and the emerging peer-to-peer technology base (as is being pioneered

by companies such as Entropia, CDDB, Napster, and Parabon [19, 9, 51, 53]). The end result of this work

will be the de�nition of both a middleware architecture and speci�c new middleware services designed to

support the concerns of adaptive Grid computations. We expect that this work will result in useful feedback

to the Grid protocols and services R&D community.

In the following, we expand upon each of the three points noted above, indicating in each case the nature

of the primary research challenges.

Grid Information Service To provide the functionality needed for negotiation and scheduling, the Exe-

cution Environment must be able to obtain information about the resources available for application use. A

wide variety of information can conceivably be of interest: for example, hardware con�guration, measured

load, access control policies, application performance data, power consumption [52], estimates of nonob-

servable system properties, and predictions of future states [70, 17, 61, 18, 52, 41]. Our goals in the GrADS

project is to �rst to develop an integrated framework in which these many di�erent types of information

can be used in a coordinated and uniform fashion, second to conduct a broad exploration of how di�erent

sorts of information can be produced and used, and hence, third, to produce a set of e�ective techniques for

information collection, analysis, and application.

In previous work, we have established frameworks for providing uniform access to, and indexing of,

diverse information sources (the Globus MDS [20, 12]), for collecting experimental data and using this data to

generate forecasts of future state (the Network Weather Service: NWS [70]), and for structuring networks of

sensors and transformers to support adaptive control (Autopilot [56]). Each of these systems has been proven

e�ective in various experimental and (in some cases, e.g., MDS), large-scale deployments. Within GrADS,

we are building on this infrastructure, integrating these diverse elements and extending them in major ways.

We are developing new services, including distributed event management, new methods of measuring and

predicting components of system state, methods for discovering and maintaining relevant information about

resources of interest in the execution environment, robust and scalable publication methods, methods that

13

can deal e�ectively with both measured and dynamically derived data, and methods for information service

discovery in widely distributed, dynamic environments [65, 14, 35, 39]. We are also addressing the question

of how to represent our degree of con�dence in data and security concerns relating to dissemination of data.

Grid Resource Management Service The Execution Environment must also provide the ability to

reserve, allocate, con�gure, and manage collections of resources that match an application's needs. Building

on elements of the Globus resource management architecture [13], which provides secure remote access and

reservation [26] mechanisms, we are developing new co-reservation and co-allocation algorithms capable

of dealing with resources with dynamic and probabilistic properties, integrate performance contracts (see

next paragraph) into resource reservation and resource operations, integrate traditional quality of service

methods into resource management frameworks, and map compiler-derived and library-derived performance

information into global resource reservation and allocation services.

A major goal of our work in this area is to explore and understand the nature of the language that should

be used to share complex, multi-dimensional requirements and performance data among resource providers

and consumers. To that end, we are investigating the design of a language of performance contracts to

enable dynamic negotiation among resource providers and consumers. A performance contract maps a set

of resources and a set of application resource needs to a speci�ed performance level|to satisfy the contract,

the assigned resources and the application must behave as speci�ed.

Our approach to performance contracts derives them from a performance model provided by the con�g-

urable object program and a set of resource performance characteristics culled from the Grid information

service. The service negotiator (which is logically part of the application monitoring and adaptive control

service) brokers performance contracts between applications and resources. It uses the information and

reservation services to �nd available resources, select a set that matches the predicted needs of the appli-

cation, and make any needed reservations. As a part of our research, we have begun to develop a theory

of performance contracts and service negotiation that can be adapted to the varying behavior of the Grid.

Matchmaking techniques may be relevant here [45]; see also [64].

Building on this framework, we will investigate more dynamic resource brokering mechanisms based on

the use of economic models (e.g., bidding, cost negotiation, and dynamic pricing) as a basis for arbitrating

between competing resource demands. We plan to study both auction-based and commodity-based formu-

lations of the performance economies. Auction-based systems are attractive because of their scalability, but

it can be shown that commodity-based (but not auction-based) economies achieve both equilibrium and

stability [68, 60]. Since Grid applications must adapt to changing performance conditions, overall system

stability is an important concern.

Application Monitoring and Adaptive Control Service Work in the two areas just listed will provide

a powerful, extensible framework for communicating requirements, various information, and control functions

among applications, intermediate brokering functions, and resources. The third area in which we are working

14

is building on this framework to construct a a closed-loop control system, called the application execution

monitor that uses various dynamic performance information sources to guide an application to completion

despite performance variations in the underlying resource base, via a process of adaptive control of both

application behavior and resource demands.

To enable such adaptation, the execution monitor depends on the dynamic optimizer (which will be

developed in conjunction with the Program Preparation System) to insert the sensors and actuators that let

it manage the execution. The dynamic optimizer, invoked just prior to execution, also instantiates the �nal

performance contract according to the rules of the resource economy that is in place.

The Autopilot system [57, 55, 56] embodies several of the ideas on which we will build our distributed

monitoring systems. Autopilot sensors, inserted in application or library code, can capture application

or system characterization metrics. When an application executes, the embedded sensors register with a

directory service provided by an Autopilot Manager. Sensor clients can then query the manager to locate

sensors with speci�c properties and receive measurement information directly from these sensors. Sensors,

managers and sensor clients can execute anywhere on the Grid.

Atop this substrate, the key research issue is developing techniques to decide how and when a performance

contract has been violated (e.g., managing temporal variation and distributed contract testing) and how

to respond to the violation in order to maximize application performance. To carry out this plan, we

are investigating new strategies that let the compiler, scheduler, runtime system, and other components

cooperate to extract, non-intrusively, pertinent information from the running application.

Our preliminary experiments with performance contracts [66] indicate that this is a fruitful approach.

Using Autopilot's fuzzy logic decision procedures, it was possible to detect local perturbations in processor

and network availabilities during application execution. The current focus of our work is to extend these

tests to encompass the temporal and global contract aspects that we mentioned above.

5 Understanding Grid Software Behavior

The long-term success of our Grid software research agenda requires that we develop design methodologies

that allow systematic design and evaluation of dependable, robust, and scalable Grid services and applications

software. Unfortunately, such design methodologies are currently totally lacking. It is no exaggeration to say

that Grid services and software are designed and characterized today largely based on the designer's intuition

and on ad hoc experimentation with little knowledge of when they will fail catastrophically. We view this

as completely unsatisfactory and adopt as our long-term research goal the development of an experimental

methodology for characterizing grid software that allows us to evaluate and predict the performance, fault

tolerance, and scalability of middleware services.

As an important �rst step towards the development of such design methodologies, we are developing

and deploying two major testbeds and associated tool suites designed to provide both soft (con�gurable)

and hard (�xed) environments for exploring dynamic Grid behaviors. Our goal in this work is to enable

15

systematic study and ultimately understanding of the dynamic behavior of Grid resources, middleware, and

applications.

These tool testbeds and tool suites are referred to as the MicroGrid andMacroGrid testbeds. Both share

the use of Globus services as a unifying computational environment. They di�er in terms of the degree of

con�gurability and realism they o�er. The use of a common environment means that programs can be run

without change on both testbeds, hence allowing comparative studies.

The MicroGrid testbed, which runs on clusters of PCs or workstations, provides tools that use a com-

bination of simulation and direct execution techniques to produce a repeatable, observable testbed for Grid

experiments. Major challenges here include:

� Fidelity in Grid Resource Modeling The modeling of computation, storage, and networking resources

faithfully, across a range of resource requirements and execution speeds. Scalable online network

simulation is a critical challenge|and di�ers from the o�ine simulation e�orts generally studied by

the networking research community.

� Representative Background Load Modeling Understanding what interaction of background and fore-

ground load is critical to representative behavior. This is essential to all aspects of resource modeling,

including computation, storage, and network systems.

� E�ciency and Scalability Achieving e�cient simulation to enable study of long periods of behavior,

and scalability to achieve the study of large systems|which often exhibit di�erent behavior.

As part of the GrADS e�ort, we have constructed and are experimenting with a number of generations

of the MicroGrid tools [62], exhibiting a succession of greater capabilities. These e�orts are integrating our

novel research e�orts with relevant e�orts developed in the community.

The second major infrastructure, the MacroGrid, integrates computational and network resources at the

GrADS institutions to serve as a realistic (although less con�gurable) experimental testbed. This testbed

provides a more controlled environment, and likely a much higher degree of instrumentation and data cap-

ture, than is possible in typical Grid environments. This testbed is being used for the initial applications

experiments discussed in the next section and to validate MicroGrid simulations.

Future e�orts will focus on developing an experimental methodology for characterizing grid software in a

manner that allows accurate evaluation of the software's behavior before deployment. A further goal of this

work is understanding how to characterize a regime of behavior and also to identify those regimes for which

behavior is poor, or at least uncharacterized. Possible approaches include statistical sampling, perturbation

analysis, and enforcement of behavioral constraints (e.g., linearity) on software.

6 Research Methodology and Progress

The GrADS research and development activities are organized as three parallel, interdependent thrusts:

basic research, testbed development, and application evaluation. The basic research thrust began by de�n-

16

ing performance contracts, exploring adaptivity (both experimentally and theoretically), and creating initial

prototypes of the GrADS development and execution environment. A key step in this e�ort was the inves-

tigation of two application prototypes discussed in other papers within this volume: a distributed version

of the ScaLAPACK linear system solver [54] and a Grid-enabled version of Cactus [2, 3, 58], a powerful

modular toolkit for the construction of parallel solvers for partial di�erential equations. With knowledge

gleaned from these e�orts, the research thrust has begun to explore an integrated approach to Grid software

development that emphasizes compile-time and runtime information sharing among algorithms, compilers,

tools, and libraries.

The testbed development thrust has embarked on the creation of a substantive GrADS software toolkit

(GrADSoft) that provides a basis for experimental veri�cation of our ideas and for technology transfer.

Exploiting the core infrastructure provided by Globus and software components from our AppLeS, NWS,

Autopilot, NetSolve, D95, and scalar compiler systems, the GrADSoft prototype will eventually bring to-

gether an increasingly sophisticated set of languages, libraries, compilers, schedulers, service negotiators, and

performance tools.

Finally, in concert with our PACI, ASCI, and other partners, the evaluation thrust will use the emerging

GrADSoft prototype to develop and assess Grid-enabled applications. This evaluation will couple the basic

research and testbed e�orts and provide a blueprint for a powerful technology transfer mechanism for the

GrADS project and possible extensions thereof. The Cactus experiment, alluded to above, is an example of

this approach.

In brief, the research, testbed, and application evaluation thrusts are linked a tight cycle of exploration,

development, and experimental validation that focuses research on problems that are both important and

practical.

7 Summary

The GrADS project has established an e�ort to pioneer technologies that will be needed for ordinary scienti�c

users to develop applications for the Grid. These technologies will include a new program preparation

framework and an execution environment that employs continuous monitoring to ensure that reasonable

progress is being made toward completion of a computation.

Based on preliminary e�orts to develop Grid-enabled versions of the ScaLAPACK linear solver and the

Cactus toolkit, we have begun construction of the GrADSoft infrastructure, which will provide generic

mechanisms for initiating and monitoring the execution of applications on the Grid. In addition, the project

has developed and de�ned the concept of a \con�gurable object program" which includes the resource

mapping and performance modeling components necessary for use in the GrADS execution system. Finally

we have constructed two major testbeds, the MicroGrid and the MacroGrid, to support experimentation

with Grid execution and monitoring technologies.

In the future, we plan to address the programmability problem through the development of frameworks for

17

generating high-level, domain-speci�c problem-solving systems based on libraries of Grid-aware components.

These libraries are the subject of a major research thrust of the GrADS e�ort.

Over the long term, we believe that a system like the one being constructed by GrADS can dramatically

increase the impact of the Grid by making it accessible to the entire science and engineering community.

Acknowledgments

The authors would like to thank Frederica Darema, manager of the NSF Next Generation Software program,

which provides GrADS funding, for her constant support of our e�ort and her intellectual contributions to

the ideas underlying the GrADS project. In addition, we would like to thank the the many participants

(research sta� and students) in the GrADS project who have contributed to the development of the ideas

and systems described in this paper.

References

[1] R. Aiken, M. Carey, B. Carpenter, I. Foster, C. Lynch, J. Mambretti, R. Moore, J. Strasnner, and
B. Teitelbaum. Network Policy and Services: A Report of a Workshop on Middleware. IETF, RFC
2768, http://www.ietf.org/rfc/rfc2768.txt, 2000.

[2] G. Allen, W. Benger, T. Goodale, H. Hege, G. Lanfermann, A. Merzky, T. Radke, and E. Seidel. The
Cactus code: A problem solving environment for the grid, 2000.

[3] Gabrielle Allen, David Angulo, Ian Foster, Gerd Lanfermann, Chuang Liu, Thomas Radke, Ed Seidel,
and John Shalf. The cactus worm: Experiments with dynamic resource discovery and allocation in a
grid environment. International Journal of Supercomputer Applications, 2001.

[4] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz, A. Greenbaum,
S. Hammarling, A. McKenney, and D. Sorensen. \LAPACK Users' Guide, Third Edition". SIAM,
Philadelphia, PA, 1999.

[5] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. PETSc users manual.
Technical Report ANL-95/11 - Revision 2.1.0, Argonne National Laboratory, 2001.

[6] L. Blackford, J. Choi, A. Cleary, E. D'Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling,
G. Henry, A. Petitet, K. Stanley, D. Walker, and R. Whaley. ScaLAPACK Users' Guide. SIAM,
Philadelphia, PA, 1997.

[7] H. Casanova, J. Dongarra, C. Johnson, and M. Miller. Application{Speci�c Tools. In I. Foster and
C. Kesselman, editors, The Grid: Blueprint for a New Computing Infrastructure, pages 159{180. Morgan
Kaufmann, 1998.

[8] Henri Casanova and Jack Dongarra. NetSolve: A network-enabled server for solving computational
science problems. The International Journal of Supercomputer Applications and High Performance
Computing, 11(3):212{223, Fall 1997.

[9] CDDB, http://www.cddb.com.

[10] S. Chauveau and F. Bodin. Menhir: An environment for high performance Matlab. Scienti�c Program-
ming, 7:303{312, 1999.

[11] A. Chervenak, I. Foster, C. Kesselman, C. Salisbury, and S. Tuecke. The Data Grid: Towards an
Architecture for the Distributed Management and Analysis of Large Scienti�c Data Sets. Journal of
Network and Computer Applications, 2000.

18

[12] K. Czajkowski, S. Fitzgerald, I. Foster, and C. Kesselman. Grid information services for distributed
resource sharing. In Proceedings of the 10th IEEE Symposium on High-Performance Distributed Com-
puting (HPDC). IEEE Computer Society Press, 2001.

[13] K. Czajkowski, I. Foster, N. Karonis, C. Kesselman, S. Martin, W. Smith, and S. Tuecke. A Resource
Management Architecture for Metacomputing Systems. In Proceedings of the Fourth Workshop on Job
Scheduling Strategies for Parallel Processing, 1998.

[14] S. E. Czerwinski, B. Y. Zhao, T. D. Hodes, A. D. Joseph, and R. H. Katz. An Architecture for a Secure
Service Discovery Service. In Mobicom '99. ACM Press, 1999.

[15] T. DeFanti, I. Foster, M. Papka, R. Stevens, and T. Kuhfuss. Overview of the I{WAY: Wide{Area Vi-
sual Supercomputing. The International Journal of Supercomputer Applications and High Performance
Computing, 10(2):123{130, Summer/Fall 1996.

[16] Luiz DeRose and David Padua. A MATLAB to Fortran 90 translator and its e�ectiveness. In Proceedings
of the 10th International Conference on Supercomputing, May 1996.

[17] P. Dinda and D. O'Hallaron. An Evaluation of Linear Models for Host Load Prediction. In Proceedings
of the 8th IEEE Symposium on High-Performance Distributed Computing (HPDC). IEEE Press, 1999.

[18] A. Downey. Predicting Queue Times on Space-Sharing Parallel Computers. In Proceedings of the
International Parallel Processing Symposium, 1997.

[19] Entropia, http://www.entropia.com.

[20] S. Fitzgerald, I. Foster, C. Kesselman, G. von Laszewski, W. Smith, and S. Tuecke. A Directory
Service for Con�guring High{Performance Distributed Computations. In Proceedings of the Sixth IEEE
Symposium on High{Performance Distributed Computing, pages 365{375, August 1997.

[21] Network for Earthquake Engineering Simulation. http://www.neesgrid.org/.

[22] Search for Extraterrestrial Intelligence. http://setiathome.ssl.berkeley.edu/.

[23] I. Foster, J. Geisler, W. Nickless, W. Smith, and S. Tuecke. Software Infrastructure for the I{WAY
Metacomputing Experiment. (To appear in Concurrency: Practice & Experience.).

[24] I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastructure. Morgan
Kaufmann, 1998.

[25] I. Foster and C. Kesselman. The Globus Toolkit. In I. Foster and C. Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure, pages 259{278. Morgan Kaufmann, 1998.

[26] I. Foster, C. Kesselman, C. Lee, R. Lindell, K. Nahrstedt, and A. Roy. A Distributed Resource Man-
agement Architecture that Supports Advance Reservations and Co-Allocation. In Proceedings of the
International Workshop on Quality of Service, pages 27{36, 1999.

[27] I. Foster, C. Kesselman, and S. Tuecke. The Anatomy of the Grid: Enabling Scalable Virtual Organi-
zations. International Journal of Supercomputer Applications, 2001.

[28] Edgar Gabriel, Michael Resch, Thomas Beisel, and Rainer Keller. Distributed Computing in a Het-
erogenous Computing Environment. In Proc. EuroPVMMPI'98. 1998.

[29] D. Gannon, R. Bramley, M. Govindaraju, N. Mukhi, M. Yechuri, and B. Temko. A Componentized
Services Architecture for Building Distributed Grid Applications. In Proceedings of Ninth IEEE Inter-
national Symposium on High Performance Distributed Computing, Pittsburgh, Pennsylvania, August
2000.

[30] Dennis Gannon and Andrew Grimshaw. Object-based approaches. In I. Foster and C. Kesselman,
editors, The Grid: Blueprint for a New Computing Infrastructure, pages 205{236. Morgan Kaufmann
Publishers.

19

[31] European Data Grid. http://www.eu-datagrid.org/.

[32] NASA Information Power Grid. http://www.nas.nasa.gov/About/IPG/ipg.html.

[33] A. S. Grimshaw, W. A. Wulf, and the Legion Team. The Legion Vision of aWorldwide Virtual Computer.
Communications of the ACM, 40(1), 1997.

[34] Grid Physics Network (GriPhyN) Project, http://www.griphyn.com.

[35] E. Guttman, C. Perkins, J. Veizades, and M. Day. Service Location Protocol, Version 2. IETF RFC
2165, 1998.

[36] Samuel Guyer and Calvin Lin. An annotation language for optimizing software libraries. In Proceedings
of the Second Conference on Domain-Speci�c Languages, October 1999.

[37] B. Hahn. Essential MATLAB for Scientists and Engineers. Arnold, 1997.

[38] E. Houstis and J. Rice. Ellpack: An expert system for parallel processing of partial di�erential equations,
1990.

[39] T. A. Howes and M. Smith. A Scalable, Deployable Directory Service Framework for the Internet.
Technical Report 95-7, Center for Information Technology Integration, Univerity of Michigan, 1995.

[40] William E. Johnston, Dennis Gannon, and Bill Nitzberg. Grids as Production Computing Environments:
The Engineering Aspects of NASA's Information Power Grid. In Proceedings of the 8th IEEE Symposium
on High-Performance Distributed Computing (HPDC). IEEE Computer Society Press, 1999.

[41] N. H. Kapadia, J. A. B. Fortes, and C. E. Brodley. Predictive Application-Performance Modeling in a
Computational Grid Environment. In Proceedings of the 8th IEEE Symposium on High-Performance
Distributed Computing (HPDC), August 1999.

[42] K. Kennedy, B. Broom, K. Cooper, J. Dongarra, R. Fowler, D. Gannon, L. Johnsson, J. Mellor-
Crummey, and L. Torczon. Telescoping Languages: A Strategy for Automatic Generation of Scienti�c
Problem-Solving Systems from Annotated Libraries. Journal of Parallel and Distributed Computing,
2001. To appear.

[43] Khoral Software. Khoros Pro Version 2.2, 1998.

[44] T. Kimura and H. Takemiya. Local Area Metacomputing for Multidisciplinary Problems: A Case Study
for Fluid/Structure Coupled Simulation. In Proc. Intl. Conf. on Supercomputing, pages 145{156. 1998.

[45] M. Livny. Matchmaking: Distributed Resource Management for High Throughput Computing. In
Proceedings of the Seventh IEEE International Symposium on High Performance Distributed Computing,
1998.

[46] Miron Livny. High-throughput resource management. In I. Foster and C. Kesselman, editors, The Grid:
Blueprint for a New Computing Infrastructure, pages 311{337. Morgan Kaufmann Publishers, 1998.

[47] Mark Lutz. Programming Python. O'Reilly & Associates, October 1996.

[48] P. Lyster, L. Bergman, P. Li, D. Stan�ll, B. Crippe, R. Blom, C. Pardo, and D. Okaya. CASA Gigabit
Supercomputing Network: CALCRUST Three{Dimensional Real{Time Multi{Dataset Rendering. In
Proceedings of Supercomputing '92, Minneapolis, Minnesota, November 1992. (Poster session.).

[49] Vijay Menon and Keshav Pingali. A case for source-level transformations in MATLAB. In Proceedings
of the Second Conference on Domain-Speci�c Languages, pages 53{65, October 1999.

[50] Vijay Menon and Keshav Pingali. High-level semantic optimization of numerical codes. In Proceedings
of the International Conference on Supercomputing 1999, pages 434{443, 1999.

[51] Napster, http://www.napster.com.

20

[52] D. Narayanan, J. Flinn, and M. Satyanarayanan. Using History to Improve Mobile Application Adapta-
tion. In Proceedings of the Third Workshop on Mobile Computing Systems and Applications, December
2000.

[53] Parabon, http://www.parabon.com.

[54] A. Petitet, S. Blackford, J. Dongarra, B. Ellis, Graham Fagg, K. Roche, and S. Vadhiyar. Numerical
libraries and the grid: The grads experiments with scalapack. International Journal of Supercomputer
Applications, 2001.

[55] D. Reed, C. Elford, T. Madhyastha, E. Smirni, and S. Lamm. The Next Frontier: Interactive and Closed
Loop Performance Steering. In Proceedings of the 1996 International Conference on Parallel Processing
Workshop, pages 20{31, August 1996.

[56] D. Reed and R. L. Ribler. Performance Analysis and Visualization. In I. Foster and C. Kesselman,
editors, The Grid: Blueprint for a New Computing Infrastructure, pages 367{394. Morgan Kaufmann,
1998.

[57] R. Ribler and D. Reed. The Autopilot Performance{Directed Adaptive Control System. In Proceedings
of 11th ACM International Conference on Supercomputing|Workshop on Performance Data Mining:
Automated Diagnosis, Adaption and Optimization, Vienna, Austria, July 1997.

[58] M. Ripeanu, A. Iamnitchi, and I. Foster. Performance predictions for a numerical relativity package in
grid environments. International Journal of Supercomputer Applications, 2001.

[59] T. Sheehan, W. Shelton, T. Pratt, P. Papadopoulos, P. LoCascio, and T. Dunigan. Locally Self Consis-
tent Multiple Scattering Method in a Geographically Distributed Linked MPP Environment. Parallel
Computing, 24, 1998.

[60] Steve Smale. Dynamics in General Equilibrium Theory. American Economic Review, 66(2):284{294,
May 1976.

[61] W. Smith, I. Foster, and V. Taylor. Predicting Application Run Times Using Historical Information.
In The 4th Workshop on Job Scheduling Strategies for Parallel Processing, 1998.

[62] H. J. Song, X. Liu, D. Jakobsen, R. Bhagwan, X. Zhang, K. Taura, and A. Chien. The MicroGrid: a
scienti�c tool for modeling computational grids. In SC2000. 2000.

[63] R. Stevens, P. Woodward, T. DeFanti, and C. Catlett. From the I{WAY to the National Technology
Grid. Communications of the ACM, 40(11):50{60, November 1997.

[64] Jaspal Subhlok, Peter Lieu, and Bruce Lowekamp. Automatic Node Selection for High Performance
Applications on Networks. In Proceedings of the Seventh ACM SIGPLAN Symposium on the Principles
and Practice of Parallel Programming (PPoPP'99), pages 163{172. ACM Press, 1999.

[65] M. van Steen, F. Hauck, P. Homburg, and A. Tanenbaum. Location Objects in Wide-area Systems.
IEEE Communications Magazine, pages 104{109, 1998.

[66] F. Vraalsen, R. Aydt, C. Mendes, and D. Reed. Performance Contracts: Predicting and Monitoring
Grid Application Behavior. In Proceedings of The Second IEEE/ACM International Workshop on Grid
Computing, November 2001.

[67] J. Waldo. The Jini Architecture for Network-centric Computing. Communications of the ACM, 42(7):76{
82, July 1999.

[68] Carl A. Waldspurger, Tad Hogg, Bernardo A. Huberman, Je�ery O. Kephart, and W. Scott Stornetta.
Spawn: A Distributed Computational Economy. IEEE Trans. on Software Engineering, 18(2):103{117,
February 1992.

21

[69] Glen E. Weaver, K. S. McKinley, and Charles C. Weems. Score: A compiler representation for het-
erogeneous systems. In Proceedings of the 1996 Heterogeneous Computing Workshop, Honolulu, April
1996.

[70] R. Wolski. Dynamically Forecasting Network Performance to Support Dynamic Scheduling Using the
Network Weather Service. In Proceedings of the Sixth IEEE Symposium on High{Performance Distrib-
uted Computing, August 1997.

22

