
HARNESS: A Next Generation DistributedVirtual MachineMicah Beck a, Jack J. Dongarra a;b, Graham E. Fagg a,G. Al Geist b, Paul Gray c, James Kohl b, Mauro Migliardi c,Keith Moore a, Terry Moore a, Philip Papadopoulous b,Stephen L. Scott b and Vaidy Sunderam caDepartment of Computer Science,University of Tennessee,104 Ayres Hall, Knoxville, TennesseeTN-37996-1301, USAbOak Ridge National LaboratorycEmory UniversityAbstractHARNESS (Heterogeneous Adaptable Recon�gurable Networked SystemS) is anexperimental metacomputing system[22] built around the services of a highly cus-tomizable and recon�gurable distributed virtual machine (DVM). The successfulexperience of the HARNESS design team with the Parallel Virtual Machine (PVM)project has taught us both the features which make the DVM model so valuable toparallel programmers and the limitations imposed by the PVM design. HARNESSseeks to remove some of those limitations by taking a totally di�erent approach tocreating and modifying a DVM.Keywords: metacomputing, message-passing libraries, distributed applications, dis-tributed virtual machines, PVM1 IntroductionVirtual machine (VM) terminology, borrowed from PVM[8], refers to the factthat the computing resources on which a system runs can be viewed as asingle large distributed memory computer. The virtual machine is a softwareabstraction of a distributed computing platform consisting of a set of cooper-ating daemon processes. Applications obtain VM services by communicatingwith daemon processes through system-speci�c mechanisms encapsulated byPreprint submitted to Elsevier Preprint 24 June 1998

a portable API. We de�ne a Distributed Virtual Machine (DVM) to be a co-operating set of daemons that together supply the services required to runuser programs as if they were on a distributed memory parallel computer.These daemons run on (often heterogeneous) distributed groups of computersconnected by one or more networks.There are three key principles that have guided the design and implementationof existing distributed virtual machine systems, such as PVM:(I) a simple API, transparent heterogeneity, and dynamic system con�gu-ration. The simple API allows messaging, virtual machine control, taskcontrol, event noti�cation, event handlers, and a message mailbox all tobe accessed and controlled using only about 60 user-level library routines.(II) Transparent heterogeneity makes it easy to construct programs that in-teroperate across di�erent machine architectures, networks, programminglanguages, and operating systems.(III) Dynamics allow the virtual machine con�guration to change and the num-ber of tasks that make up a parallel/distributed computation to growand shrink under program control. Proponents of PVM have exploitedthese features and learned to live within the boundaries that the sys-tem provides. For example, PVM has always traded o� achieving peakperformance for heterogeneity and ease of use.Our next-generation environment will focus on dynamic extensibility whilesupplying standard MPI[15] and PVM APIs to the user. The ability to adaptand recon�gure the features of the operating environment will enable severalsigni�cant new classes of applications. The challenge is to implement a recon-�gurable substrate that is simultaneously e�cient, dynamic, and robust. Theinitial challanges addressed by the design of the HARNESS DVM are the cre-ation and management of the constituent VM daemons and the core servicesimplemented by the cooperating set of daemons.1.1 PVM limitationsIn PVM, the initial kernel process (or PVM daemon) that is created is themaster, and all subsequent daemons are started by the master daemon usingthe remote shell (rsh) protocol. All system con�guration tables are maintainedby the master, which must continue running in order for the VM to operate.The communication space of the virtual machine is restricted to the scope ofthe running set of daemons, therefore, no PVM messages can ow outside theVM, for example, to other VM or outside processes.The set of services implemented by the PVM kernel is de�ned by the PVMsource code, and the user has only a limited ability to add new services or to2

change the implementation of standard services. For examples of where suchexibility is needed, consider that the availability of Myrinet interfaces [2] andIllinois Fast Messages [19] has recently led to new models for closely coupledPC clusters. Similarly, multicast protocols and better algorithms for video andaudio codecs have led to a number of projects focusing on telepresence overdistributed systems. In these instances, the underlying PVM software wouldneed to be changed or re-constructed for stream data, and this would not betrivial.We see a common theme in all popular distributed computing paradigms, in-cluding PVM: eachmandates a particular programming style, such as message-passing, and builds a monolithic operating environment into which user pro-grams must �t. MPI-1, for example, prefers an SPMD-style static processmodel with no job control. This maximizes performance by minimizing dy-namics and works very well in static environments. Programs that �t intothe MPI system are well served by its speed and rich messaging semantics.PVM, on the other hand, allows programs to dynamically change the numberof tasks and add or subtract resources. However, programs in general pay aperformance penalty for this exibility. Even though MPI and PVM providevery useful environments, some programs simply are not able to �nd the rightmix of tools or are paying for unwanted functionality. Here, the monolithicapproach breaks down and a more exible pluggable substrate is needed. Thisidea is certainly not unique and has been successfully applied in other areas:the Mach operating system [20] is built on the microkernel approach, Linuxhas \plug-in" modules to extend functionality, and Horus [21] uses a \LegoBlock" analogy to build custom network protocols. By extending and gen-eralizing these ideas to parallel/distributed computing, Harness will enableprograms programs to customize their operating environment to achieve theirown custom performance/functionality tradeo�s.1.2 The HARNESS approachHARNESS de�nes kernel creation in a much more exible way than existingmonolithic systems, viewing a DVM as a set of components connected notby shared heredity to a single master process, but by the use of a sharedregistry which can be implemented in a distributed, fault tolerant manner.Any particular kernel component thus derives its identity from this robustdistributed registry.Flexibility in service components comes from the fact that the HARNESS dae-mon supplies DVM services by allowing components which implement thoseservices to be created and installed dynamically. Thus the daemon process,while �xed, imposes only a minimal invocation structure on the DVM.3

The HARNESS distributed registry service is used to hold all DVM state.When components are added to the DVM at invocation or runtime, this in-formation is added to the registry. Similarly, the components of two DVMscan be merged en mass by merging their respective registries, and some set ofcomponents can be split from a DVM by creating a new registry for them anddeleting their entries from the old one. These notions of merging and splittingare quite general, but their practicality will be determined by the ease withwhich a resilient system enabling such dynamic recon�guration can be built.When adding a component or set of components to a DVM, the services maybe of a kind that already exists within the DVM or they may be entirelynew. The addition of a new component can de�ne a new service, or mayreplace the implementation of a previously de�ned service by taking its placein the registry. Such extensibility and recon�gurability allows us to considerthe new components to be a kind of plug-in, much as operating systems havecon�gurable device drivers and Web browsers have plug-ins for displaying newobject types. The addition of a new component may even require applicationsto load new libraries to make use of them, and we consider such recon�gurationto be a user level component of the plug-in. HARNESS will support a call-back feature from kernel components to the user's HARNESS runtime systemto enable such recon�guration to be performed automatically. Thus, a plug-incan be de�ned as a modi�cation to the HARNESS DVM which is composedof a kernel module and/or an application library which seamlessly replaceor extend existing system functionality and which can be con�gured throughcalls to other system components and changes to the registry.2 Design ObjectivesThe HARNESS DVM allows a distributed set of resources to be exibly man-aged and exploited for high performance computation. The most importantdesign criteria for HARNESS are:(1) Flexible management of the components which make up one or moreDVMs.(2) The ability to dynamically modify and extend DVM services (recon�g-urable via plug-ins).(3) The ability of applications (or tools) to collaborate within a DVM.(4) Management of interactions between multiple DVM users.HARNESS di�ers from distributed operating systems in that it is not basedon a native kernel that controls the fundamental resources of the constituentcomputers. Instead, it is built on an operating environment kernel that canbe implemented as a process running under some host operating system. The4

set of user level kernels is said to form a distributed virtual machine (DVM),borrowing the terminology of PVM.The need for dynamic recon�gurability of the environment (\pluggability")isa challenging design objective that a�ects the system architecture at everylevel. At the lowest levels (kernel loading of executable components and anenvironment of data bindings), we choose very exible mechanisms for theloading of system components and for the maintenance of system state. Thesemechanisms make pluggability possible by placing as few limitations as pos-sible on the evolution of the system as it executes. The key features of theselow level mechanisms are as follows:(1) The use of exible naming schemes for the dynamically changeable setsof system elements.(2) Minimal set of core functions.(3) Few restrictions on the types of extensions permitted.These exible mechanisms do not de�ne a pluggable system, but merely en-able the creation of one. The HARNESS implementation will include defaultsystem components that together constitute a complete working system. Itwill also include additional resource management and communication com-ponents to provide exible functionality not possible in existing systems likePVM. The more di�cult challenge is the creation of system components thatcan make use of this exible infrastructure. The general problem of dynamicsystem con�guration is a very di�cult one that we do not claim to solve. Theadditional system structures that may have to be created and conventionsthat must be adopted to achieve overall system recon�gurability remain to beempirically determined by component designers.3 ArchitectureThe key architectural features of HARNESS are these:(1) The kernel is implemented as a set of core functions for loading andrunning components either locally or remotely. Each component is im-plemented as a set of calls, processes or threads.(2) A HARNESS daemon is composed of a kernel and a set of required com-ponents. The daemon is an event-driven HARNESS application that re-sponds to requests from a local application or a remote daemon to executeone of its functions. The required components provide message passing,the ability to start processes or threads, the ability to add to the systemregistry, and the ability to start other kernels.(3) A HARNESS DVM is composed of a set of cooperating daemons which5

together present the basic services of communication, process control,resource management, and fault detection.(4) A robust registry service is implemented for storing data in a form acces-sible to any component or application in the DVM.(5) Mechanisms are provided for the dynamic management of system com-ponents, constituting a DVM, through operations on the registry service.3.1 The HARNESS KernelThe HARNESS kernel is designed for modularity and extensibility. The kernelitself is a container into which components can be loaded and run. The kernelAPI is minimal, implementing only a handful of operations on components:VMcontext = registerUser(arg-list)status = load(VMcontext, component, flags)status = unload(VMcontext, component)status = run(VMcontext, component, arg-list)status = stop(VMcontext, component)msg = getvminfo(VMcontext, key)where� VMcontext is a binding of a particular virtual machine ID and a user. Thisconstruct allows the kernel to be able to determine authorization and scopeof the other operations. This ability becomes even more important whenmultiple virtual machines (with multiple users) are merged together.� status returns an error code if the function fails and a handle to the com-ponent if it succeeds.� component is an identi�er of a component. Initial implementations use URI'sas component names.� getvminfo returns a message associated with the registry entry tied to key,an example query is to list components currently loaded at a particularkernel.The most basic service provided by a DVM is an abstract communicationmethod among programs, tools, and virtual machine components. Dependingupon the facilities required and the programming environment to be sup-ported in a given HARNESS con�guration, di�erent communication com-ponents might be used. By default a reliable, ordered delivery of untyped6

messages to identi�able end-points will be supplied by the communicationcomponents within the executing DVM. By rigidly de�ning inquiry and ser-vice interfaces, the HARNESS kernel can determine if requested componentsmeet the requirements of other components in the protocol stack. The researchchallenge in this regard will be to evolve a methodology for the semantic de�-nition of the interfaces that each plug-in will provide, in a manner that permitsinterchange and negotiation.Layered on low level communication (but at a functionally equivalent level inthe application interface) are the machine con�guration and process controlcomponents. For machine con�guration, module functionality consists primar-ily of initialization functions and architecture reconciliation with the rest ofthe DVM. Our initial HARNESS resource management component will pro-vide a means to add and delete hosts, and to detect host failures within asingle DVM. Additional functionality will be developed to add the capabilityof merging two DVMs based on direct user input, or based on a con�guration�le that speci�es access restrictions.Process management components will constitute the infrastructure for spawn-ing application task units, and for naming and addressing tasks in the dynamicDVM. Process control modules, similar to ones used in PVM, are under de-velopment to provide functions for spawning and terminating groups of tasksacross the DVM, using a simple load-balancing algorithms for task placement.4 The HARNESS Registry ServiceThe key organizing construct used by kernel components is that of a robustshared registry that maps names to values encoded in a standard format. Thisregistry is used for sharing information between system elements (componentsand applications) and particularly for system con�guration. The registry isimplemented by a core component that must be present in at least one ker-nel. The HARNESS registry is modeled after the PVM 3.4 message mailboxfacility[9].Some uses of the registry in the con�guration of the HARNESS system includeusing it to store:(1) the list of hosts which constitute a DVM,(2) the components which must be present in order for a kernel to participatein the current DVM (system level plug-ins),(3) the list of libraries which applications must load to participate (user levelplug-ins).(4) the list of the dynamic groups of tasks that constitute parallel applica-7

tions.In this sense, the HARNESS registry is similar to the con�guration �les in theUnix /etc directory, or the Microsoft Windows registry.The PVM equivalent to the registry are tables kept within the address space ofthe master PVM daemon, leading to a centralized model which is not robust tothe failure of the master. In HARNESS, we require that the registry be robust,meaning that it must be implemented in a distributed, fault tolerant manneras shown in Figure 1. Because of the scope of uses for the registry withinHARNESS, we made a design choice regarding the consistency of replicaswhich speci�es that updates to the HARNESS state are seen in the sameorder everywhere in the system.The HARNESS registry is an internal tuple space implemented by a dis-tributed set of kernel components. Tasks can use standard routines to encodean arbitrary data item in an architecture-neutral format and then place it intothe registry with an associated name. Copies of this data item can be retrievedby any client that knows the name. And if the name is unknown or changingdynamically, then the registry can be queried to �nd the list of names activein the registry.The four functions that make up the HARNESS registry API are:index = putinfo(name, itembuf, flag)recvinfo(name, index, flag)delinfo(name, index, flag)getreginfo(pattern, names[], struct info[])The ag de�nes the properties of the stored data items, such as who is allowedto delete this item, including control over multiple instances of data items, suchas using putinfo() to overwrite an existing message instance.While the tuple space could be used as a distributed-shared memory, similarto the Linda[4] system, the granularity of the message-box implementation isbetter suited to large grained data storage.Beyond HARNESS system con�guration, there are many potential registryuses, including the following:(1) A visualization tool spontaneously comes to life and �nds out where andhow to connect to a large distributed simulation.(2) A scheduling tool retrieves information left by a resource monitor.8

(3) A new team member learns how to connect to an ongoing collaboration.(4) A debugging tool retrieves a message left by a performance monitor thatindicates which of the thousands of tasks is most likely a bottleneck.Many of these capabilities are directly applicable to the HARNESS environ-ment, and some approach to having persistent messages will be a part of theHARNESS design.
Com

Com

Com

Com

by remote
access.

Client that

Client
Registry

Registry

shares a registry

Distributed

Reg

Reg

Reg

Name Res Debug

Name Res

RM

Visualization

Sharing of registry metadata.

Fig. 1. Distributed Registry and Client Usage.The addition of communication contexts, message handlers, and message boxesto the parallel virtual machine environment allows developers to take a bigleap forward in the capabilities of their distributed applications. HARNESSis a useful tool for the development of much more dynamic, fault tolerant dis-tributed applications, but as illustrated above, it is also a testbed for softwareand features that will make up the next generation heterogeneous distributedcomputing environment.4.1 Merging and Splitting DVMImportant HARNESS design goals include the ability to merge two DVMs tocreate a single DVM and the ability to split an existing DVM into distinct,functional sub-environments. Understanding a DVM as being de�ned by itsregistry, this amounts to judicious manipulation of the registry.The implementation will need to address issues of communication in themerged DVM and con�guration of the combined system:� Can merging and splitting of the environment occur at any time, or is9

explicit synchronization with the components and even applications of theconstituent machines necessary?� What view does each resource in a merged environment hold of the Envi-ronment? Is this view symmetric amongst resources in distinct groupings?� What restrictions are placed on utilization of resources in complementarygroupings?� What are the semantics of merging and splitting, and are they uniformacross the extent of a DVM? Can merging and splitting be asymmetric?� Once two DVMs have merged, can one or both retain its original registry,or do both have the new merged registry? How are the registries e�ectedupon splitting of the environments?� Who in the merged resource pool has the authority to split a conglomerateDVM into sub-environments?� How can a subsidiary DVM be created, perhaps having the identity of oneof the constituent in a merging of DVM (splitting)?� How will an environment be made aware of other environments?� After handshaking, what protocols, are to be used so that individual com-ponents (computational resources, processes and the like) may have unin-hibited communication with any or all components of the complement.� How will the combined environment be recon�gured to reestablish all nec-essary system properties? If some module is required in every kernel of oneenvironment, will it automatically be loaded on every kernel of the other?Might new modules be needed to bridge existing elements of the two envi-ronments?For insight on dealing with these issues, approaches taken by other systemssuch as PVM, Legion[11], Globus[7], and IceT[10] provide initial prototypesfor this merging of environments.Once the two systems are joined together in communication and su�cientlycon�gured for functionality, there is an additional and unique facility of HAR-NESS, viz. HARNESS will provide seamless process creation on any host inthe combined resource pool. Here, the issue is how a process which is partof one virtual environment is to be ferried across distributed environmen-tal boundaries for execution on a possibly foriegn operating system or ar-chitecture. There have been some preliminary results at implementing thiscross-environment functionality in IceT. IceT, in an early prototype, utilizesaspects of portability found in the Java programming language to port bothJava-based and C/Fortran processes across system boundaries. However, theapplicability of IceT's process location, process creation, and security imple-mentations relative to the more broadly-de�ned goals and objectives of HAR-NESS have yet to be determined.Merging of environments will be prefaced by the need to gain informationon where and how to handshake with outside environments. For storing such10

information, the Resource Catalog (RC) will be used (see section 6). An en-vironment wishing to attach to another would query the RC server for in-formation on listening ports, communication protocols, module con�guration,and security restrictions. With this information, the environments may initi-ate contact, share state information, and update their registries and the RCserver to reect the new state of the system. The state information which ispassed between environments includes information about the components ofthe computational resources enrolled in the respective environments. Informa-tion about the computational components is in tableau form, with providesinformation for each resource, such as \operating system," \architecture,"\modules loaded," \modules available," \host name", \listening ports," and\accessibility levels."Splitting a DVM into distinct, yet functional, sub-environments is much moreof a challenge. As such, splitting functionality will be incorporated into thedistributed environment vis-a-vis a \splitting plug-in". This splitting plug-inde�nes which of the entities will be allowed to secede from the environment,which entities will have the authority to sub-divide resources, what to dowith messages intended for resources recently split apart, etc. For example,one might con�gure the splitting module to hold messages sent to split-o�resources in a message box which would be passed along once the sub-DVMsrejoin (re-merge), or to disallow secession of groups involving local networkedresources and nonlocal resources.5 Con�guring HARNESS: CommunicationAs distributed computing has developed, it has become clear that no onemonolithic system can e�ciently handle all the desired communication styles.Extensibility of the core system is essential to achieve critical performanceand provides a practical method to manage multiple communication styles.Because messaging is extremely important to system performance and evalua-tion, the lowest layers must be able to be swapped out for di�erent scenarios.For example, send/receive message passing is quite di�erent from one-sidedcommunication semantics. Low-level performance can be signi�cantly a�ectedif support for both is automatically installed even though not needed by anapplication. The ine�ciency comes from the fact that incoming messages needto be checked among di�erent communication methods to determine the cor-rect handling sequence. If a particular message style (e.g. a put) is neverused, then eliminating this as a checked-for style can produce a reduction inoverhead. On MPPs, for example, it is unnecessary to fragment messages orprovide reliable transmission because it is usually guaranteed by the messagesystem. On the other hand, communicating over a WAN requires fragmen-tation, timeouts/retries, and connection failure monitoring. A user should be11

able to write a distributed application and have the runtime system selectwhich method(s) are needed for the particular run. The key to success willbe to design plug-in communication stacks (similar to those found in Horus[21]) that can be traversed quickly and e�ciently. To get optimum perfor-mance, it may require the user to use strongly-typed messaging like MPI.However, runtime con�gurability can still give signi�cant advantages withoutrequiring users to dramatically change code. For example, one may desire toencrypt certain communication links only if the virtual machine spans severaldomains. Runtime con�gurability will allow an encrypted link to be installedwithout user code modi�cation. The next generation DVM will have to strikea better balance among performance (or the ability to optimize performance),extensibility, and interoperability. Due to the large body of research on com-munication methods, this lowest level of pluggability is probably the moststraightforward goal to achieve.6 Name ResolutionWhile HARNESS focuses on the management of distributed resources withina DVM, in today's computing environment it is also necessary to deal withnetwork resources outside of the DVM. PVM did not support any access tooutside resources, leaving each application process to implement such accessindependently. HARNESS is more general than PVM, allowing for the com-munication with and assimilation of resources outside the DVM.The goal of the HARNESS system is to provide a scalable and robust nameresolution service such as the resolution scheme implemented by the ResourceCatalog [18]. The Resource Catalog is a simple, highly available, and veryscalable distributed resolution service.By resolution service, we mean a service for mapping a resource name onto aset of attributes or characteristics of a resource, which are sometimes calledmetadata. A resolution service di�ers from a directory service such as X.500[12], in that a resolution service maps a name onto its associated attributes,while a directory service is intended to allow searching of the attributes them-selves to identify matching resources. Common resolution services include theDomain Name System (DNS)[17] used in the Internet and the Network In-formation Services (NIS) used on UNIX systems. In contrast to these, theResource Catalog was designed to be simple, exible, e�cient, reliable, fault-tolerant, secure, and very scalable.The Resource Catalog is distributed in that the set of resource characteristicsare maintained by an arbitrary number of servers on an arbitrary number ofnetwork hosts. Each server contains the resource metadata for each of the12

resources in a well-de�ned subset of the resource name space. The metadatafor any resource may be replicated across several servers to improve scalabilityand availability. Updates to a resource's metadata may be made to any of theservers that maintains that resource's metadata, using a discipline that ensuresthat any client will see all of the updates from any one source in the sameorder. Multiple parties may update the metadata for a single resource (giventhe proper permission and security credentials). Each party's updates to aparticualar resource characteristic are kept separate and returned together inthe same response; no party's updates may override another's.The resource names used by the Resource Catalog are in the form of UniformResource Identi�ers (URIs). URIs are a slight generalization of Uniform Re-source Locators (URLs), and the set of URLs is a subset of URIs. URLs aregenerally understood to refer to a particular location of a resource (e.g. a spe-ci�c �le on a speci�c host), less can be assumed about a URI: it is merely thename of a resource. Rather than parsing a URL to determine a particular pro-tocol, host, port, and �lename; an application submits a URI to the ResourceCatalog to determine information about that resource. Various kinds of infor-mation may be returned, for example: the current location(s) of the resource,the owner of the resource, the permissions associated with the resource, thepublic key to be used when securely communicating with the resource, thedate that the resource was last modi�ed.The metadata for a resource consists of a set of assertions. Each assertion isa characteristic consisting primarily of a name, which is a NUL-terminatedstring, and a value, which is an opaque string of octets. A type �eld is alsoprovided to aid applications that might wish to display or otherwise interpretthe data. Each assertion also contains the identify of the party that madethe particular assertion about the resource, the date and time at which theassertion was made, the serial number of that assertion (i.e. the number oftimes that that party had changed the value associated with the assertion).Finally, each assertion contains a time-to-live �eld and an expiration date thatcan be used to determine the amount of time that metadata is cached.HARNESS uses the Resource Catalog to store information about DVMs (in-cluding the set of hosts in the DVM, and the means by which other DVMs,or external processes, can communicate with the DVM), individual hosts (in-cluding host characteristics, public keys, and other information used duringnegotiation of network connections with that host), mobile processes (includ-ing their current location and contact information), and plug-ins (their currentlocations, host requirements, and digital signatures).13

7 ResultsThe HARNESS system is based on the ability to perform three operations.(1) Plug-in new features or functionality into the kernel of a DVM(2) Have two independently started applications discover each other and co-operate(3) Merge two DVM togetherWe have demostrated each of these capabilities in separate DVM prototypesand our e�ort in HARNESS is to incorporate all these capabilities into a singlecompact system.Version 3.4 of PVM has three speci�c plug-in interfaces{one for task schedul-ing, one for task creation, and one for adding hosts to a virtual machine. Theseplug-ins allow these three capabilities to be dynamically replaced with userwritten modules during runtime. Several groups both industrial and academicuse these plug-in interfaces to intergrate their own software into the virtualmachine environment supplied by PVM. The goal of HARNESS is to nowgeneralize this result and create an environment where nearly every featurein a DVM can be replaced with a user supplied version and where new fea-tures previously not available in the DVM can be added. We have a workingprototpe of this generalized plug-in interface running at Emory University.We have spent the last two years working on a remote computational steeringenvironment called Cumulvs [14]. In Cumulvs any number of independent\viewer" applications can spontaneously come to life, discover if there are anydistributed applications running on the DVM that are Cumulvs enabled, andattach to their applications. Once attached these \viewers" can extract datafor viewing, or change physical parameters inside the running application.These capabilities, which fall under the second class of operations needed inHARNESS, are made possible by the addition of message-box features in PVM3.4. It is these same features we plan to leverage in the HARNESS project.One major change needed for HARNESS is to make this registry both robust,and able to guarantee a consistent order of updates across the distributedcopies.IceT [10], developed to be the computation framework for the CollaborativeComputing Framework project at Emory University, has demonstrated thecapability to merge two DVM. We plan to leverage both the experience andsoftware technology developed for IceT in the HARNESS system. The IceTsystem serves as a prototype and proof of concept that multiple DVM canbe merged together in temporary cooperative environments. The next chal-lenge for HARNESS development in this area is how to merge the multipledistributed registries. Another challenge in HARNESS is how to integrate this14

capability, which brings multiple users and administrative domains, with theother plug-in features in HARNESS.8 Related WorkMetacomputing frameworks have been popular for nearly a decade, when theadvent of high end workstations and ubiquitous networking in the late 80'senabled high performance concurrent computing in networked environments.PVM was one of the earliest systems to formulate the metacomputing con-cept in concrete virtual machine and programming-environment terms, andexplore heterogeneous network computing. PVM is based on the notion of adynamic, user-speci�ed host pool, over which software emulates a generalizedconcurrent computing resource. Dynamic process management coupled withstrongly typed heterogeneous message passing in PVM provides an e�ectiveenvironment for distributed memory parallel programs. PVM however, is in-exible in many respects that can be constraining to the next generation ofmetacomputing and collaborative applications.Legion[11] is a metacomputing system that began as an extension of the Men-tat project. Legion can accommodate a heterogeneous mix of geographicallydistributed high-performance machines and workstations. Legion is an ob-ject oriented system where the focus is on providing transparent access toan enterprise-wide distributed computing framework. As such, it does not at-tempt to cater to changing needs and it is relatively static in the types ofcomputing models it supports as well as in implementation.The Globe project[13] is related to Legion in that it deals with distributedobjects that are used to build large-scale distributed systems. Local objectrepresentatives hide details like replication and mobility. Local objects havea standard internal structure that makes it easier to reuse code components.One of Globe's major features is a hierarchical distributed location servicethat adapts dynamically to di�erent usage patterns.The model of the Millennium system [3] being developed by Microsoft Re-search is similar to that of Legion's global virtual machine. Logically there isonly one global Millennium system composed of distributed objects. However,at any given instance it may be partitioned into many pieces. Partitions maybe caused by disconnected or weakly-connected operations. This could be con-sidered similar to the HARNESS concept of dynamic joining and splitting ofDVMs.Globus[7] is a metacomputing infrastructure which is built upon the Nexus[6]communication framework. The Globus system is designed around the con-15

cept of a toolkit that consists of the pre-de�ned modules pertaining to com-munication, resource allocation, data, etc. Globus even aspires to eventuallyincorporate Legion as an optional module. This modularity of Globus remainsat the metacomputing system level in the sense that modules a�ect the globalcomposition of the metacomputing substrate.SNIPE[5] is to metacomputing systems as Unix is to operating systems. It is adistributed systems testbed that provides much of the functionality of systemslike PVM without the rigid de�nition of a virtual machine. It provides processcontrol like PVM based on daemons and resource managers. Communicationbased on both socket and message based abstractions are built on a layeredsubstrate similiar to that of Nexus. Naming, registry and resource informationstorage is built using a modi�ed version of RCDS that provides global namingbased on URIs. Many of the lessons learnt building SNIPE will go towards thenaming, registry, resource discovery and multi-path communications sectionsof Harness research.The above projects envision a much wider-scale view of distributed resourcesand programming paradigms than HARNESS. HARNESS is not being pro-posed as a world-wide infrastructure, but more in the spirit of PVM, it is asmall heterogeneous distributed computing environment that groups of col-laborating scientists can use to get their science done. HARNESS is also seenas a research tool for exploring pluggability and dynamic adaptability withinDVMs.9 ConclusionsThe account we have given of HARNESS both motivates the need for a nextgeneration DVM model and presents primitive mechanisms that address keyrequirements of this new model. HARNESS' modular kernel architecture sup-ports a level of exibility in the set of system components that is not availableunder monolithic operating environments such as PVM and MPI. HARNESS'system registry allows distributed control of the system con�guration in orderto enable the dynamic addition of new components and libraries, as well as themerging and splitting of distinct virtual machines. These exible mechanismsdo not fully de�ne how dynamic recon�guration will proceed, but merely makesuch a recon�gurable DVM possible. The more di�cult challenge is the cre-ation of system components that can make use of this exible infrastructure,and that is the enterprise in which we are now engaged.16

References[1] M. Baker, G. Fox, and H. Yau. Cluster Computing Review. NortheastParallel Architectures Center, Syracuse University, November 1995, New York,http://www.npar.syr.edu/techreports/index.html.[2] N. J. Boden at al., \MYRINET: A gigabit per second local area network",IEEE-Micro, Vol. 15, No.1, February 1995, pp.29-36.[3] William J. Bolosky, Richard P. Draves, Robert P. Fitzgerald, Christopher W.Fraser, Michael B. Jones, Todd B. Knoblock, and Rick Rashid. \OperatingSystem Directions for the Next Millennium". Position paper of MicroSoftResearch, January 1997.[4] Nicholas Carriero, David Gelernter, and Jerrold Leichter. Distributed DataStructures in Linda, Thirteenth ACM Symposium on Principles of ProgrammingLanguages Conf., St. Petersburg, Florida, Jan. 1986, pp. 236-242.[5] Graham E. Fagg, Keith Moore, Jack J. Dongarra and Al Geist, ScalableNetworked Information Processing Environment (SNIPE), Proceeding ofSuperComputing 97, San Jose, CA., November 1997.[6] I. Foster, C. Kesselman and S. Tuecke. \The Nexus approach to integratingMultithreading and Communication", Parallel and Distributed Computing, Vol.37, pp 70-82, 1996.[7] I. Foster and C. Kesselman. Globus: A metacomputing infrastructure toolkit.International Journal of Supercomputer Applications, Vol. 11(2), summer 1997.[8] A. Geist, A. Beguelin, J. Dongarra, W. Liang, B. Manchek, and V. Sunderam,PVM: Parallel Virtual machine { A User's Guide and Tutorial for NetworkParallel Computing, MIT Press, 1994.[9] G. A. Geist II, J. A. Kohl, R. Manchek, P. M. Papadopoulos, \New Features ofPVM 3.4, " 1995 EuroPVM User's Group Meeting, Lyon, France, Pub. Hermes,pp. 1-9, September 1995.[10] P. Gray and V. Sunderam, IceT: Distributed Computing and Java,Concurrency, Practice and Experience, ed. Geo�rey C. Fox, Vol. 9 (11), pp1161-1168, Nov. 1997.[11] A. S. Grimshaw and W. A. Wulf. The Legion vision of a worldwide virtualcomputer. CACM, Vol. 40(1), pp39-45, January 1997.[12] S. Heker, J. Reynolds, and C. Weider. Technical overview of directory servicesusing the x.500 protocol. RFC 1309, FY14, IETF, 03/12 92.[13] Philip Homburg, Maarten van Steen, and Andrew S. Tanenbaum. \AnArchitecture for a Wide Area Distributed System." In Proceedings of theSeventh ACM SIGOPS European Workshop, Connemara, Ireland, September1996. 17

[14] J. Kohl, P. Papadopoulos, and A. Geist. \CUMULVS: CollaborativeInfrastructure for Developing Distributed Simulations.", In Proc. Eigth SIAMConf. on Par. Proc. and Sci. Comp., Minneapolis, MN, March 1997.[15] Message Passing Interface Forum, MPI: A message{passing interface standard,International Journal of Supercomputer Applications, 8(3/4), 1994.[16] Message Passing Interface Forum, MPI-2 Extensions to the Message-PassingInterface, University of Tennessee, Knoxvile, Tennessee, 1997.[17] P. Mockapetris, \Domain Names - Concepts and Facilities.", RFC 1034, InternetNetwork Information Center, 1987.[18] K. Moore, S. Browne, J. Cox and J. Gettler, The Resource Catalogingand Distribution System, Technical report, Computer Science Department,University of Tennessee, December 1996.[19] Pakin, Karamcheti and Chien. \Fast Messages (FM): E�cient, PortableCommunication for Workstation Clusters and Massively-Parallel Processors."IEEE Concurrency, Vol. 5(2), 1997, pp. 60-73.[20] Richard Rashid, Robert Baron, Alessandro Forin, David Golub, Michael Jones,Daniel Julin, Douglas Orr and Richard Sanzi. \Mach: A Foundation for OpenSystems", Proceedings of the Second Workshop on Workstation OperatingSystems(WWOS2), September 1989.[21] Robbert van Renesse, Kenneth P. Birman and Silvano Ma�eis, Horus, a exibleGroup Communication System, Communications of the ACM, April 1996.[22] L. Smarr and C.E. Catlett.Metacomputing. Communications of the ACM, Vol.35(6), 1992, pp. 45{52.

18

