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Introduction 
 
     For years collecting performance data on applications programs has been an imprecise 
art. The user has had to rely on timers with poor resolution or granularity, imprecise 
empirical information on the number of operations performed in the program in question, 
vague information on the effects of the memory hierarchy, etc. Today hardware counters 
exist on every major processor platform. These counters can provide application 
developers valuable information about the performance of critical parts of the application 
and point to ways for improving performance.  Performance tool developers can use these 
hardware counters as a basis for tools and interfaces that provide users with insight into 
diagnosing and fixing performance problems. The current problem facing users and tool 
developers is that access to these counters is often poorly documented, unstable or 
unavailable to the user level program. The focus of the PAPI project is to provide an easy 
to use, common set of interfaces that will gain access to these performance counters on 
all major processor platforms, thereby providing application developers the information 
they need to tune their software on different platforms.  The goal is to make it easy for 
users to gain access to the counters to aid in performance analysis, modeling, and tuning. 
 
    The approach of the PAPI project has been to work with the high performance 
computing community, including users and vendors, to choose a common set of hardware 
events and to define a cross-platform library interface to the underlying counter 
hardware.  The common set of events are those considered to be most relevant and useful 
in tuning application performance.  As large a subset as possible has been mapped to the 
corresponding machine-specific events on the major HPC platforms and it is hoped that 
most of these events will be made available in the future on all major HPC platforms to 
improve the capability for tuning applications across multiple platforms.  The intent is 
that the same metric would count similar, and possibly comparable, events on different 
platforms.  Direct comparison between systems is not the intention of the PAPI 
predefined events.  Rather, the intention is to standardize the names for the metrics, not 
the exact semantics, which necessarily depend on the processor under study.  The PAPI 
library provides two interfaces to the underlying counter hardware:  a high level interface 
for the acquisition of simple measurements, and a fully-programmable, thread-safe low 
level interface directed towards users with more sophisticated needs.  The high level 
interface simply provides the capability to start, stop, and read the counters for a specified 
list of events.  The target audience for the high level interface is application engineers and 
benchmarking teams looking to quickly and simply acquire some rudimentary 
performance measurements.  The tool developer will likely find the high level interface 
too restrictive.  The low level interface provides the more sophisticated functionality of 
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user callbacks on counter overflow and hardware based SVR4 compatible profiling, 
regardless of whether or not the operating system supports it.  These features provide the 
necessary basis for any source level performance analysis software.  Thus, for any 
architecture with even the most rudimentary access to hardware performance counters, 
PAPI provides the foundation for truly portable, source level performance analysis tools 
based on real processor statistics. 
 
    Obtaining performance data for large-scale applications can be cumbersome and 
inefficient with traditional tools.  The data collected may consist only of summary 
statistics and not provide much insight into the dynamic runtime behavior of the 
application.  Most tools require that the data to be collected be specified prior to runtime 
and do not allow for runtime selection or adjustment of which events to measure or the 
level of detail or granularity at which measurements should be made.  To address these 
issues, the tool infrastructure being developed to complement the PAPI library facilitates 
runtime tracing and analysis of hardware counter data, as well as runtime control over 
performance instrumentation.  Utility routines layered on top of the PAPI library enable 
application developers to easily delineate interesting portions of the application, such as 
subroutines and loop nests, and to output hardware counter data at runtime via a socket 
connection to interactive end-user performance analysis tools.  In addition, a dynamic 
instrumentation capability currently under development will provide mechanisms for 
calls to PAPI library and utility routines to be dynamically inserted into and removed 
from running applications, thus allowing runtime control over the selection of hardware 
events and of counting modes and granularity. 
 
PAPI Architecture and Design 
 
    The PAPI architecture uses a layered approach, as shown in Figure 1.  Internally, the 
PAPI implementation is split into portable and machine-dependent layers.  The topmost 
portable layer consists of the high and low level PAPI interfaces.  This layer is 
completely machine independent and requires little porting effort.  It contains all of the 
API functions as well as numerous utility functions that perform state handling, memory 
management, data structure manipulation, and thread safety.  In addition, this layer 
provides advanced functionality not always provided by the operating system, namely 
event profiling and overflow handling.  The portable layer calls the substrate, the internal 
PAPI layer that handles the machine-dependent specifics of accessing the counters.  The 
substrate uses whatever methods appropriate to facilitate counter access, whether that be 
register level operations (T3E), customized system calls (Linux/x86), or calls to another 
library (AIX 4.3).  The substrate interface and functionality are well defined, leaving 
most of the code free from conditional compilation directives.  For each 
architecture/operating system pair, only a new substrate layer needs to be written.  
Experience indicates that no more than a few weeks are required to generate a fully 
functional substrate for a new platform, if the operating system provides the necessary 
support for accessing the hardware counters.  Substrates have been implemented for 
Pentium Pro/II/III on Linux, SGI/MIPS R10000/R12000 on IRIX 6.x [4], IBM Power 
604/604e/630 on AIX 4.3 [1], Cray T3E/EV5 on Unicos/mk, and Sun Ultra on Solaris 8.  
Work is underway on the Compaq Alpha Ev4/5/6 on Tru64 Unix substrate. 



 
Figure 1. PAPI Architecture 

 
    PAPI provides an abstraction from particular hardware events called EventSets.  An 
EventSet consists of events that the user wishes to count as a group.  There are two 
reasons for this abstraction.  The first reason is efficiency in accessing the counters 
through the operating system.  Most operating systems allow the programmer to move the 
counter values in bulk without having to make a separate system call for each counter.  
By exposing this grouping to the user, the PAPI library can greatly reduce its overhead 
when accessing the counters.  This efficiency is especially important when PAPI is used 
to measure small regions of code inside loops with large iteration counts.  The second 
reason for EventSets is that users can evolve their own specialized counter groupings 
specific to their application areas.  More often than not, relevant performance information 
is obtained by relating different metrics to one another.  For example, the ratio of loads to 
level 1 cache misses is often the dominant performance indicator in dense numerical 
kernels.  EventSets are managed by the user via integer handles, which simplifies inter-
language calling interfaces.  Multiple EventSets may be used simultaneously and may 
share counters. 



 
     Most modern microprocessors have a very limited number of events than can be 
counted simultaneously.  This limitation severely restricts the amount of performance 
information that the user can gather during a single run.  As a result, large applications 
with many hours of run time may require days or weeks of profiling in order to gather 
enough information on which to base a performance analysis. This limitation can be 
overcome by multiplexing the counter hardware. By subdividing the usage of the counter 
hardware over time, multiplexing presents the user with the view that many more 
hardware events are countable simultaneously. This unavoidably incurs a small amount 
of overhead and can adversely affect the accuracy of reported counter values. 
Nevertheless, multiplexing has proven useful in commercial kernel level performance 
counter interfaces such as SGI’s IRIX 6.x. Hence, on platforms where the operating 
system or kernel level counter interface does not support multiplexing, PAPI plans to 
provide the capability to multiplex through the use of a high resolution interval timer.   
 
    One of the most significant features of PAPI for the tool writer is its ability to call 
user-defined handlers when a particular hardware event exceeds a specified threshold.  
For systems that do not support counter overflow at the operating system level, this is 
accomplished by setting up a high resolution interval timer and installing a timer interrupt 
handler. PAPI handles the signal by comparing the current counter value against the 
threshold. If the current value exceeds the threshold, then the user’s handler is called 
from within the signal context with some additional arguments. These arguments allow 
the user to determine which event overflowed, how much it overflowed, and at what 
location in the source code.  Statistical profiling is built upon the above method of 
installing and emulating arbitrary callbacks on overflow. Profiling works as follows: 
when an event exceeds a threshold, a signal is delivered with a number of arguments. 
Among those arguments is the interrupted thread’s stack pointer and register set. The 
register set contains the program counter, the address at which the process was 
interrupted when the signal was delivered.  Performance tools such as UNIX prof 
extract this address and hash the value into a histogram.  At program completion, the 
histogram is analyzed and associated with symbolic information contained in the 
executable.  What results is a line-by-line account of where counter overflow occurred in 
the program.  Most existing profilers use process time as the overflow trigger.  PAPI 
generalizes this functionality so that a histogram can be generated using any countable 
event as the basis for analysis. 
 
    The PAPI project has developed two tools that demonstrate graphical display of PAPI 
performance data in a manner useful to the application developer.   The tool front-ends 
are written in Java and can be run on a separate machine from the program being 
monitored.  All that is required for real-time monitoring and display of application 
performance is a socket connection between the machines.  The first tool, called the 
perfometer, provides a runtime trace of a chosen PAPI metric, as shown in Figure 2 for 
floating operations per second (PAPI_FLOPS).  This particular example illustrates how 
calls to PAPI routines at the beginnings and ends of procedures can provide information 
about the relative floating point performance of those procedures.  The same display can 
be generated for any of the PAPI metrics. The second tool, called the profometer,  



 
 

Figure 2. Perfometer displaying MFLOPs 
 
 

 
 

Figure 3. Profometer display of L1 data cache misses 
 



 
provides a histogram that relates the occurrences of a chosen PAPI event to text addresses 
in the program, as shown in Figure 3 for L1 data cache misses.   Again, the same display 
can be generated for any of the PAPI metrics.  Future plans are to develop the capability 
of relating the frequency of events to source code locations, so as to allow the application 
developer the ability to quickly locate portions of the program that are the source of 
performance problems.  In addition to these tools, PAPI support has been incorporated 
into a number of commercial and research performance analysis tools, including vprof 
from Sandia National Laboratory [8], SvPablo from University of Illinois and IBM [5,6], 
DEEP/MPI from Pacific Sierra Research, and TAU from University of Oregon. 
 
 
Performance Tuning Using PAPI Metrics 
 
      The PAPI predefined events include accesses to the memory hierarchy, cache 
coherence protocol events, cycle and instruction counts, and functional unit and pipeline 
status.  Each of these areas is discussed in greater detail below, along with a discussion of 
how the metrics in each area relate to application performance tuning.  Background on 
architectural issues discussed in this section can be found in [3,7].  
 
      Because modern microprocessors have multiple levels in the memory hierarchy, 
optimizations that improve memory utilization can have major effects on performance.  
Levels of the memory hierarchy range from small fast register memory to larger slower 
levels of cache memory to still larger and slower main memory.  Different levels of cache 
memory may have separate instruction and data caches or may consist of a unified cache 
that buffers both instructions and data in the same cache.  Most modern microprocessors 
have two levels of cache, although some now have three levels (e.g., three levels are 
optional with the Compaq EV5 and EV6 architectures).  A load or store instruction 
generates a memory addressing process that first attempts to locate the addressed memory 
item in the L1 cache.  If the item is present in the L1 cache, the result is an L1 cache hit.  
If the item is not present, the result is an L1 cache miss and an attempt is next made to 
locate the item in the L2 cache, with the result being an L2 cache hit or miss.  The 
operating system uses main memory as a cache for a larger virtual address space for each 
process and translates between virtual addresses used by a program and the physical 
addresses required by the hardware.  Memory is divided into blocks called pages.  To 
keep the overhead of address translation low, the most recently used page addresses are 
cached in a translation lookaside buffer (TLB).  When a program references a virtual 
address that is not cached in the TLB, a TLB miss occurs.  If, in addition, the referenced 
page is not present in main memory, a page fault occurs.  The latency of data access 
becomes greater with each level of the memory hierarchy, with a miss at each level 
multiplying the latency by an order of magnitude or more.  The L1 and L2 cache hit rates 
indicate how cache friendly a program is and these rates can be derived from PAPI 
metrics.  PAPI also provides TLB-related performance data.   
 
      For SMP environments, PAPI assumes a four-state MESI cache coherence protocol 
(possible states: modified, exclusive, shared, and invalid).   In a cache-coherent SMP, the 



system signals to a CPU when the CPU needs to maintain the coherence of cache data.  
An intervention is a signal stating that some other CPU wants to use data from a cache 
line that the CPU receiving the signal has a copy of.  The other CPU requests the status of 
the cache line and requests a copy of the line if it is not the same as memory.  An 
invalidation is a signal that another CPU has modified a cache line that this CPU has in 
its cache and that this CPU needs to discard its copy.  A high number of cache line 
invalidations (PAPI_CA_INV) is an indicator of cache contention.  The CPU that 
produces the high count is being slowed because it is using data being updated by a 
different CPU.  The CPU doing the updating will be generating a high number of 
PAPI_CA_SHR events.  Thus, a large number of PAPI_CA_SHR events also indicates 
that the program is being slowed by memory contention for shared cache lines.  In an 
SMP, each processor has its own TLB, but page tables may be shared.  IF a processor 
changes a page table entry that another processor may be using, the first processor must 
force the second processor to flush its TLB.  This notification that a page table entry has 
changed is called a translation lookaside buffer shootdown (PAPI_TLB_SD).  A large 
number of  PAPI_TLB_SD events indicates memory contention for the same page table 
entries. 
 
     PAPI metrics include counts of the various types of instructions completed, including 
integer, floating point, load and store, and synchronization instructions.  A detailed 
discussion of how the counts for these various types of instructions can be used to 
analyze application performance is included in the full paper.  PAPI includes events for 
measuring how heavily the different functional units are being used.  Data for these 
events provide information about the ‘mix’ of operations in the code.  Several of the 
PAPI metrics allow detection of when and why pipeline stalls are occurring.  Because 
pipelining is for the most part beyond the control of the application programmer, the 
PAPI metrics relevant to pipelining are mainly intended to provide performance data 
relevant to compiler writers (e.g., for use in compiler feedback loops).  However, the 
application programmer may be able to use pipeline performance data, together with 
compiler output files, to restructure application code so as to allow the compiler to do a 
better job of software pipelining.  The application programmer may also find it useful to 
look at pipelining performance data when experimenting with different compiler options. 
 
     Letting an instruction move from the instruction decode stage of the pipeline into the 
execution stage is called instruction issue.  An instruction is completed once all logically 
previous instructions have completed and only then is its result added to the visible state 
of the CPU.  Because of speculative execution, a mispredicted branch can cause executed 
but not completed instructions to be discarded.  Resource contention can cause 
instructions to be issued more than once before being completed.  Normally, branch 
mispredictions and reissues are rare, and the number of issued instructions 
(PAPI_TOT_IIS) should correspond fairly closely to the number completed 
(PAPI_TOT_INS).  A high number of mispredicted branches (PAPI_BR_MSP) indicates 
that something is wrong with the compiler options or that something is unusual about the 
algorithm.  If the number of issued instructions greatly exceeds the number completed 
and the count of mispredicted branches remains low, then the load/store pipeline is likely 



experiencing resource contention, causing load and store instructions to be issued 
repeatedly.  
 
    Ratios derived from a combination of hardware events can sometimes provide more 
useful information than raw metrics.  Two ratios defined as PAPI metrics are floating 
point operations completed per second (PAPI_FLOPS) and total instructions completed 
per second (PAPI_IPS).  Another useful ratio is completed operations per cycle 
(PAPI_TOT_INS/PAPI_TOT_CYC).  A low value for this ratio indicates that the 
processor is stalling frequently.  The typical value for this ratio will depend on the 
underlying processor architecture.  The ratio of completed loads and stores per cycle 
(PAPI_LST_INS/PAPI_TOT_CYC) indicates the relative density of memory access in 
the program.  The ratio of floating operations completed per cycle 
(PAPI_FP_INS/PAPI_TOT_CYC) indicates the relative density of floating point 
operations.     
 
Related Work 
 
     The Performance Counter Library (PCL) is a common interface for accessing 
performance counters built into modern microprocessors in a portable way [2].  PCL 
supports query for functionality, start and stop of counters, and reading the current values 
of counters.  Performance counting can be down in user mode, system mode, or user-or-
system mode.  PCL supports nested calls to PCL functions to allow hierarchical 
performance measurements.  However, nested calls must use exactly the same list of 
events.  PCL functions are callable from C, C++, Fortran, and Java.  Similar to PAPI, 
PCL defines a common set of events across platforms for accesses to the memory 
hierarchy, cycle and instruction counts, and the status of functional units then translates 
these into native events on a given platform where possible.  PAPI additionally defines 
events related to SMP cache coherence protocols and to cycles stalled waiting for 
memory access.  Unlike PAPI, PCL does not support software multiplexing or user-
defined overflow handling.  The PCL API is very similar to the PAPI high-level API and 
consists of calls to start a list of counters and to read or stop the counter most recently 
started.  PCL is available for Tru64 Unix on Alpha 21164 and Alpha 21264 processors, 
for CRAY Unicos/mk on Alpha 21164, for SGI IRI 6.x on R10000 and R12000 
processors, for Solaris 2.x on UltraSPARC I/II, and for Linux 2.0.36 on 
Pentium/PPro/Pentium II/Pentium III.  In the PCL Solaris and Linux implementations, 
the counters are not saved on context switches.  PCL does not support native events. 
 
Conclusions 
 
     
     PAPI aims to provide the tool designer and application engineer with a consistent 
interface and methodology for use of the performance counter hardware found in most 
major microprocessor lines. The main motivation for this interface is the increasing 
divergence of application performance from near peak performance of most machines in 
the HPC marketplace. This performance gap is largely due to the disparity in memory 
and communication bandwidth at different levels of the memory hierarchy. To address 



this problem, users need a compact set of robust and useful tools to quickly diagnose and 
analyze processor specific performance metrics.  PAPI focuses on developing a reusable, 
portable, and functionality-oriented infrastructure for performance tool design and 
advanced program analysis. 
   
    The PAPI specification and software, as well as documentation and additional 
supporting information, are available from the PAPI web site at 
http://icl.cs.utk.edu/projects/papi. 
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