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1 IntrodutionTiling is a widely used tehnique to inrease the granularity of omputations and the loality ofdata referenes. This tehnique applies to sets of fully permutable loops [23, 18, 13℄. The basi ideais to group elemental omputation points into tiles that will be viewed as omputational units (theloop nest must be permutable so that suh a transformation is valid). The larger the tiles, the moreeÆient are the omputations performed using state-of-the-art proessors with pipelined arithmetiunits and a multilevel memory hierarhy (this feature is illustrated by reasting numerial linearalgebra algorithms in terms of bloked Level 3 BLAS kernels [14, 10℄). Another advantage of tilingis the derease in ommuniation time (whih is proportional to the surfae of the tile) relative tothe omputation time (whih is proportional to the volume of the tile). A disadvantage of tilingmay be an inreased lateny; for example, if there are lots of data dependenes, the �rst proessormust omplete the whole exeution of the �rst tile before another proessor an start the exeutionof the seond one. Tiling also presents load-imbalane problems: the larger the tile, the morediÆult it is to distribute omputations equally among the proessors.Tiling has been studied by several authors and in di�erent ontexts (see, for example, [17, 22,21, 6, 19, 1, 9℄). Rather than providing a detailed motivation for tiling, we refer the reader to thepapers by Calland, Dongarra, and Robert [8℄ and by H�ogsted, Carter, and Ferrante [16℄, whihprovide a review of the existing literature. Briey, most of the work amounts to partitioning theiteration spae of a uniform loop nest into tiles whose shape and size are optimized aording tosome riterion (suh as the ommuniation-to-omputation ratio). One the tile shape and sizeare de�ned, the tiles must be distributed to physial proessors and the �nal sheduling must beomputed.A natural way to alloate tiles to physial proessors is to use a yli alloation of tiles toproessors. Several authors [19, 16, 4℄ suggest alloating olumns of tiles to proessors in a purelysattered fashion (in HPF words, this is a CYCLIC(1) distribution of tile olumns to proessors).The intuitive motivation is that a yli distribution of tiles is quite natural for load-balaningomputations. Speifying a olumnwise exeution may lead to the simplest ode generation. Whenall proessors have equal speed, it turns out that a pure yli olumnwise alloation providesthe best solution among all possible distributions of tiles to proessors [8℄|provided that theommuniation ost for a tile is not greater than the omputation ost. Sine the ommuniationost for a tile is proportional to its surfae, while the omputation ost is proportional to itsvolume,1 this hypothesis will be satis�ed if the tile is large enough.2However, the reent development of heterogeneous omputing platforms poses a new hallenge:that of inorporating proessor speed as a new parameter of the tiles alloation problem. Intuitively,if the user wants to use a heterogeneous network of omputers where, say, some proessors are twieas fast as some other proessors, we may want to assign twie as many tiles to the faster proessors.A yli distribution is not likely to lead to an eÆient implementation. Rather, we should usestrategies that aim at load-balaning the work while not introduing idle time. The design of suhstrategies is the goal of this paper.The motivation to using heterogeneous networks of workstations is lear: suh networks areubiquitous in university departments and ompanies. They represent the typial poor man's parallelomputer: running a large PVM or MPI experiment (possibly all night long) is a heap alternative1For example, for two-dimensional tiles, the ommuniation ost grows linearly with the tile size while the om-putation ost grows quadratially.2Of ourse, we an imagine a theoretial situation in whih the ommuniation ost is so large that a sequentialexeution would lead to the best result. 2



to buying superomputer hours. The idea is to make use of all available resoures, namely slowermahines in addition to more reent ones.The major limitation to programming heterogeneous platforms arises from the additional dif-�ulty of balaning the load when using proessors running at di�erent speed. Distributing theomputations (together with the assoiated data) an be performed either dynamially or statially,or a mixture of both. At �rst sight, we may think that dynami strategies like a greedy algorithmare likely to perform better, beause the mahine loads will be self-regulated, hene self-balaned,if proessors pik up new tasks just as they terminate their urrent omputation (see the surveypaper of Berman [5℄ and the more speialized referenes [2, 12℄ for further details). However, datadependenes may lead to slow the whole proess down to the pae of the slowest proessor, as wedemonstrate in Setion 4.The rest of the paper is organized as follows. In Setion 2 we formally state the problem oftiles alloation and sheduling for heterogeneous omputing platforms. All our hypotheses arelisted and disussed, and we give a theoretial way to solve the problem by asting it in termsof an integer linear programming (ILP) problem. The ost of solving the linear problem turnsout to be prohibitive in pratie, so we restrit ourselves to olumnwise alloations. Fortunately,there exist asymptotially optimal olumnwise alloations, as shown in Setion 3, where severalheuristis are introdued and proved. In Setion 4 we provide MPI experiments that demonstratethe pratial usefulness of our olumnwise heuristis on a network of workstations. Finally, we statesome onlusions in Setion 5.2 Problem StatementIn this setion, we formally state the sheduling and alloation problem that we want to solve. Weprovide a omplete list of all our hypotheses and disuss eah in turn.2.1 Hypotheses(H1) The omputation domain (or iteration spae) is a two-dimensional retangle3 of size N1�N2.Tiles are retangular, and their edges are parallel to the axes (see Figure 1). All tiles havethe same �xed size. Tiles are indexed as Ti;j, 0 � i < N1, 0 � j < N2.(H2) Dependenes between tiles are summarized by the vetor pair�� 10 � ;� 01 �� :In other words, the omputation of a tile annot be started before both its left and lowerneighbor tiles have been exeuted. Given a tile Ti;j, we all both tiles Ti+1;j and Ti;j+1 itssuessors, whenever the indies make sense.(H3) There are P available proessors interonneted as a (virtual) ring.4 Proessors are numberedfrom 0 to P�1. Proessors may have di�erent speeds: let tq be the time needed by proessor Pqto exeute a tile, for 0 � q < P . While we assume the omputing resoures are heterogeneous,we assume the ommuniation network is homogeneous: if two adjaent tiles T and T 0 are3In fat, the dimension of the tiles may be greater than 2. Most of our heuristis use a olumnwise alloation,whih means that we partition a single dimension of the iteration spae into hunks to be alloated to proessors.The number of remaining dimensions is not important.4The atual underlying physial ommuniation network is not important.3
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Figure 1: A tiled iteration spae with horizontal and vertial dependenes.not assigned to the same proessor, we pay the same ommuniation overhead Tom, whateverthe proessors that exeute T and T 0.(H4) Tiles are assigned to proessors by using a sheduling � and an alloation funtion pro(both to be determined). Tile T is alloated to proessor pro(T ), and its exeution beginsat time-step �(T ). The onstraints5 indued by the dependenes are the following: for eahtile T and eah of its suessors T 0, we have� �(T ) + tpro(T ) � �(T 0) if pro(T ) = pro(T 0)�(T ) + tpro(T ) + Tom � �(T 0) otherwiseThe makespan MS(�;pro) of a shedule-alloation pair (�;pro) is the total exeution timerequired to exeute all tiles. If exeution of the �rst tile T0;0 starts at time-step t = 0, the makespanis equal to the date at whih the exeution of the last tile is exeuted:MS(�;pro) = �(TN1;N2) + tpro(TN1;N2 ):A shedule-alloation pair is said to be optimal if its makespan is the smallest possible over all(valid) solutions. Let Topt denote the optimal exeution time over all possible solutions.2.2 DisussionWe survey our hypotheses and assess their motivations, as well as the limitations that they mayindue.Retangular iteration spae and tiles. We note that the tiled iteration spae is the outomeof previous program transformations, as explained in [22, 21, 6℄. The �rst step in tilingamounts to determining the best shape and size of the tiles, assuming an in�nite grid ofvirtual proessors. Beause this step will lead to tiles whose edges are parallel to extremaldependene vetors, we an perform a unimodular transformation and rewrite the originalloop nest along the edge axes. The resulting domain may not be retangular, but we an5There are other onstraints to express (e.g., any proessor an exeute at most one tile at eah time-step). SeeSetion 2.3 for a omplete formalization. 4



approximate it using the smallest bounding box (however, this approximation may impatthe auray of our results).Dependene vetors. We assume that dependenes are summarized by the vetor pair V =f(1; 0)t; (0; 1)tg. Note that these are dependenes between tiles, not between elementaryomputations. Hene, having suh dependenes is a very general situation if the tiles arelarge enough. Tehnially, sine we deal with a set of fully permutable loops, all dependenevetors have nonnegative omponents only, so that V permits all other dependene vetors tobe generated by transitivity. Note that having a dependene vetor (0; a)t with a � 2 betweentiles, instead of having vetor (0; 1)t, would mean unusually long dependenes in the originalloop nest, while having (0; a)t in addition to (0; 1)t as a dependene vetor between tiles issimply redundant. In pratial situations, we might have an additional diagonal dependenevetor (1; 1)t between tiles, but the diagonal ommuniation may be routed horizontally andthen vertially, or the other way round, and even may be ombined with any of the other twomessages (beause of vetors (0; 1)t and (1; 0)t).Computation-ommuniation overlap. Note that in our model, ommuniations an be over-lapped with the omputations of other (independent) tiles. Assuming ommuniation-ompu-tation overlap seems a reasonable hypothesis for urrent mahines that have ommuniationoproessors and allow for asynhronous ommuniations (posting instrutions ahead, or us-ing ative messages). We an think of independent omputations going along a thread whileommuniation is initiated and performed by another thread [20℄. An interesting approahhas been proposed by Andonov and Rajopadhye [4℄: they introdue the tile period Pt as thetime elapsed between orresponding instrutions of two suessive tiles that are mapped tothe same proessor, while they de�ne the tile lateny Lt to be the time between orrespondinginstrutions of two suessive tiles that are mapped to di�erent proessors. The power of thisapproah is that the expressions for Lt and Pt an be modi�ed to take into aount severalarhitetural models. A detailed arhitetural model is presented in [4℄, and several othermodels are explored in [3℄. With our notation, Pt = ti and Lt = ti + Tom for proessor Pi.Homogeneous ommuniation network. We assume that the ommuniation time Tom for atile is independent of the two proessors exhanging the message. This is a rude simpli-�ation beause the network interfaes of heterogeneous systems are likely to exhibit verydi�erent lateny harateristis. However, beause ommuniations an be overlapped withindependent omputations, they eventually have little impat on the performane, as soon asthe granularity (the tile size) is hosen large enough. This theoretial observation has beenveri�ed during our MPI experiments (see Setion 4.3).Finally, we briey mention another possibility for introduing heterogeneity into the tilingmodel. We hose to have all tiles of same size and to alloate more tiles to the faster proessors.Another possibility is to evenly distribute tiles to proessors, but to let their size vary aording tothe speed of the proessor they are alloated to. However, this strategy would severely ompliateode generation. Also, alloating several neighboring �xed-size tiles to the same proessor will havesimilar e�ets as alloating variable-size tiles, so our approah will ause no loss of generality.2.3 ILP FormulationWe an desribe the tiled iteration spae as a task graph G = (V;E), where verties represent thetiles and edges represent dependenes between tiles. Computing an optimal shedule-alloation5



pair is a well-known task graph sheduling problem, whih is NP-omplete in the general ase [11℄.If we want to solve the problem as stated (hypotheses (H1) to (H4)), we an use an integer linearprogramming formulation. Several onstraints must be satis�ed by any valid shedule-alloationpair. In the following, Tmax denotes an upper bound on the total exeution time. For example,Tmax an be the exeution time when all the tiles are given to the fastest proessor: Tmax =N1 �N2 �min0�i<P ti (here, the ti's are integral multiples of the unit time step).We now translate these onstraints into equations. In the following, let i 2 f1; : : : ; N1g denotea row number, j 2 f1; : : : ; N2g a olumn number, q 2 f0; : : : ; P � 1g a proessor number, andt 2 f0; : : : ; Tmaxg a time-step.� Number of exeutions. Let Bi;j;q;t be an integer variable indiating whether the exeutionof tile Ti;j begins at time-step t on proessor q: if this is the ase, then Bi;j;q;t = 1, andBi;j;q;t = 0 otherwise. Eah tile must be exeuted one, and thus starts at one and only onetime-step. Therefore, the onstraints are8i; j; q; t; Bi;j;q;t � 0 and 8i; j; P�1Xq=0 TmaxXt=0 Bi;j;q;t = 1:� Exeution plae and date. Using Bi;j;q;t, we an ompute the date Di;j at whih tile (i; j)starts exeution. We an also hek whih proessor q proesses tile (i; j). The 0=1 result isstored in Pi;j;q:8i; j; Di;j = P�1Xq=0 TmaxXt=0 t�Bi;j;q;t and 8i; j; q; Pi;j;q = TmaxXt=0 Bi;j;q;t:� Communiations. There must be a ommuniation delay between the end of exeution oftile (i � 1; j) (resp. (i; j � 1)) and the beginning of exeution of tile (i; j) if and only if thetwo tiles are not exeuted by the same proessor, that is, if and only if there exists q suhthat Pi;j;q 6= Pi�1;j;q (resp. Pi;j;q 6= Pi;j�1;q). The boolean result is stored in vi;j (resp. hi;j):vi;j = 1 if tiles (i � 1; j) and (i; j) are not exeuted by the same proessor, and vi;j = 0otherwise. We have a similar de�nition for hi;j using tiles (i; j � 1) and (i; j). The equationsare: 8i � 2; j; q; vi;j � Pi;j;q � Pi�1;j;q; vi;j � Pi�1;j;q � Pi;j;q8i; j � 2; q; hi;j � Pi;j;q � Pi;j�1;q; vi;j � Pi;j�1;q � Pi;j;qNote that if a ommuniation delay is needed between the exeution of tile (i� 1; j) and thatof tile (i; j), then vi;j will impose one. If none is needed, vi;j may still be equal to 1, as longas this does not inrease the total exeution time.� Preedene onstraints. The exeution of tile (i� 1; j) (resp. (i; j � 1)) must be �nished,and the data transferred, before the beginning of exeution of tile (i; j):8i � 2; j; Di;j � Di�1;j + vi;jTom + P�1Xq=0 Pi�1;j;q tq8i; j � 2; Di;j � Di;j�1 + hi;jTom + P�1Xq=0 Pi;j�1;q tq6
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min�DN1;N2 +Pq PN1;N2;q tq�Ptt0=t�tq+1Pi;j Bi;j;q;t0 � 1 0 � q � P � 1; tq � 1 � t � TmaxDi;j � Di�1;j + vi;jTom +Pq Pi�1;j;qtq 2 � i � N1; 1 � j � N2Di;j � Di;j�1 + hi;jTom +Pq Pi;j�1;qtq 1 � i � N1; 2 � j � N2vi;j � Pi;j;q � Pi�1;j;q 2 � i � N1; 1 � j � N2; 0 � q � P � 1vi;j � Pi�1;j;q � Pi;j;q 2 � i � N1; 1 � j � N2; 0 � q � P � 1hi;j � Pi;j;q � Pi;j�1;q 1 � i � N1; 2 � j � N2; 0 � q � P � 1hi;j � Pi;j�1;q � Pi;j;q 1 � i � N1; 2 � j � N2; 0 � q � P � 1Pi;j;q =PtBi;j;q;t 1 � i � N1; 1 � j � N2; 0 � q � P � 1Di;j =PqPt tBi;j;q;t 1 � i � N1; 1 � j � N2PqPtBi;j;q;t = 1 1 � i � N1; 1 � j � N2Bi;j;q;t � 0 1 � i � N1; 1 � j � N2; 0 � q � P � 1; 0 � t � TmaxFigure 2: Integer linear program that optimally solves the shedule-alloation problem.� Number of tiles exeuted at any time-step. A proessor exeutes (at most) one tile ata time. Therefore proessor q an start exeuting at most one tile in any interval of time tq(as tq is the time to exeute a tile by proessor q):8q; tq � 1 � t � Tmax; tXt0=t�tq+1 N1Xi=1 N2Xj=1Bi;j;q;t0 � 1Now that we have expressed all our onstraints in a linear way, we an write the whole linearprogramming system. We need only to add the objetive funtion: the minimization of the time-step at whih the exeution of the last tile TN1;N2 is terminated. The �nal linear program ispresented in Figure 2. Sine an optimal rational solution of this problem is not always an integersolution, this program must be solved as an integer linear program.The main drawbak of the linear programming approah is its huge ost. The program shownon Figure 2 ontains more than PN1N2Tmax variables and inequalities. The ost of solving suha problem would be prohibitive for any pratial appliation. Furthermore, even if we ould solvethe linear problem, we might not be pleased with the solution. We probably would prefer non-optimal but \regular" alloations of tiles to proessors, suh as olumnwise or rowwise alloations.Fortunately, suh alloations an lead to asymptotially optimal solutions, as shown in the nextsetion.3 Columnwise AlloationIn this setion we present theoretial results on olumnwise alloations. In the next setion wewill use these results to derive pratial heuristis. Before introduing an asymptotially optimalolumnwise (or rowwise) alloation, we give a small example to show that olumnwise alloations(or equivalently rowwise alloations) are not optimal.7



3.1 Optimality and Columnwise AlloationsConsider a tiled iteration spae with N2 = 2 olumns, and suppose we have P = 2 proessors suhthat t1 = 5 � t0: the �rst proessor is �ve times faster than the seond one. Suppose for the sakeof simpliity that Tom = 0. If we use a olumnwise alloation,� either we alloate both olumns to proessor 0, and the makespan is MS = 2N1t0,� or we alloate one olumn to eah proessor, and the makespan is greater than N1t1 (a lowerbound for the slow proessor to proess its olumn).The best solution is then to have the fast proessor exeute all tiles. But if N1 is large enough, wean do better by alloating a small fration of the �rst olumn (the last tiles) to the slow proessor,whih will proess them while the �rst proessor is ative exeuting the �rst tiles of the seondolumn. For instane, if N1 = 6n and if we alloate the last n tiles of the �rst olumn to the slowproessor (see Figure 3), the exeution time beomes MS = 11nt0 = 116 N1t0, whih is better thanthe best olumnwise alloation.6
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jFigure 3: Alloating tiles for a two-olumn iteration spae.This small example shows that our target problem is intrinsially more omplex than the in-stane with same-speed proessors: as shown in [8℄, a olumnwise alloation would be optimal forour two-olumn iteration spae with two proessors of equal speed.3.2 Heuristi Alloation by Blok of ColumnsThroughout the rest of the paper we make the following additional hypothesis:(H5) We impose the alloation to be olumnwise:7 for a given value of j, all tiles Ti;j , 1 � i � N1,are alloated to the same proessor.We start with an easy lemma to bound the optimal exeution time Topt:Lemma 1 Topt � N1 �N2PP�1i=0 1ti :6This is not the best possible alloation, but it is superior to any olumnwise alloation.7Note that the problem is symmetri in rows and olumns. We ould study rowwise alloations as well.8



Proof Let xi be the number of tiles alloated to proessor i, 0 � i < P . Obviously, PP�1i=0 xi =N1N2. Even if we take into aount neither the ommuniation delays nor the dependene on-straints, the exeution time T is greater than the omputation time of eah proessor: T � xitifor all 0 � i < P . Rewriting this as xi � T=ti and summing over i, we get N1N2 = PP�1i=0 xi �(PP�1i=0 1ti )T , hene the result.The proof of Lemma 1 leads to the (intuitive) idea that tiles should be alloated to pro-essors in proportion to their relative speeds, so as to balane the workload. Spei�ally, letL = lm(t0; t1; : : : ; tP�1), and onsider an iteration spae with L olumns: if we alloate Lti tileolumns to proessor i, all proessors need the same number of time-steps to ompute all their tiles:the workload is perfetly balaned. Of ourse, we must �nd a good shedule so that proessors donot remain idle, waiting for other proessors beause of dependene onstraints.We introdue below a heuristi that alloates the tiles to proessors by bloks of olumns whosesize is omputed aording to the previous disussion. This heuristi produes an asymptotiallyoptimal alloation: the ratio of its makespan over the optimal exeution time tends to 1 as thenumber of tiles (the domain size) inreases.In a olumnwise alloation, all the tiles of a given olumn of the iteration spae are alloatedto the same proessor. When ontiguous olumns are alloated to the same proessor, they form ablok. When a proessor is assigned several bloks, the sheduling is the following:1. Bloks are omputed one after the other, in the order de�ned by the dependenes. Theomputation of the urrent blok must be ompleted before the next blok is started.2. The tiles inside a given blok are omputed in a rowwise order: if, say, 3 onseutive olumnsare assigned to a proessor, it will exeute the three tiles in the �rst row, then the three tilesin the seond row, and so on. Note that (given 1.) this strategy is the best to minimize thelateny (for another proessor to start next blok as soon as possible).The following lemma shows that dependene onstraints do not slow down the exeution of twoonseutive bloks (of adequate size) by two di�erent-speed proessors:Lemma 2 Let P1 and P2 be two proessors that exeute a tile in time t1 and t2, respetively.Assume that P1 was alloated a blok B1 of 1 ontiguous olumns and that P2 was alloated theblok B2 onsisting of the following 2 olumns. Let 1 and 2 satisfy the equality 1t1 = 2t2.Assume that P1, starting at time-step s1, is able to proess B1 without having to wait for anytile to be omputed by some other proessor. Then P2 will be able to proess B2 without having towait for any tile omputed by P1, if it starts at time s2 � s1 + 1t1 + Tom.Proof P1 (resp. P2) exeutes its blok row by row. The exeution time of a row is 1t1 (resp.2t2). By hypothesis, it takes the same amount of time for P1 to ompute a row of B1 than for P2to ompute a row of B2. Sine P1 is able to proess B1 without having to wait for any tile to beomputed by some other proessor, it �nishes omputing the ith row of B1 at time s1 + i1t1.P2 annot start proessing the �rst tile of the ith row of B2 before P1 has omputed the lasttile of the ith row of B1 and has sent that data to P2, that is, at time-step s1 + i1t1 + Tom.Sine P2 starts proessing the �rst row of B2 at time s2, where s2 � s1 + 1t1 + Tom, it is notdelayed by P1. Later on, P2 will proess the �rst tile of the ith row of B2 at time s2+(i� 1)2t2 =s2+(i�1)1t1 � s1+1t1+Tom+(i�1)1t1 = s1+i1t1+Tom; hene P2 will not be delayed by P1.We are ready to introdue our heuristi. 9



HeuristiLet P0; : : : ; PP�1 be P proessors that respetively exeute a tile in time t0; : : : ; tP�1. We alloateolumn bloks to proessors by hunks of C = L � PP�1i=0 1ti , where L = lm(t0; t1; : : : ; tP�1)olumns. For the �rst hunk, we assign the blok B0 of the �rst L=t0 olumns to P0, the blok B1of the next L=t1 olumns to P1, and so on until Pp�1 reeives the last L=tp olumns of the hunk.We repeat the same sheme with the seond hunk (olumns C +1 to 2C) �rst, and so on until allolumns are alloated (note that the last hunk may be inomplete). As already said, proessorswill exeute bloks one after the other, row by row within eah blok.Lemma 3 The di�erene between the exeution time of the heuristi alloation by olumns and theoptimal exeution time is bounded byT � Topt � (P � 1)Tom + (N1 + P � 1)lm(t0; t1; : : : ; tP�1):Proof Let L = lm(t0; t1; : : : ; tP�1). Lemma 2 ensures that, if proessor Pi starts working attime-step si = i(L+Tom), it will not be delayed by other proessors. By de�nition, eah proessorexeutes one blok in time LN1. The maximal number of bloks alloated to a proessor isn = & N2L�PP�1i=0 1ti ' :The total exeution time, T , is equal to the date the last proessor terminates exeution. T an bebounded as follows:8 T � sP + n� LN1:On the other hand, Topt is lower bounded by Lemma 1. We deriveT � Topt � (P � 1)(L + Tom) + LN1 & N2L�PP�1i=0 1ti ' � N1 �N2PP�1i=0 1ti :Sine dxe � x+ 1 for any rational number x, we obtain the desired formula.Proposition 1 Our heuristi is asymptotially optimal: letting T be its makespan, and Topt be theoptimal exeution time, we have limN2!+1 TTopt = 1:The two main advantages of our heuristi are (i) its regularity, whih leads to an easy imple-mentation; and (ii) its guarantee: it is theoretially proved to be lose to the optimal. However, wewill need to adapt it to deal with pratial ases, beause the number C = L�PP�1i=0 1ti of olumnsin a hunk may be too large.8Proessor PP�1 is not neessarily the last one, beause the last hunk may be inomplete.
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4 Pratial HeuristisIn the preeding setion, we desribed a heuristi that alloates bloks of olumns to proessorsin a yli fashion. The size of the bloks is related to the relative speed of the proessors andan be huge in pratie. Therefore, a straightforward appliation of our heuristi would lead toserious diÆulties, as shown next in Setion 4.1. Furthermore, the exeution time variables ti arenot known aurately in pratie. We explain how to modify the heuristi (omputing di�erentblok sizes) in Setion 4.2.4.1 Proessor SpeedTo expose the potential diÆulties of the heuristi, we onduted experiments on a heterogeneousnetwork of eight Sun workstations. To ompute the relative speed of eah workstation, we useda program that runs the same piee of omputation that will be used later in the tiling program.Results are reported in Table 1.Name nala bluegrass daner donner vixen rudolph zazu simbaDesription Ultra 2 SS 20 SS 5 SS 5 SS 5 SS 10 SS1 4/60 SS1 4/60Exeution time ti 11 26 33 33 38 40 528 530Table 1: Measured omputation times showing relative proessor speeds.To use our heuristi, we must alloate hunks of size C = LP7i=0 1ti olumns, where L =lm(t0; t1; : : : ; t7) = 34; 560; 240. We ompute that C = 8; 469; 789 olumns, whih would requirea very large problem size indeed. Needless to say, suh a large hunk is not feasible in pratie.Also, our measurements for the proessor speeds may not be aurate,9 and a slight hange maydramatially impat the value of C. Hene, we must devise another method to ompute the sizesof the bloks alloated to eah proessor (see Setion 4.2). In Setion 4.3, we present simulationresults and disuss the pratial validity of our modi�ed heuristis.4.2 Modi�ed HeuristiOur goal is to hoose the \best" blok sizes alloated to eah proessor while bounding the totalsize of a hunk. We �rst de�ne the ost of a blok alloation and then desribe an algorithm toompute the best possible alloation, given an upper bound for the hunk size.4.2.1 Cost FuntionAs before, we onsider heuristis that alloate tiles to proessors by bloks of olumns, repeatingthe hunk in a yli fashion. Consider a heuristi de�ned by C = (0; : : : ; P�1), where i is thenumber of olumns in eah blok alloated to proessor Pi:De�nition 1 The ost of a blok size alloation C is the maximum of the blok omputation times(iti) divided by the total number of olumns omputed in eah hunk:ost(C) = max0�i�P�1 itiP0�i�P�1 i9The 8 workstations were not dediated to our experiments. Even though we were running these experimentsduring the night, some other users' proesses might have been running. Also, we have averaged and rounded theresults, so the error margin roughly lies between 5% and 10%.11



Considering the steady state of the omputation, all proessors work in parallel inside theirbloks, so that the omputation time of a whole hunk is the maximum of the omputation timesof the proessors. During this time, s = P0�i�P�1 i olumns are omputed. Hene, the averagetime to ompute a single olumn is given by our ost funtion. When the number of olumns ismuh larger than the size of the hunk, the total omputation time an well be approximated byost(C)�N2, the produt of the average time to ompute a olumn by the total number of olumns.4.2.2 Optimal Blok Size AlloationsAs noted before, our ost funtion orretly models reality when the number of olumns in eahhunk is muh smaller than the total number of olumns of the domain. We now desribe analgorithm that returns the best (with respet to the ost funtion) blok size alloation given abound s on the number of olumns in a hunk.We build a funtion that, given a best alloation with a hunk size equal to n� 1, omputes abest alloation with a hunk size equal to n. One we have this funtion, we start with an initialhunk size n = 0, ompute a best alloation for eah inreasing value of n up to n = s, and seletthe best alloation enountered so far.First we haraterize the best alloations for a given hunk size s:Lemma 4 Let C = (0; : : : ; P�1) be an alloation, and let s =P0�i�P�1 i be the hunk size. Letm = max0�i�P�1 iti denote the maximum omputation time inside a hunk.If C veri�es 8i; 0 � i � P � 1; tii � m � ti(i + 1); (1)then it is optimal for the hunk size s.Proof Take an alloation verifying the above Condition 1. Suppose that it is not optimal. Thenthere exists a better alloation C0 = (00; : : : ; 0P�1) with P0�i�P�1 0i = s, suh thatm0 = max0�i�P�1 0iti < m:By de�nition of m, there exists i0 suh that m = i0ti0 . We an then suessively derivei0ti0 = m > m0 � 0i0 ti0i0 > 0i09i1; i1 < 0i1 �beause X0�i�P�1 i = s = X0�i�P�1 0i�i1 + 1 � 0i1ti1(i1 + 1) � ti10i1m � m0 (by de�nition of m and m0)whih ontradits the non-optimality of the original alloation.There remains to build alloations satisfying Condition (1). The following algorithm gives theanswer:� For the hunk size s = 0, take the optimal alloation (0; 0; : : : ; 0).12



� To derive an alloation C0 verifying equation (1) with hunk size s from an alloation Cverifying (1) with hunk size s� 1, add 1 to a well-hosen j, one that veri�estj(j + 1) = min0�i�P�1 ti(i + 1): (2)In other words, let 0i = i for 0 � i � P � 1; i 6= j, and 0j = j + 1.Lemma 5 This algorithm is orret.Proof We have to prove that alloation C0, given by the algorithm, veri�es Equation (1).Sine alloation C veri�es equation (1), we have tii � m � tj(j + 1). By de�nition of j fromEquation (2), we havem0 = max0�i�P�1 ti0i = max�tj(j + 1); max1�i�q;i 6=j tii� = tj0j:We then have tj0j � m0 � tj(0j + 1) and8i 6= j; 1 � i � q;ti0i =tii � m�m0 �tj0j = min0�i�P�1 ti(i + 1) � ti(i + 1) = ti(0i + 1);so the resulting alloation does verify Equation (1).To summarize, we have built an algorithm to ompute \good" blok sizes for the heuristialloation by bloks of olumns. One an upper bound for the hunk size has been seleted, ouralgorithm returns the best blok sizes, aording to our ost funtion, with respet to this bound.The omplexity of this algorithm is O(Ps), where P is the number of proessors and s, theupper bound on the hunk size. Indeed, the algorithm onsists of s steps where one omputes aminimum over the proessors. This low omplexity allows us to perform the omputation of thebest alloation at runtime.A Small Example. To understand how the algorithm works, we present a small example withP = 3, t0 = 3, t1 = 5, and t2 = 8. In Table 2, we report the best alloations found by thealgorithm up to s = 7. The entry \Seleted j" denotes the value of j that is hosen to build thenext alloation. Note that the ost of the alloations is not a dereasing funtion of s. If we allowhunks of size not greater than 7, the best solution is obtained with the hunk (3; 2; 1) of size 6.Finally, we point out that our modi�ed heuristi \onverges" to the original asymptotiallyoptimal heuristi. For a hunk of size C = L�PP�1i=0 1ti , where L = lm(t0; t1; : : : ; tP�1) olumns,we obtain the optimal ost ostopt = LC = 0� X0�i�P�1 1ti1A�1 ;whih is the inverse of the harmoni mean of the exeution times divided by the number of proes-sors.
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Chunk Size 0 1 2 Cost Seleted j0 0 0 0 01 1 0 0 3 12 1 1 0 2.5 03 2 1 0 2 24 2 1 1 2 05 3 1 1 1.8 16 3 2 1 1.67 07 4 2 1 1.71Table 2: Running the algorithm with 3 proessors: t0 = 3, t1 = 5, and t2 = 8.4.2.3 Choosing the hunk sizeChoosing a hunk size s is not easy. A possible approah is to slie the total work into phases.We use small-sale experiments to ompute a �rst estimation of the ti, and we alloate the �rsthunk of s olumns aording to these values for the �rst phase. During the �rst phase we measurethe atual performane of eah mahine. At the end of the phase we ollet the new values ofthe ti, and we use these values to alloate the seond hunk during the seond phase, and so on.Of ourse a phase must be long enough, say a ouple of seonds, so that the overhead due to theommuniation at the end of eah phase is negligible. Hene the size s of the hunk is hosen bythe user as a trade-o�: the larger s, the more even the predited load, but the longer the delay toaount for variations in proessor speeds.4.2.4 Remark on the Multidimensional Approximation ProblemOur algorithm is related to the multidimensional approximation problem where one wants to ap-proximate some real numbers with rationals sharing the same denominator. Many algorithms existto solve this problem (see [7℄, for example), but these algorithms fous on �nding a \best approx-imation" with respet to the real numbers while we want \good" approximations made up withsmall numbers.4.3 MPI ExperimentsWe report several experiments on the network of workstations presented in Setion 4.1. Afteromments on the experiments, we fous on yli and blok-yli alloations and then on ourmodi�ed heuristis.4.3.1 General RemarksWe study di�erent olumnwise alloations on the heterogeneous network of workstations presentedin Setion 4.1. Our simulation program is written in C using the MPI library for ommuniation.It is not an atual tiling program, but it simulates suh behavior: we have not inserted the oderequired to deal with the boundaries of the omputation domain. Atually, our ode only simulatesthe ommuniations generated by a tiling, it does fake omputations (hene, no data alloation).The tiling is assumed given. Our aim is not to �nd the \best" tiling. The tile domain has 100rows and a number of olumns varying from 200 to 1000 by steps of 100. An array of doubles14



of size the square root of the tile area is ommuniated for eah ommuniation (we assume herethat the omputation volume is proportional to the tile area while the ommuniation volume isproportional to its square root).The atual ommuniation network is a oax type Ethernet network. It an be onsidered asa bus, not as a point-to-point onnetion ring; hene our model for ommuniation is not fullyorret. However, this on�guration has little impat on the results, whih orrespond well to thetheoretial onditions.As already pointed out, the workstations we use are multiple-user workstations. Although oursimulations were made at times when the workstations were not supposed to be used by anybodyelse, the load may vary. The timings reported in the �gures are the average of several measuresfrom whih aberrant data have been suppressed.In Figures 4 and 6, we show for referene the sequential time as measured on the fastest mahine,namely, \nala".4.3.2 Cyli AlloationsWe have experimented with yli alloations on the 6 fastest mahines, on the 7 fastest mahines,and on all 8 mahines. Beause yli alloation is optimal when all proessors have the samespeed, this will be a referene for other simulations. We have also tested a blok yli alloationwith blok size equal to 10, in order to see whether the redued amount of ommuniation helps.Figure 4 presents the results10 for these 6 alloations (3 purely yli alloations using 6, 7, and 8mahines, and 3 blok-yli alloations).We omment on the results of Figure 4 as follows:� With the same number of mahines, a blok size of 10 is better than a blok size of 1 (pureyli).� With the same blok size, adding a single slow mahine is disastrous, and adding the seondone only slightly improve the disastrous performanes.� Overall, only the blok yli alloation with blok size 10 and using the 6 fastest mahinesgives some speedup over the sequential exeution.We onlude that yli alloations are not eÆient when the omputing speeds of the availablemahines are very di�erent. For the sake of ompleteness, we show in Figure 5 the exeution timesobtained for the same domain (100 rows and 1000 olumns) and the 6 fastest mahines, for blokyli alloations with di�erent blok sizes. We see that the blok-size as a small impat on theperformanes, whih orresponds well to the theory: all yli alloations have the same ost.We point out that yli alloations would be the outome of a greedy master-slave strategy.Indeed, proessors will be alloated the �rst P olumns in any order. Re-number proessors a-ording to this initial assignment. Then throughout the omputation, Pj will return after Pj�1 andjust before Pj+1 (take indies modulo p), beause of the dependenes. Hene omputations wouldonly progress at the speed of the slowest proessor, with a ost max tpP .4.3.3 Using our modi�ed heuristiLet us now onsider our heuristis. In Table 3, we show the blok sizes omputed by the algorithmdesribed in Setion 4.2 for di�erent upper bounds of the hunk size. The best alloation omputedwith bound u is denoted as Cu. 15
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9008007006005004003002001000 Remark yli(b,m) orresponds to a blok yli alloationwith blok size b, using the m fastest mahines of Table 1.Figure 4: Experimenting with yli and blok-yli alloations.nala bluegrass daner donner vixen rudolph zazu simba ost hunkC25 7 3 2 2 2 2 0 0 4.44 18C50 15 6 5 5 4 4 0 0 4.23 39C100 33 14 11 11 9 9 0 0 4.18 87C150 52 22 17 17 15 14 1 1 4.12 139Table 3: Blok sizes for di�erent hunk size bounds.The time needed to ompute these alloations is ompletely negligible with respet to theomputation times (a few milliseonds versus several seonds).Figure 6 presents the results for these alloations. Here are some omments:� Eah of the alloations omputed by our heuristi is superior to the best blok-yli alloa-tion.� The more preise the alloation, the better the results.� For 1000 olumns and alloation C150, we obtain a speedup of 2:2 (and 2:1 for alloation C50),whih is very satisfying (see below).The optimal ost for our workstation network is ostopt = LC = 34;560;2408;469;789 = 4:08. Note thatost(C150) = 4:12 is very lose to the optimal ost. The peak theoretial speedup is equal to10Some results are not available for 200 olumns beause the hunk size is too large.16
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120100806040200Figure 5: Cyli alloations with di�erent blok sizes.mini tiostopt = 2:7. For 1000 olumns, we obtain a speedup equal to 2:2 for C150. This is satisfyingonsidering that we have here only 7 hunks, so that side e�ets still play an important role. Notealso that the peak theoretial speedup has been omputed by negleting all the dependenes inthe omputation and all the ommuniations overhead. Hene, obtaining a twofold speedup with8 mahines of very di�erent speeds is not a bad result at all!5 ConlusionIn this paper, we have extended tiling tehniques to deal with heterogeneous omputing platforms.Suh platforms are likely to play an important role in the near future. We have introdued anasymptotially optimal olumnwise alloation of tiles to proessors. We have modi�ed this heuristito alloate olumn hunks of reasonable size, and we have reported suessful experiments on anetwork of workstations. The pratial signi�ane of the modi�ed heuristis should be emphasized:proessor speeds may be inaurately known, but alloating small but well-balaned hunks turnsout to be quite suessful: in pratie we approah the peak theoretial speedup.Heterogeneous platforms are ubiquitous in omputer siene departments and ompanies. Thedevelopment of our new tiling tehniques allows for the eÆient use of older omputational resouresin addition to newer available systems.The work presented in this paper is only a �rst step towards using heterogeneous systems.Heterogeneous networks of workstations or PCs represent the low end of the �eld of distributed andheterogeneous omputing. At the high end of the �eld, linking the most powerful superomputersof the largest superomputing enters through dediated high-speed networks will give rise to themost powerful omputational siene and engineering problem-solving environment ever assembled:the so-alled omputational grid. Providing desktop aess to this \grid" will make omputingroutinely parallel, distributed, ollaborative and immersive [15℄. In the middle of the �eld, we anthink of onneting medium-size parallel servers through fast but non-dediated links. For instane,eah institution ould build its own speialized parallel mahine equipped with appliation-spei�databases and appliation-oriented software, thus reating a \meta-system". The user is then ableto aess all the mahines of this meta-system remotely and transparently, without eah institutiondupliating the resoures and the exploitation osts.17
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