
A Comparison of Parallel Solvers for DiagonallyDominant and General Narrow-Banded LinearSystems IIPeter Arbenz1, Andrew Cleary2, Jack Dongarra3, and Markus Hegland41 Institute of Scienti�c Computing, ETH Zuricharbenz@inf.ethz.ch2 Center for Applied Scienti�c Computing, Lawrence Livermore National Laboratoryacleary@llnl.gov3 Department of Computer Science, University of Tennessee, Knoxvilledongarra@cs.utk.edu4 Computer Sciences Laboratory, RSISE, Australian National University, CanberraMarkus.Hegland@anu.edu.auAbstract. We continue the comparison of parallel algorithms for solv-ing diagonally dominant and general narrow-banded linear systems ofequations that we started in [2]. The solvers compared are the bandedsystem solvers of ScaLAPACK [6] and those investigated by Arbenz andHegland [1, 5]. We present the numerical experiments that we conductedon the IBM SP/2.1 IntroductionIn this note we continue the comparison of direct parallel solvers for narrow-banded systems of linear equations Ax = b(1)that we started in [2]. The n-by-n matrix A has a narrow band if its lower half-bandwidth kl and upper half-bandwidth ku are much smaller than the order ofA, kl + ku � n.We separately compare implementations of an algorithm for solving diag-onally dominant and of an algorithm for solving arbitrary band systems. Thealgorithm for the diagonally dominant band system can be interpreted as a gen-eralization of the well known tridiagonal cyclic reduction (CR), or more usefully,as Gaussian elimination applied to a symmetrically permuted system of equa-tions (PAP T)Px = Pb. The latter interpretation has important consequences,such as it implies that the algorithm is backward stable [4]. The permutationenhances (coarse grain) parallelism. Unfortunately, it also causes Gaussian elim-ination to generate �ll-in which in turn increases the computational complexityas well as the memory requirements of the algorithm [1,6].The algorithm for the arbitrary band system can be interpreted as a general-ization of bidiagonal CR [10] which is equivalent to Gaussian elimination applied

2 P. Arbenz, A. Cleary, J. Dongarra, and M. Heglandto a nonsymmetrically permuted system of equations (PAQT)Qx = Pb. Here,the right permutation Q enhances parallelism, while the left permutation P en-hances stability in that it incorporates the row-exchanges caused by pivoting.Recently, the authors presented experiments with implementations of thesealgorithms using up to 128 processors of an Intel Paragon [2]. In this paper wecomplement those comparisons of the ScaLAPACK implementations with theexperimental implementations by Arbenz and Hegland [1, 5] by timings on theIBM SP/2 at ETH Zurich. In section 2 we present our results for the diagonallydominant case. In section 3 the case of arbitrary band matrices is discussed. Wedraw our conclusions in section 4.2 Experiments with the band solver for diagonallydominant systemsAn n-by-n diagonally dominant band matrix is split according toA = 0BBBBBBB@ A1 BU1BL1 C1 DU2DL2 A2 BU2.BLp�1 Cp�1 DUpDLp Ap 1CCCCCCCA ;(2)where Ai 2 Rni�ni ; Ci 2 Rk�k; xi; bi 2 Rni; �i; �i 2 Rk; and Ppi=1 ni + (p �1)k = n, with k := maxfkl; kug. The zero structure of A and its partition isdepicted above to the right. This block tridiagonal partition is feasible only ifni > k, a condition that restricts the degree of parallelism, i.e. the maximalnumber of processors p that can be exploited for parallel execution, where p <(n+k)=(2k). The subscript of Ai, BLi , BUi , and Ci indicate on what processor thesubblock is stored. As the orders ni of the diagonal blocks Ai are in general muchbigger than k, the order of the Ci, the �rst step of CR consumes most of thecomputational time. It is this �rst step of CR that has a degree of parallelismp. Therefore, if n is very big, a satisfactory speedup can be expected. Afterthe �rst CR step the reduced systems are block tridiagonal with square blocks.The parallel complexity of this divide-and-conquer algorithm as implemented byArbenz [3, 1] is'n;p � 2kl(4ku+1)np + �323 k3 + 4ts + 4k2tw� blog2(p � 1)c:(3)Here, we assume that the time for the transmission of a message of n oatingpoint numbers from one to another processor is independent of the processor dis-tance. We represent its complexity relative to the oating point performance ofthe processor in the form ts+ntw [11]. ts denotes the startup time relative to theexecution time of a oating point operation. tw denotes the number of oating

Parallel Solvers for Narrow-Banded Linear Systems 3point operations that can be executed during the transmission of one word, herea 8-byte oating point number. Notice that ts is much larger than tw. On ourtarget machine, the IBM SP/2 at ETH Zurich with 64 160 MHz P2SC proces-sors, the startup time and bandwidth between applications are about 31 �s and110 MB/s, respectively. Comparing with the 310 Mop/s performance for theLINPACK-100 benchmark we get ts� 9600 and tw � 22:5. In the ScaLAPACKimplementation, the factorization phase is separated from the forward substitu-tion phase as in LAPACK. Therefore, there are more messages to be sent andthe term 4ts in (3) becomes 6ts which can be relevant for small bandwidth. Thecomplexity if the straightforward serial algorithm [9, x4.3] is'n = (2ku+1)kln+ (2kl+2ku�1)rn+ O((k+r)k2):(4)The computational overhead is introduced as the o�-diagonal blocks DLi andDUi are �lled during Gaussian elimination.Diagonally dominant case on the IBM SP/2(n; kl; ku) (20000; 10; 10) (100000; 10; 10) (100000; 50; 50)p t S " t S " t S "ScaLAPACK implementation1 128 1.0 4e-10 618 1.0 3e+8 2558 1.0 4e+82 120 1.1 4e-10 580 1.1 1e+8 5660 0.45 2e+84 69.8 1.8 3e-10 297 2.1 1e+8 2927 0.87 2e+88 38.5 3.3 2e-10 155 4.0 3e-9 2010 1.2 8e-912 30.6 4.2 2e-10 114 5.4 2e-9 1623 1.6 7e-916 25.1 5.1 2e-10 86.2 7.2 2e-9 1202 2.1 6e-924 27.1 4.7 2e-10 69.7 8.9 2e-9 855 3.0 5e-932 20.7 6.2 1e-10 53.1 12 1e-9 629 4.1 4e-948 20.4 6.3 1e-10 40.5 15 1e-9 479 5.3 4e-964 12.3 10 1e-10 28.4 22 1e-9 363 7.0 3e-9Arbenz / Hegland implementation1 124 1.0 4e-10 609 1.0 5e-9 2788 1.0 1e-82 130 0.96 4e-10 666 0.91 4e-9 4160 0.67 1e-84 66.6 1.9 3e-10 326 1.9 4e-9 2175 1.3 1e-88 37.5 3.3 2e-10 164 3.7 3e-9 1007 2.8 8e-912 21.8 5.7 2e-10 109 5.6 2e-9 707 3.9 8e-916 17.5 7.1 2e-10 83.6 7.3 2e-9 509 5.5 6e-924 12.0 10 2e-10 60.5 10 2e-9 374 7.5 5e-932 9.41 13 1e-10 47.1 13 1e-9 271 10 4e-948 8.25 15 1e-10 30.2 20 1e-9 199 14 4e-964 9.57 13 1e-10 21.7 28 1e-9 180 16 3e-9Table 1. Selected execution times t in milliseconds, speedups S = S(p), and errorfor the two algorithms for the three problem sizes. " denotes the 2-norm error of thecomputed solution.

4 P. Arbenz, A. Cleary, J. Dongarra, and M. HeglandWe compare two implementations of the above algorithm, the ScaLAPACKimplementation [7] and the one by Arbenz and Hegland (AH), by means of threetest-problems of sizes (n; kl; ku) = (100000; 10; 10), (n; kl; ku) = (20000; 10; 10),and (n; kl; ku) = (100000; 50; 50). The matrix A always has all ones within theband and the value �=100 on the diagonal. The condition numbers of A varybetween 1 and 3, see [2]. The right-hand sides are chosen such that the solutiongets (1; : : : ; n)T which enables us to determine the error in the computed solu-tion. We compiled a program for each problem size, adjusting the arrays to justthe size needed to solve the problem on one processor.In Tab. 1 the execution times are listed for all problem sizes. For both imple-mentations the one-processor times are quite close. The di�erence in this part ofthe code is that the AH implementation calls the level-2 BLAS based LAPACKroutine dgbtf2 for the triangular factorization, whereas in the ScaLAPACKimplementation the level-3 BLAS based routine dgbtrf is called. The latter isadvantageous with the wider bandwidth k = 50, while dgbtf2 performs (slightly)better with the narrow band.With the bandwidth k=10 problems, the ScaLAPACK implementation per-forms slightly faster on two than on one processor. The AH implementationslows down by 5-10%. With the large problem there is a big jump from theone- to the two-processor execution times. From (3) and (4) one sees that theparallel algorithm has a redundancy of about 4. The additional work consistsof computing the �ll-in and the reduced system [2] which comprises a forwardelimination, a backward substitution, each with k vectors, and a multiplicationof a k � ni with a ni � k matrix. These operations are executed at very highspeed such that there is almost no loss in performance with the small and theintermediate problem. In ScaLAPACK, for forward elimination and backwardsubstitution the level-2 BLAS dtbtrs is called. In the AH implementation thisroutine is expanded in order to avoid unnecessary checks if rows have been ex-changed in the factorization phase. This avoids the evaluation of if-statements.In the large problem size the matrices are considerably larger. There are morecache misses, in particular in the ScaLAPACK implementation where the matri-ces that su�er from �ll-in are stored in ni� k arrays. In the AH implementationthese matrices are stored in `lying' arrays which increases the performance onthe RISC architecture of the underlying hardware considerably [1,8].The speedups of the AH implementation relative to the 2-processor perfor-mance is very close to ideal for the intermediate problem. With the small prob-lem, the communication overhead begins to dominate the computation for largeprocessor numbers. In the large problem this is e�ect in not yet so pronounced.The ScaLAPACK implementation does not scale as well. For large processornumbers the di�erence in execution times is about 2/3 which correlates with theratio of messages sent in the two implementations.Clearly, the speedups for the medium size problem with large n and smallk are best. The 1=p -term that containes the factorization of the Ai and thecomputations of the `spikes' DUi R�1i and L�1i DLi consumes �ve times as muchtime as with the small problem size and scales very well. This portion is still

Parallel Solvers for Narrow-Banded Linear Systems 5increased with the large problem size. However, there the solution of the reducedsystem gets expensive also.3 Experiments with a pivoting solver for arbitrary bandsystemsThe partition (2) is not suited for the parallel solution of (1) if partial pivoting isrequired in the Gaussian elimination to preserve stability. In order that pivotingcan take place independently in block columns they must not have elements inthe same row. Therefore, the separators have to be k := kl + ku columns wide.As discussed in detail in [5,2] we consider the matrix A as a cyclic band matrixby moving the last kl rows to the top.A = 0BBBBBBBBBB@A1 D1B1 C1A2 D2B2 C2A3 D3B3 C3A4 D4B4 C41CCCCCCCCCCA(5)where Ai 2 Rmi�ni ; Ci 2 Rk�k; xi; bi 2 Rni; �i; �i 2 Rk; k := kl + ku; andPpi=1mi = n, mi = ni + k. If ni > 0 for all i, then the degree of parallelism isp. Notice that the permutation that moves the last rows to the top is done forpedagogical reasons: it makes the diagonal blocks Ai and Ci square and the �rstelimination step gets formally equal with the successive ones. Also notice thatA in (5) is block bidiagonal and that the diagonal blocks are lower triangular.For solving Ax = b in parallel we apply a generalization of cyclic reductionthat permits pivoting [10, 5, 2]. Its parallel complexity is'ppn;p � 4k2np + �233 k3 + 2ts + 3k2tw� blog2(p)c:(6)The serial complexity of straightforward Gaussian elimination with partial piv-oting is 'ppn � (2k+1)kln; k := kl + ku;(7)leading to a redundancy of about 2k=kl.We again tested two versions of the algorithm, the ScaLAPACK implemen-tation and the implementation by Arbenz and Hegland. We used the same testproblems as above, however, we choose �, the value the diagonal elements of A,smaller. The condition number of the system matrix A, �(A), grows very largeas � tends to one. For the problems with bandwidths 10, �(A) � 1 for � = 10and �(A) � 3 � 106 for � = 1:01. With the large bandwidth k = 50, we have

6 P. Arbenz, A. Cleary, J. Dongarra, and M. HeglandNon-diagonally dominant case on the IBM SP/2. Small problem size.� = 10 � = 5 � = 2 � = 1:01p t S " t S " t S " t S "ScaLAPACK implementation1 289 1.0 6e-10 294 1.0 3e-8 334 1.0 4e-7 333 1.0 7e-72 261 1.1 6e-10 274 1.1 4e-8 277 1.2 2e-6 276 1.4 7e-74 120 2.4 5e-10 154 1.9 4e-8 143 2.3 3e-7 136 2.4 1e-78 66.1 4.4 3e-10 86.3 3.4 3e-8 90.5 3.7 9e-7 90.3 3.7 2e-712 64.8 4.5 3e-10 62.4 4.7 4e-8 69.3 4.8 8e-7 66.1 5.0 4e-716 51.1 5.7 3e-10 51.5 5.7 3e-8 53.3 6.3 1e-6 52.3 6.4 7e-824 43.5 6.6 2e-10 41.3 7.1 9e-9 40.7 8.2 6e-7 41.0 8.1 3e-732 36.7 7.9 3e-10 33.9 8.7 9e-9 34.2 9.8 7e-7 34.1 9.8 1e-748 29.1 9.9 2e-10 29.5 10 1e-8 31.2 11 5e-7 36.8 9.1 7e-864 19.4 15 2e-10 19.1 15 1e-8 19.7 17 7e-7 19.9 17 5e-8Arbenz / Hegland implementation1 193 1.0 7e-10 204 1.0 3e-8 242 1.0 6e-7 241 1.0 6e-72 171 1.1 6e-10 166 1.2 2e-8 183 1.3 1e-6 175 1.4 7e-74 87.6 2.2 5e-10 84.8 2.4 5e-8 95.0 2.5 1e-6 90.2 2.7 7e-78 48.8 3.9 4e-10 44.9 4.5 2e-8 49.4 4.9 1e-6 47.7 5.0 6e-712 37.1 5.2 3e-10 33.4 6.1 5e-8 35.0 6.9 1e-6 33.6 7.2 5e-816 30.2 6.4 3e-10 24.6 8.2 1e-8 29.7 8.1 7e-7 29.1 8.3 1e-724 18.7 10 3e-10 18.8 11 1e-8 21.1 11 1e-6 19.7 12 6e-732 15.2 13 3e-10 15.4 13 1e-8 16.3 15 5e-7 16.3 15 2e-748 13.8 14 3e-10 16.6 12 1e-8 13.3 18 7e-7 12.7 19 4e-864 11.1 17 3e-10 11.3 18 1e-8 11.7 21 3e-7 12.8 19 2e-7Table 2. Selected execution times t in milliseconds, speedups S, and 2-norm errors "of the two implementations for the small problem size (n; kl; ku) = (20000; 10; 10) withvarying �.�(A) � 2 �105 for � = 10 and �(A) � 5 �108 for � = 1:01. Tables 2, 3, and 4 con-tain the respective numbers, execution time, speedup and 2-norm of the error,for the three problem sizes.Relative to the AH implementation the execution times for ScaLAPACKcomprise overhead proportional to the problem size, mainly zeroing elements ofwork arrays. This is done in the AH implementation during the building of thematrices. Therefore, the comparison in the non-diagonally dominant case shouldnot be based primarily on execution times but on speedups. The execution timesincrease with the condition number �(A) of the problem which is of course hardor even impossible to predict as the pivoting procedure is unknown. At leastthe two problems with bandwidth k = kl + ku = 20 can be discussed alongsimilar lines. (ScaLAPACK does not give correct results for processor numbersp � 4. This did not happen on the Intel Paragon [2]. Actually, the error oc-curs only on the last processor p. The execution times seem not to be a�ected.)The AH implementation scales better than ScaLAPACK. Its execution times

Parallel Solvers for Narrow-Banded Linear Systems 7Non-diagonally dominant case on the IBM SP/2. Intermediate problem size.� = 10 � = 5 � = 2 � = 1:01p t S " t S " t S " t S "ScaLAPACK implementation1 1443 1.0 2e+9 1454 1.0 8e+11 1660 1.0 2e+12 1660 1.0 1e+102 1294 1.1 9e+8 1302 1.1 3e+11 1360 1.2 1e+12 1335 1.2 6e+94 799 1.8 9e+8 643 2.3 2e+11 685 2.4 7e+11 671 2.5 5e+98 412 3.5 4e-9 404 3.6 2e-6 416 4.0 1e-5 420 4.0 3e-612 279 5.2 4e-9 276 5.3 5e-7 290 5.7 6e-6 279 6.0 2e-616 210 6.9 3e-9 209 7.0 1e-6 219 7.6 6e-6 216 7.7 3e-624 152 9.5 3e-9 152 9.5 6e-7 151 11 5e-6 150 11 1e-632 115 13 2e-9 113 13 4e-7 123 14 3e-6 117 14 2e-648 84 17 2e-9 85.1 17 8e-7 85.9 19 2e-6 84.4 20 1e-664 63 23 2e-9 58.5 25 4e-7 61.8 27 2e-6 61.6 27 5e-7Arbenz / Hegland implementation1 985 1.0 8e-9 978 1.0 2e-6 1252 1.0 2e-5 1173 1.0 7e-62 823 1.2 8e-9 826 1.2 2e-6 923 1.4 1e-5 878 1.3 5e-64 415 2.4 6e-9 421 2.3 5e-7 467 2.7 8e-6 439 2.7 5e-68 214 4.6 5e-9 213 4.6 3e-7 236 5.3 8e-6 225 5.2 2e-612 145 6.8 4e-9 145 6.8 9e-7 159 7.9 5e-6 152 7.7 1e-616 113 8.7 4e-9 109 8.9 6e-7 140 9.0 4e-6 115 10 9e-724 74.6 13 3e-9 75.1 13 6e-7 86.1 15 3e-6 80.3 15 1e-632 60.7 16 3e-9 57.3 17 1e-6 62.8 20 4e-6 62.1 19 9e-748 42.2 23 2e-9 41.0 24 4e-7 48.0 26 4e-6 43.3 27 6e-764 36.3 27 2e-9 32.4 30 6e-7 38.6 32 5e-6 34.5 34 7e-7Table 3. Selected execution times t in milliseconds, speedups S, and 2-norm errors "of the two implementations for the medium problem size (n; kl; ku) = (100000; 10; 10)with varying �.for large processor numbers is about half of that of the ScaLAPACK implemen-tation except for p = 64. For a reason not yet clear to us, the ScaLAPACKimplementation performs relatively fast for p = 64 when the execution time ofthe AH implementation is about 2/3 of ScaLAPACK, reecting again the ratioof the messages sent. In contrast to the results obtained for the Paragon, theexecution times for the pivoting algorithm for � = 10 are clearly longer thanfor the `simple' algorithm. Thus, the suggestion made in [4] to always use thepivoting algorithm can now de�nitively be rejected. The memory consumptionof the pivoting algorithm is higher anyway. On the other hand, the overhead forpivoting in the solution of the reduced system by bidiagonal cyclic reduction isnot so big that it justi�es sacri�cing stability.With the large problem size, ScaLAPACK shows an extremely bad one-processor performance. In the ScaLAPACK implementation the auxiliary arraysmentioned above are accessed even in the one-processor run (when they are notneeded) leading to an abundant memory consumption. The matrices do not �t

8 P. Arbenz, A. Cleary, J. Dongarra, and M. HeglandNon-diagonally dominant case on the IBM SP/2. Large problem size.� = 10 � = 5 � = 2 � = 1:01p t S� " t S� " t S� " t S� "ScaLAPACK implementation1 92674 1.0 1e+11 78777 1.0 1e+12 69759 1.0 2e+12 54908 1.0 3e+112 7857 0.41 4e+10 7664 0.46 4e+11 11888 0.43 6e+11 9056 0.57 1e+114 3839 0.85 6e+10 3924 0.90 3e+11 7102 0.73 4e+11 4630 1.1 7e+108 3072 1.1 1e-6 3054 1.2 9e-6 4125 1.2 2e-4 3392 1.5 7e-412 1993 1.6 3e-6 1991 1.8 1e-5 2754 1.9 1e-4 2272 2.3 3e-516 2122 1.5 2e-6 2135 1.6 2e-5 2625 2.0 1e-4 2369 2.2 3e-424 1174 2.8 1e-6 1123 3.1 3e-5 1476 3.5 1e-4 1252 4.1 1e-432 1201 2.7 9e-7 1179 3.0 3e-6 1447 3.6 8e-5 1287 4.0 4e-448 710 4.6 2e-6 752 4.7 3e-6 896 5.8 2e-4 763 6.8 9e-564 636 5.1 8e-7 732 4.8 2e-5 786 6.6 2e-4 772 6.7 9e-5Arbenz / Hegland implementation1 3257 1.0 6e-6 3514 1.0 2e-5 5155 1.0 2e-4 5170 1.0 1e-32 6102 0.53 4e-6 5893 0.60 9e-6 10140 0.51 1e-4 7305 0.71 7e-44 3074 1.1 2e-6 3079 1.1 6e-5 5182 1.0 1e-4 3786 1.4 1e-48 1671 1.9 2e-6 1669 2.1 1e-5 2723 1.9 2e-4 2023 2.6 9e-512 1261 2.6 2e-6 1254 2.8 1e-5 1944 2.7 8e-5 1496 3.5 2e-416 1008 3.2 1e-6 1015 3.5 1e-5 1514 3.4 1e-4 1176 4.4 2e-424 833 3.9 3e-6 836 4.2 6e-5 1162 4.4 1e-4 945 5.5 2e-432 724 4.5 1e-6 710 4.9 2e-5 952 5.4 1e-4 797 6.5 2e-448 668 4.9 2e-6 661 5.3 2e-5 1093 4.7 1e-4 717 7.2 5e-564 597 5.5 1e-6 598 5.9 2e-6 724 7.1 2e-4 652 7.9 5e-5Table 4. Selected execution times t in milliseconds, speedups S, and 2-norm errors" of the two implementations for the large problem size (n; kl; ku) = (100000; 50; 50)with varying �. Speedups have been taken with respect to the one-processor times ofthe AH-implementation.into local memory of 256 MB any more. The ScaLAPACK run times for pro-cessor numbers larger than 1 are comparable with the AH implementation. Wetherefore relate them to the one-processor time of the AH implementation (acall to LAPACK's routines dgbtrf and dgbtrs) to determine speedups. TheAH implementation performs quite as expected by the complexity analysis. Asthe band is now relatively wide, factorization and redundant computation (�ll-in, formation of reduced system) perform at about the same Mop/s rate. Thefourfold work distributed over two processors results in a `speedup' of about 0.5.In this large example the volume of the interprocessor communication is big. Amessage consists of a small multiple of k2 8-byte oating point numbers (20 kB).Thus, the startup time ts constitutes only a small fraction at the interprocessorcommunication cost. The latter di�er only little in the ScaLAPACK and AH im-plementation. In this large problem size, with regard to speedups ScaLAPACK

Parallel Solvers for Narrow-Banded Linear Systems 9performs slightly better than the AH implementation. The execution times arehowever longer by about 10-20%.4 ConclusionsThe execution times measured on the IBM SP/2 are shorter than on the IntelParagon by a factor of about �ve for the small and 10 for the large problems onone processor. As the Paragon's communication network has a relatively muchhigher bandwidth we observed better speedups on this machine which narrowedthe gap [2].For systems with very narrow band, the implementations by Arbenz andHegland which are designed to reduce the number of messages that are com-municated are faster. The di�erence is however not too big. The exibility andversatility of the ScaLAPACK justi�es the loss in performance. We are convincedthat a few little improvements in the ScaLAPACK implementation, in particularthe treatment of auxiliary arrays, will further narrow the gap.Nevertheless, it may be useful to have in ScaLAPACK a routine that com-bines the factorization and solution phase as in the AH implementation. Ap-propriate routines would be the `drivers' pddbsv for the diagonally dominantcase and pdgbsv for the non-diagonally dominant case. In the present version ofScaLAPACK, the former routine consecutively calls pddbtrf and pddbtrs, thelatter calls pdgbtrf and pdgbtrs, respectively. The storage policy could staythe same. So, the exibility in how to apply the routines remains.On the IBM SP/2, in contrast to the Intel Paragon, the overhead for pivotingwas always noticeable. Therefore, the suggestion made in [4] to always use thepivoting algorithm can now de�nitively be rejected. The memory consumptionof the pivoting algorithm is about twice as high, anyway.References1. P. Arbenz, On experiments with a parallel direct solver for diagonally dominantbanded linear systems, in Euro-Par '96, L. Boug�e, P. Fraigniaud, A. Mignotte, andY. Robert, eds., Springer, Berlin, 1996, pp. 11{21. (Lecture Notes in ComputerScience, 1124).2. P. Arbenz, A. Cleary, J. Dongarra, and M. Hegland, A comparison of par-allel solvers for diagonally dominant and general narrow-banded linear systems,Tech. Report 312, ETH Z�urich, Computer Science Department, January 1999.(Available at URL http://www.inf.ethz.ch/publications/. Submitted to Par-allel and Distributed Computing Practices (PCDP)).3. P. Arbenz and W. Gander, A survey of direct parallel algorithms for bandedlinear systems, Tech. Report 221, ETH Z�urich, Computer Science Department,October 1994. Available at URL http://www.inf.ethz.ch/publications/.4. P. Arbenz and M. Hegland, Scalable stable solvers for non-symmetric narrow-banded linear systems, in Seventh International Parallel Computing Workshop(PCW'97), P. Mackerras, ed., Australian National University, Canberra, Australia,1997, pp. P2{U{1 { P2{U{6.

10 P. Arbenz, A. Cleary, J. Dongarra, and M. Hegland5. , On the stable parallel solution of general narrow banded linear systems, inHigh Performance Algorithms for Structured Matrix Problems, P. Arbenz, M. Pa-przycki, A. Sameh, and V. Sarin, eds., Nova Science Publishers, Commack, NY,1998, pp. 47{73.6. A. Cleary and J. Dongarra, Implementation in ScaLAPACK of divide-and-conquer algorithms for banded and tridiagonal systems, Tech. Report CS-97-358,University of Tennessee, Knoxville, TN, April 1997. (Available as LAPACKWork-ing Note #125 from URL http://www.netlib.org/lapack/lawns/.7. ScaLAPACK is available precompiled for the SP/2 from the archive of prebuiltScaLAPACK libraries at http://www.netlib.org/scalapack/.8. M. J. Dayd�e and I. S. Duff, The use of computational kernels in full and sparselinear solvers, e�cient code design on high-performanceRISC processors, in Vectorand Parallel Processing { VECPAR'96, J. M. L. M. Palma and J. Dongarra, eds.,Springer, Berlin, 1997, pp. 108{139. (Lecture Notes in Computer Science, 1215).9. G. H. Golub and C. F. van Loan, Matrix Computations, The Johns HopkinsUniversity Press, Baltimore, MD, 2nd ed., 1989.10. M. Hegland, Divide and conquer for the solution of banded linear systems ofequations, in Proceedings of the Fourth Euromicro Workshop on Parallel andDistributed Processing, IEEE Computer Society Press, Los Alamitos, CA, 1996,pp. 394{401.11. V. Kumar, A. Grama, A. Gupta, and G. Karypis, Introduction to ParallelComputing, Benjamin/Cummings, Redwood City CA, 1994.

