
Stati
 Tiling for Heterogeneous Computing Platforms�Pierre Boulet1, Ja
k Dongarra2;3, Yves Robert4 and Fr�ed�eri
 Vivien51 LIFL, Universit�e de Lille, 59655 Villeneuve d'As
q Cedex, Fran
e2 Department of Computer S
ien
e, University of Tennessee, Knoxville, TN 37996-1301, USA3 Mathemati
al S
ien
es Se
tion, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA4 LIP, E
ole normale sup�erieure de Lyon, 69364 Lyon Cedex 07, Fran
e5 ICPS, Universit�e de Strasbourg, Pôle Api, 67400 Illkir
h, Fran
eConta
t e-mail: Yves.Robert�ens-lyon.frFebruary 1999
Abstra
tIn the framework of fully permutable loops, tiling has been extensively studied as a sour
e-to-sour
e program transformation. However, little work has been devoted to the mapping ands
heduling of the tiles on physi
al pro
essors. Moreover, targeting heterogeneous 
omputingplatforms has, to the best of our knowledge, never been 
onsidered. In this paper we extendstati
 tiling te
hniques to the 
ontext of limited 
omputational resour
es with di�erent-speedpro
essors. In parti
ular, we present eÆ
ient s
heduling and mapping strategies that are asymp-toti
ally optimal. The pra
ti
al usefulness of these strategies is fully demonstrated by MPIexperiments on a heterogeneous network of workstations.Key words: tiling, 
ommuni
ation-
omputation overlap, mapping, limited re-sour
es, di�erent-speed pro
essors, heterogeneous networks

Corresponding author: Yves RobertLIP, E
ole Normale Sup�erieure de Lyon, 69364 Lyon Cedex 07, Fran
ePhone: + 33 4 72 72 80 37, Fax: + 33 4 72 72 80 80E-mail: Yves.Robert�ens-lyon.fr�This work was supported in part by the National S
ien
e Foundation Grant No. ASC-9005933; by the DefenseAdvan
ed Resear
h Proje
ts Agen
y under 
ontra
t DAAH04-95-1-0077, administered by the Army Resear
h OÆ
e;by the OÆ
e of S
ienti�
 Computing, U.S. Department of Energy, under Contra
t DE-AC05-84OR21400; by theNational S
ien
e Foundation S
ien
e and Te
hnology Center Cooperative Agreement No. CCR-8809615; by theCNRS{ENS Lyon{INRIA proje
t ReMaP; and by the Eureka Proje
t EuroTOPS. Yves Robert's work was 
ondu
tedat the University of Tennessee, while he was on leave from �E
ole normale sup�erieure de Lyon and partly supportedby DRET/DGA under 
ontra
t ERE 96-1104/A000/DRET/DS/SR.1



1 Introdu
tionTiling is a widely used te
hnique to in
rease the granularity of 
omputations and the lo
ality ofdata referen
es. This te
hnique applies to sets of fully permutable loops [23, 18, 13℄. The basi
 ideais to group elemental 
omputation points into tiles that will be viewed as 
omputational units (theloop nest must be permutable so that su
h a transformation is valid). The larger the tiles, the moreeÆ
ient are the 
omputations performed using state-of-the-art pro
essors with pipelined arithmeti
units and a multilevel memory hierar
hy (this feature is illustrated by re
asting numeri
al linearalgebra algorithms in terms of blo
ked Level 3 BLAS kernels [14, 10℄). Another advantage of tilingis the de
rease in 
ommuni
ation time (whi
h is proportional to the surfa
e of the tile) relative tothe 
omputation time (whi
h is proportional to the volume of the tile). A disadvantage of tilingmay be an in
reased laten
y; for example, if there are lots of data dependen
es, the �rst pro
essormust 
omplete the whole exe
ution of the �rst tile before another pro
essor 
an start the exe
utionof the se
ond one. Tiling also presents load-imbalan
e problems: the larger the tile, the morediÆ
ult it is to distribute 
omputations equally among the pro
essors.Tiling has been studied by several authors and in di�erent 
ontexts (see, for example, [17, 22,21, 6, 19, 1, 9℄). Rather than providing a detailed motivation for tiling, we refer the reader to thepapers by Calland, Dongarra, and Robert [8℄ and by H�ogsted, Carter, and Ferrante [16℄, whi
hprovide a review of the existing literature. Brie
y, most of the work amounts to partitioning theiteration spa
e of a uniform loop nest into tiles whose shape and size are optimized a

ording tosome 
riterion (su
h as the 
ommuni
ation-to-
omputation ratio). On
e the tile shape and sizeare de�ned, the tiles must be distributed to physi
al pro
essors and the �nal s
heduling must be
omputed.A natural way to allo
ate tiles to physi
al pro
essors is to use a 
y
li
 allo
ation of tiles topro
essors. Several authors [19, 16, 4℄ suggest allo
ating 
olumns of tiles to pro
essors in a purelys
attered fashion (in HPF words, this is a CYCLIC(1) distribution of tile 
olumns to pro
essors).The intuitive motivation is that a 
y
li
 distribution of tiles is quite natural for load-balan
ing
omputations. Spe
ifying a 
olumnwise exe
ution may lead to the simplest 
ode generation. Whenall pro
essors have equal speed, it turns out that a pure 
y
li
 
olumnwise allo
ation providesthe best solution among all possible distributions of tiles to pro
essors [8℄|provided that the
ommuni
ation 
ost for a tile is not greater than the 
omputation 
ost. Sin
e the 
ommuni
ation
ost for a tile is proportional to its surfa
e, while the 
omputation 
ost is proportional to itsvolume,1 this hypothesis will be satis�ed if the tile is large enough.2However, the re
ent development of heterogeneous 
omputing platforms poses a new 
hallenge:that of in
orporating pro
essor speed as a new parameter of the tiles allo
ation problem. Intuitively,if the user wants to use a heterogeneous network of 
omputers where, say, some pro
essors are twi
eas fast as some other pro
essors, we may want to assign twi
e as many tiles to the faster pro
essors.A 
y
li
 distribution is not likely to lead to an eÆ
ient implementation. Rather, we should usestrategies that aim at load-balan
ing the work while not introdu
ing idle time. The design of su
hstrategies is the goal of this paper.The motivation to using heterogeneous networks of workstations is 
lear: su
h networks areubiquitous in university departments and 
ompanies. They represent the typi
al poor man's parallel
omputer: running a large PVM or MPI experiment (possibly all night long) is a 
heap alternative1For example, for two-dimensional tiles, the 
ommuni
ation 
ost grows linearly with the tile size while the 
om-putation 
ost grows quadrati
ally.2Of 
ourse, we 
an imagine a theoreti
al situation in whi
h the 
ommuni
ation 
ost is so large that a sequentialexe
ution would lead to the best result. 2



to buying super
omputer hours. The idea is to make use of all available resour
es, namely slowerma
hines in addition to more re
ent ones.The major limitation to programming heterogeneous platforms arises from the additional dif-�
ulty of balan
ing the load when using pro
essors running at di�erent speed. Distributing the
omputations (together with the asso
iated data) 
an be performed either dynami
ally or stati
ally,or a mixture of both. At �rst sight, we may think that dynami
 strategies like a greedy algorithmare likely to perform better, be
ause the ma
hine loads will be self-regulated, hen
e self-balan
ed,if pro
essors pi
k up new tasks just as they terminate their 
urrent 
omputation (see the surveypaper of Berman [5℄ and the more spe
ialized referen
es [2, 12℄ for further details). However, datadependen
es may lead to slow the whole pro
ess down to the pa
e of the slowest pro
essor, as wedemonstrate in Se
tion 4.The rest of the paper is organized as follows. In Se
tion 2 we formally state the problem oftiles allo
ation and s
heduling for heterogeneous 
omputing platforms. All our hypotheses arelisted and dis
ussed, and we give a theoreti
al way to solve the problem by 
asting it in termsof an integer linear programming (ILP) problem. The 
ost of solving the linear problem turnsout to be prohibitive in pra
ti
e, so we restri
t ourselves to 
olumnwise allo
ations. Fortunately,there exist asymptoti
ally optimal 
olumnwise allo
ations, as shown in Se
tion 3, where severalheuristi
s are introdu
ed and proved. In Se
tion 4 we provide MPI experiments that demonstratethe pra
ti
al usefulness of our 
olumnwise heuristi
s on a network of workstations. Finally, we statesome 
on
lusions in Se
tion 5.2 Problem StatementIn this se
tion, we formally state the s
heduling and allo
ation problem that we want to solve. Weprovide a 
omplete list of all our hypotheses and dis
uss ea
h in turn.2.1 Hypotheses(H1) The 
omputation domain (or iteration spa
e) is a two-dimensional re
tangle3 of size N1�N2.Tiles are re
tangular, and their edges are parallel to the axes (see Figure 1). All tiles havethe same �xed size. Tiles are indexed as Ti;j, 0 � i < N1, 0 � j < N2.(H2) Dependen
es between tiles are summarized by the ve
tor pair�� 10 � ;� 01 �� :In other words, the 
omputation of a tile 
annot be started before both its left and lowerneighbor tiles have been exe
uted. Given a tile Ti;j, we 
all both tiles Ti+1;j and Ti;j+1 itssu

essors, whenever the indi
es make sense.(H3) There are P available pro
essors inter
onne
ted as a (virtual) ring.4 Pro
essors are numberedfrom 0 to P�1. Pro
essors may have di�erent speeds: let tq be the time needed by pro
essor Pqto exe
ute a tile, for 0 � q < P . While we assume the 
omputing resour
es are heterogeneous,we assume the 
ommuni
ation network is homogeneous: if two adja
ent tiles T and T 0 are3In fa
t, the dimension of the tiles may be greater than 2. Most of our heuristi
s use a 
olumnwise allo
ation,whi
h means that we partition a single dimension of the iteration spa
e into 
hunks to be allo
ated to pro
essors.The number of remaining dimensions is not important.4The a
tual underlying physi
al 
ommuni
ation network is not important.3



x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

x x x
x x x

j

i

x x x
x x x

x x x
x x x

N

N

1

2

x x x
x x x

x x x
x x x

T2,3

Figure 1: A tiled iteration spa
e with horizontal and verti
al dependen
es.not assigned to the same pro
essor, we pay the same 
ommuni
ation overhead T
om, whateverthe pro
essors that exe
ute T and T 0.(H4) Tiles are assigned to pro
essors by using a s
heduling � and an allo
ation fun
tion pro
(both to be determined). Tile T is allo
ated to pro
essor pro
(T ), and its exe
ution beginsat time-step �(T ). The 
onstraints5 indu
ed by the dependen
es are the following: for ea
htile T and ea
h of its su

essors T 0, we have� �(T ) + tpro
(T ) � �(T 0) if pro
(T ) = pro
(T 0)�(T ) + tpro
(T ) + T
om � �(T 0) otherwiseThe makespan MS(�;pro
) of a s
hedule-allo
ation pair (�;pro
) is the total exe
ution timerequired to exe
ute all tiles. If exe
ution of the �rst tile T0;0 starts at time-step t = 0, the makespanis equal to the date at whi
h the exe
ution of the last tile is exe
uted:MS(�;pro
) = �(TN1;N2) + tpro
(TN1;N2 ):A s
hedule-allo
ation pair is said to be optimal if its makespan is the smallest possible over all(valid) solutions. Let Topt denote the optimal exe
ution time over all possible solutions.2.2 Dis
ussionWe survey our hypotheses and assess their motivations, as well as the limitations that they mayindu
e.Re
tangular iteration spa
e and tiles. We note that the tiled iteration spa
e is the out
omeof previous program transformations, as explained in [22, 21, 6℄. The �rst step in tilingamounts to determining the best shape and size of the tiles, assuming an in�nite grid ofvirtual pro
essors. Be
ause this step will lead to tiles whose edges are parallel to extremaldependen
e ve
tors, we 
an perform a unimodular transformation and rewrite the originalloop nest along the edge axes. The resulting domain may not be re
tangular, but we 
an5There are other 
onstraints to express (e.g., any pro
essor 
an exe
ute at most one tile at ea
h time-step). SeeSe
tion 2.3 for a 
omplete formalization. 4



approximate it using the smallest bounding box (however, this approximation may impa
tthe a

ura
y of our results).Dependen
e ve
tors. We assume that dependen
es are summarized by the ve
tor pair V =f(1; 0)t; (0; 1)tg. Note that these are dependen
es between tiles, not between elementary
omputations. Hen
e, having su
h dependen
es is a very general situation if the tiles arelarge enough. Te
hni
ally, sin
e we deal with a set of fully permutable loops, all dependen
eve
tors have nonnegative 
omponents only, so that V permits all other dependen
e ve
tors tobe generated by transitivity. Note that having a dependen
e ve
tor (0; a)t with a � 2 betweentiles, instead of having ve
tor (0; 1)t, would mean unusually long dependen
es in the originalloop nest, while having (0; a)t in addition to (0; 1)t as a dependen
e ve
tor between tiles issimply redundant. In pra
ti
al situations, we might have an additional diagonal dependen
eve
tor (1; 1)t between tiles, but the diagonal 
ommuni
ation may be routed horizontally andthen verti
ally, or the other way round, and even may be 
ombined with any of the other twomessages (be
ause of ve
tors (0; 1)t and (1; 0)t).Computation-
ommuni
ation overlap. Note that in our model, 
ommuni
ations 
an be over-lapped with the 
omputations of other (independent) tiles. Assuming 
ommuni
ation-
ompu-tation overlap seems a reasonable hypothesis for 
urrent ma
hines that have 
ommuni
ation
opro
essors and allow for asyn
hronous 
ommuni
ations (posting instru
tions ahead, or us-ing a
tive messages). We 
an think of independent 
omputations going along a thread while
ommuni
ation is initiated and performed by another thread [20℄. An interesting approa
hhas been proposed by Andonov and Rajopadhye [4℄: they introdu
e the tile period Pt as thetime elapsed between 
orresponding instru
tions of two su

essive tiles that are mapped tothe same pro
essor, while they de�ne the tile laten
y Lt to be the time between 
orrespondinginstru
tions of two su

essive tiles that are mapped to di�erent pro
essors. The power of thisapproa
h is that the expressions for Lt and Pt 
an be modi�ed to take into a

ount severalar
hite
tural models. A detailed ar
hite
tural model is presented in [4℄, and several othermodels are explored in [3℄. With our notation, Pt = ti and Lt = ti + T
om for pro
essor Pi.Homogeneous 
ommuni
ation network. We assume that the 
ommuni
ation time T
om for atile is independent of the two pro
essors ex
hanging the message. This is a 
rude simpli-�
ation be
ause the network interfa
es of heterogeneous systems are likely to exhibit verydi�erent laten
y 
hara
teristi
s. However, be
ause 
ommuni
ations 
an be overlapped withindependent 
omputations, they eventually have little impa
t on the performan
e, as soon asthe granularity (the tile size) is 
hosen large enough. This theoreti
al observation has beenveri�ed during our MPI experiments (see Se
tion 4.3).Finally, we brie
y mention another possibility for introdu
ing heterogeneity into the tilingmodel. We 
hose to have all tiles of same size and to allo
ate more tiles to the faster pro
essors.Another possibility is to evenly distribute tiles to pro
essors, but to let their size vary a

ording tothe speed of the pro
essor they are allo
ated to. However, this strategy would severely 
ompli
ate
ode generation. Also, allo
ating several neighboring �xed-size tiles to the same pro
essor will havesimilar e�e
ts as allo
ating variable-size tiles, so our approa
h will 
ause no loss of generality.2.3 ILP FormulationWe 
an des
ribe the tiled iteration spa
e as a task graph G = (V;E), where verti
es represent thetiles and edges represent dependen
es between tiles. Computing an optimal s
hedule-allo
ation5



pair is a well-known task graph s
heduling problem, whi
h is NP-
omplete in the general 
ase [11℄.If we want to solve the problem as stated (hypotheses (H1) to (H4)), we 
an use an integer linearprogramming formulation. Several 
onstraints must be satis�ed by any valid s
hedule-allo
ationpair. In the following, Tmax denotes an upper bound on the total exe
ution time. For example,Tmax 
an be the exe
ution time when all the tiles are given to the fastest pro
essor: Tmax =N1 �N2 �min0�i<P ti (here, the ti's are integral multiples of the unit time step).We now translate these 
onstraints into equations. In the following, let i 2 f1; : : : ; N1g denotea row number, j 2 f1; : : : ; N2g a 
olumn number, q 2 f0; : : : ; P � 1g a pro
essor number, andt 2 f0; : : : ; Tmaxg a time-step.� Number of exe
utions. Let Bi;j;q;t be an integer variable indi
ating whether the exe
utionof tile Ti;j begins at time-step t on pro
essor q: if this is the 
ase, then Bi;j;q;t = 1, andBi;j;q;t = 0 otherwise. Ea
h tile must be exe
uted on
e, and thus starts at one and only onetime-step. Therefore, the 
onstraints are8i; j; q; t; Bi;j;q;t � 0 and 8i; j; P�1Xq=0 TmaxXt=0 Bi;j;q;t = 1:� Exe
ution pla
e and date. Using Bi;j;q;t, we 
an 
ompute the date Di;j at whi
h tile (i; j)starts exe
ution. We 
an also 
he
k whi
h pro
essor q pro
esses tile (i; j). The 0=1 result isstored in Pi;j;q:8i; j; Di;j = P�1Xq=0 TmaxXt=0 t�Bi;j;q;t and 8i; j; q; Pi;j;q = TmaxXt=0 Bi;j;q;t:� Communi
ations. There must be a 
ommuni
ation delay between the end of exe
ution oftile (i � 1; j) (resp. (i; j � 1)) and the beginning of exe
ution of tile (i; j) if and only if thetwo tiles are not exe
uted by the same pro
essor, that is, if and only if there exists q su
hthat Pi;j;q 6= Pi�1;j;q (resp. Pi;j;q 6= Pi;j�1;q). The boolean result is stored in vi;j (resp. hi;j):vi;j = 1 if tiles (i � 1; j) and (i; j) are not exe
uted by the same pro
essor, and vi;j = 0otherwise. We have a similar de�nition for hi;j using tiles (i; j � 1) and (i; j). The equationsare: 8i � 2; j; q; vi;j � Pi;j;q � Pi�1;j;q; vi;j � Pi�1;j;q � Pi;j;q8i; j � 2; q; hi;j � Pi;j;q � Pi;j�1;q; vi;j � Pi;j�1;q � Pi;j;qNote that if a 
ommuni
ation delay is needed between the exe
ution of tile (i� 1; j) and thatof tile (i; j), then vi;j will impose one. If none is needed, vi;j may still be equal to 1, as longas this does not in
rease the total exe
ution time.� Pre
eden
e 
onstraints. The exe
ution of tile (i� 1; j) (resp. (i; j � 1)) must be �nished,and the data transferred, before the beginning of exe
ution of tile (i; j):8i � 2; j; Di;j � Di�1;j + vi;jT
om + P�1Xq=0 Pi�1;j;q tq8i; j � 2; Di;j � Di;j�1 + hi;jT
om + P�1Xq=0 Pi;j�1;q tq6



8>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>:

min�DN1;N2 +Pq PN1;N2;q tq�Ptt0=t�tq+1Pi;j Bi;j;q;t0 � 1 0 � q � P � 1; tq � 1 � t � TmaxDi;j � Di�1;j + vi;jT
om +Pq Pi�1;j;qtq 2 � i � N1; 1 � j � N2Di;j � Di;j�1 + hi;jT
om +Pq Pi;j�1;qtq 1 � i � N1; 2 � j � N2vi;j � Pi;j;q � Pi�1;j;q 2 � i � N1; 1 � j � N2; 0 � q � P � 1vi;j � Pi�1;j;q � Pi;j;q 2 � i � N1; 1 � j � N2; 0 � q � P � 1hi;j � Pi;j;q � Pi;j�1;q 1 � i � N1; 2 � j � N2; 0 � q � P � 1hi;j � Pi;j�1;q � Pi;j;q 1 � i � N1; 2 � j � N2; 0 � q � P � 1Pi;j;q =PtBi;j;q;t 1 � i � N1; 1 � j � N2; 0 � q � P � 1Di;j =PqPt tBi;j;q;t 1 � i � N1; 1 � j � N2PqPtBi;j;q;t = 1 1 � i � N1; 1 � j � N2Bi;j;q;t � 0 1 � i � N1; 1 � j � N2; 0 � q � P � 1; 0 � t � TmaxFigure 2: Integer linear program that optimally solves the s
hedule-allo
ation problem.� Number of tiles exe
uted at any time-step. A pro
essor exe
utes (at most) one tile ata time. Therefore pro
essor q 
an start exe
uting at most one tile in any interval of time tq(as tq is the time to exe
ute a tile by pro
essor q):8q; tq � 1 � t � Tmax; tXt0=t�tq+1 N1Xi=1 N2Xj=1Bi;j;q;t0 � 1Now that we have expressed all our 
onstraints in a linear way, we 
an write the whole linearprogramming system. We need only to add the obje
tive fun
tion: the minimization of the time-step at whi
h the exe
ution of the last tile TN1;N2 is terminated. The �nal linear program ispresented in Figure 2. Sin
e an optimal rational solution of this problem is not always an integersolution, this program must be solved as an integer linear program.The main drawba
k of the linear programming approa
h is its huge 
ost. The program shownon Figure 2 
ontains more than PN1N2Tmax variables and inequalities. The 
ost of solving su
ha problem would be prohibitive for any pra
ti
al appli
ation. Furthermore, even if we 
ould solvethe linear problem, we might not be pleased with the solution. We probably would prefer non-optimal but \regular" allo
ations of tiles to pro
essors, su
h as 
olumnwise or rowwise allo
ations.Fortunately, su
h allo
ations 
an lead to asymptoti
ally optimal solutions, as shown in the nextse
tion.3 Columnwise Allo
ationIn this se
tion we present theoreti
al results on 
olumnwise allo
ations. In the next se
tion wewill use these results to derive pra
ti
al heuristi
s. Before introdu
ing an asymptoti
ally optimal
olumnwise (or rowwise) allo
ation, we give a small example to show that 
olumnwise allo
ations(or equivalently rowwise allo
ations) are not optimal.7



3.1 Optimality and Columnwise Allo
ationsConsider a tiled iteration spa
e with N2 = 2 
olumns, and suppose we have P = 2 pro
essors su
hthat t1 = 5 � t0: the �rst pro
essor is �ve times faster than the se
ond one. Suppose for the sakeof simpli
ity that T
om = 0. If we use a 
olumnwise allo
ation,� either we allo
ate both 
olumns to pro
essor 0, and the makespan is MS = 2N1t0,� or we allo
ate one 
olumn to ea
h pro
essor, and the makespan is greater than N1t1 (a lowerbound for the slow pro
essor to pro
ess its 
olumn).The best solution is then to have the fast pro
essor exe
ute all tiles. But if N1 is large enough, we
an do better by allo
ating a small fra
tion of the �rst 
olumn (the last tiles) to the slow pro
essor,whi
h will pro
ess them while the �rst pro
essor is a
tive exe
uting the �rst tiles of the se
ond
olumn. For instan
e, if N1 = 6n and if we allo
ate the last n tiles of the �rst 
olumn to the slowpro
essor (see Figure 3), the exe
ution time be
omes MS = 11nt0 = 116 N1t0, whi
h is better thanthe best 
olumnwise allo
ation.6
5n

6n

P

P

i

0

1

jFigure 3: Allo
ating tiles for a two-
olumn iteration spa
e.This small example shows that our target problem is intrinsi
ally more 
omplex than the in-stan
e with same-speed pro
essors: as shown in [8℄, a 
olumnwise allo
ation would be optimal forour two-
olumn iteration spa
e with two pro
essors of equal speed.3.2 Heuristi
 Allo
ation by Blo
k of ColumnsThroughout the rest of the paper we make the following additional hypothesis:(H5) We impose the allo
ation to be 
olumnwise:7 for a given value of j, all tiles Ti;j , 1 � i � N1,are allo
ated to the same pro
essor.We start with an easy lemma to bound the optimal exe
ution time Topt:Lemma 1 Topt � N1 �N2PP�1i=0 1ti :6This is not the best possible allo
ation, but it is superior to any 
olumnwise allo
ation.7Note that the problem is symmetri
 in rows and 
olumns. We 
ould study rowwise allo
ations as well.8



Proof Let xi be the number of tiles allo
ated to pro
essor i, 0 � i < P . Obviously, PP�1i=0 xi =N1N2. Even if we take into a

ount neither the 
ommuni
ation delays nor the dependen
e 
on-straints, the exe
ution time T is greater than the 
omputation time of ea
h pro
essor: T � xitifor all 0 � i < P . Rewriting this as xi � T=ti and summing over i, we get N1N2 = PP�1i=0 xi �(PP�1i=0 1ti )T , hen
e the result.The proof of Lemma 1 leads to the (intuitive) idea that tiles should be allo
ated to pro-
essors in proportion to their relative speeds, so as to balan
e the workload. Spe
i�
ally, letL = l
m(t0; t1; : : : ; tP�1), and 
onsider an iteration spa
e with L 
olumns: if we allo
ate Lti tile
olumns to pro
essor i, all pro
essors need the same number of time-steps to 
ompute all their tiles:the workload is perfe
tly balan
ed. Of 
ourse, we must �nd a good s
hedule so that pro
essors donot remain idle, waiting for other pro
essors be
ause of dependen
e 
onstraints.We introdu
e below a heuristi
 that allo
ates the tiles to pro
essors by blo
ks of 
olumns whosesize is 
omputed a

ording to the previous dis
ussion. This heuristi
 produ
es an asymptoti
allyoptimal allo
ation: the ratio of its makespan over the optimal exe
ution time tends to 1 as thenumber of tiles (the domain size) in
reases.In a 
olumnwise allo
ation, all the tiles of a given 
olumn of the iteration spa
e are allo
atedto the same pro
essor. When 
ontiguous 
olumns are allo
ated to the same pro
essor, they form ablo
k. When a pro
essor is assigned several blo
ks, the s
heduling is the following:1. Blo
ks are 
omputed one after the other, in the order de�ned by the dependen
es. The
omputation of the 
urrent blo
k must be 
ompleted before the next blo
k is started.2. The tiles inside a given blo
k are 
omputed in a rowwise order: if, say, 3 
onse
utive 
olumnsare assigned to a pro
essor, it will exe
ute the three tiles in the �rst row, then the three tilesin the se
ond row, and so on. Note that (given 1.) this strategy is the best to minimize thelaten
y (for another pro
essor to start next blo
k as soon as possible).The following lemma shows that dependen
e 
onstraints do not slow down the exe
ution of two
onse
utive blo
ks (of adequate size) by two di�erent-speed pro
essors:Lemma 2 Let P1 and P2 be two pro
essors that exe
ute a tile in time t1 and t2, respe
tively.Assume that P1 was allo
ated a blo
k B1 of 
1 
ontiguous 
olumns and that P2 was allo
ated theblo
k B2 
onsisting of the following 
2 
olumns. Let 
1 and 
2 satisfy the equality 
1t1 = 
2t2.Assume that P1, starting at time-step s1, is able to pro
ess B1 without having to wait for anytile to be 
omputed by some other pro
essor. Then P2 will be able to pro
ess B2 without having towait for any tile 
omputed by P1, if it starts at time s2 � s1 + 
1t1 + T
om.Proof P1 (resp. P2) exe
utes its blo
k row by row. The exe
ution time of a row is 
1t1 (resp.
2t2). By hypothesis, it takes the same amount of time for P1 to 
ompute a row of B1 than for P2to 
ompute a row of B2. Sin
e P1 is able to pro
ess B1 without having to wait for any tile to be
omputed by some other pro
essor, it �nishes 
omputing the ith row of B1 at time s1 + i
1t1.P2 
annot start pro
essing the �rst tile of the ith row of B2 before P1 has 
omputed the lasttile of the ith row of B1 and has sent that data to P2, that is, at time-step s1 + i
1t1 + T
om.Sin
e P2 starts pro
essing the �rst row of B2 at time s2, where s2 � s1 + 
1t1 + T
om, it is notdelayed by P1. Later on, P2 will pro
ess the �rst tile of the ith row of B2 at time s2+(i� 1)
2t2 =s2+(i�1)
1t1 � s1+
1t1+T
om+(i�1)
1t1 = s1+i
1t1+T
om; hen
e P2 will not be delayed by P1.We are ready to introdu
e our heuristi
. 9



Heuristi
Let P0; : : : ; PP�1 be P pro
essors that respe
tively exe
ute a tile in time t0; : : : ; tP�1. We allo
ate
olumn blo
ks to pro
essors by 
hunks of C = L � PP�1i=0 1ti , where L = l
m(t0; t1; : : : ; tP�1)
olumns. For the �rst 
hunk, we assign the blo
k B0 of the �rst L=t0 
olumns to P0, the blo
k B1of the next L=t1 
olumns to P1, and so on until Pp�1 re
eives the last L=tp 
olumns of the 
hunk.We repeat the same s
heme with the se
ond 
hunk (
olumns C +1 to 2C) �rst, and so on until all
olumns are allo
ated (note that the last 
hunk may be in
omplete). As already said, pro
essorswill exe
ute blo
ks one after the other, row by row within ea
h blo
k.Lemma 3 The di�eren
e between the exe
ution time of the heuristi
 allo
ation by 
olumns and theoptimal exe
ution time is bounded byT � Topt � (P � 1)T
om + (N1 + P � 1)l
m(t0; t1; : : : ; tP�1):Proof Let L = l
m(t0; t1; : : : ; tP�1). Lemma 2 ensures that, if pro
essor Pi starts working attime-step si = i(L+T
om), it will not be delayed by other pro
essors. By de�nition, ea
h pro
essorexe
utes one blo
k in time LN1. The maximal number of blo
ks allo
ated to a pro
essor isn = & N2L�PP�1i=0 1ti ' :The total exe
ution time, T , is equal to the date the last pro
essor terminates exe
ution. T 
an bebounded as follows:8 T � sP + n� LN1:On the other hand, Topt is lower bounded by Lemma 1. We deriveT � Topt � (P � 1)(L + T
om) + LN1 & N2L�PP�1i=0 1ti ' � N1 �N2PP�1i=0 1ti :Sin
e dxe � x+ 1 for any rational number x, we obtain the desired formula.Proposition 1 Our heuristi
 is asymptoti
ally optimal: letting T be its makespan, and Topt be theoptimal exe
ution time, we have limN2!+1 TTopt = 1:The two main advantages of our heuristi
 are (i) its regularity, whi
h leads to an easy imple-mentation; and (ii) its guarantee: it is theoreti
ally proved to be 
lose to the optimal. However, wewill need to adapt it to deal with pra
ti
al 
ases, be
ause the number C = L�PP�1i=0 1ti of 
olumnsin a 
hunk may be too large.8Pro
essor PP�1 is not ne
essarily the last one, be
ause the last 
hunk may be in
omplete.
10



4 Pra
ti
al Heuristi
sIn the pre
eding se
tion, we des
ribed a heuristi
 that allo
ates blo
ks of 
olumns to pro
essorsin a 
y
li
 fashion. The size of the blo
ks is related to the relative speed of the pro
essors and
an be huge in pra
ti
e. Therefore, a straightforward appli
ation of our heuristi
 would lead toserious diÆ
ulties, as shown next in Se
tion 4.1. Furthermore, the exe
ution time variables ti arenot known a

urately in pra
ti
e. We explain how to modify the heuristi
 (
omputing di�erentblo
k sizes) in Se
tion 4.2.4.1 Pro
essor SpeedTo expose the potential diÆ
ulties of the heuristi
, we 
ondu
ted experiments on a heterogeneousnetwork of eight Sun workstations. To 
ompute the relative speed of ea
h workstation, we useda program that runs the same pie
e of 
omputation that will be used later in the tiling program.Results are reported in Table 1.Name nala bluegrass dan
er donner vixen rudolph zazu simbaDes
ription Ultra 2 SS 20 SS 5 SS 5 SS 5 SS 10 SS1 4/60 SS1 4/60Exe
ution time ti 11 26 33 33 38 40 528 530Table 1: Measured 
omputation times showing relative pro
essor speeds.To use our heuristi
, we must allo
ate 
hunks of size C = LP7i=0 1ti 
olumns, where L =l
m(t0; t1; : : : ; t7) = 34; 560; 240. We 
ompute that C = 8; 469; 789 
olumns, whi
h would requirea very large problem size indeed. Needless to say, su
h a large 
hunk is not feasible in pra
ti
e.Also, our measurements for the pro
essor speeds may not be a

urate,9 and a slight 
hange maydramati
ally impa
t the value of C. Hen
e, we must devise another method to 
ompute the sizesof the blo
ks allo
ated to ea
h pro
essor (see Se
tion 4.2). In Se
tion 4.3, we present simulationresults and dis
uss the pra
ti
al validity of our modi�ed heuristi
s.4.2 Modi�ed Heuristi
Our goal is to 
hoose the \best" blo
k sizes allo
ated to ea
h pro
essor while bounding the totalsize of a 
hunk. We �rst de�ne the 
ost of a blo
k allo
ation and then des
ribe an algorithm to
ompute the best possible allo
ation, given an upper bound for the 
hunk size.4.2.1 Cost Fun
tionAs before, we 
onsider heuristi
s that allo
ate tiles to pro
essors by blo
ks of 
olumns, repeatingthe 
hunk in a 
y
li
 fashion. Consider a heuristi
 de�ned by C = (
0; : : : ; 
P�1), where 
i is thenumber of 
olumns in ea
h blo
k allo
ated to pro
essor Pi:De�nition 1 The 
ost of a blo
k size allo
ation C is the maximum of the blo
k 
omputation times(
iti) divided by the total number of 
olumns 
omputed in ea
h 
hunk:
ost(C) = max0�i�P�1 
itiP0�i�P�1 
i9The 8 workstations were not dedi
ated to our experiments. Even though we were running these experimentsduring the night, some other users' pro
esses might have been running. Also, we have averaged and rounded theresults, so the error margin roughly lies between 5% and 10%.11



Considering the steady state of the 
omputation, all pro
essors work in parallel inside theirblo
ks, so that the 
omputation time of a whole 
hunk is the maximum of the 
omputation timesof the pro
essors. During this time, s = P0�i�P�1 
i 
olumns are 
omputed. Hen
e, the averagetime to 
ompute a single 
olumn is given by our 
ost fun
tion. When the number of 
olumns ismu
h larger than the size of the 
hunk, the total 
omputation time 
an well be approximated by
ost(C)�N2, the produ
t of the average time to 
ompute a 
olumn by the total number of 
olumns.4.2.2 Optimal Blo
k Size Allo
ationsAs noted before, our 
ost fun
tion 
orre
tly models reality when the number of 
olumns in ea
h
hunk is mu
h smaller than the total number of 
olumns of the domain. We now des
ribe analgorithm that returns the best (with respe
t to the 
ost fun
tion) blo
k size allo
ation given abound s on the number of 
olumns in a 
hunk.We build a fun
tion that, given a best allo
ation with a 
hunk size equal to n� 1, 
omputes abest allo
ation with a 
hunk size equal to n. On
e we have this fun
tion, we start with an initial
hunk size n = 0, 
ompute a best allo
ation for ea
h in
reasing value of n up to n = s, and sele
tthe best allo
ation en
ountered so far.First we 
hara
terize the best allo
ations for a given 
hunk size s:Lemma 4 Let C = (
0; : : : ; 
P�1) be an allo
ation, and let s =P0�i�P�1 
i be the 
hunk size. Letm = max0�i�P�1 
iti denote the maximum 
omputation time inside a 
hunk.If C veri�es 8i; 0 � i � P � 1; ti
i � m � ti(
i + 1); (1)then it is optimal for the 
hunk size s.Proof Take an allo
ation verifying the above Condition 1. Suppose that it is not optimal. Thenthere exists a better allo
ation C0 = (
00; : : : ; 
0P�1) with P0�i�P�1 
0i = s, su
h thatm0 = max0�i�P�1 
0iti < m:By de�nition of m, there exists i0 su
h that m = 
i0ti0 . We 
an then su

essively derive
i0ti0 = m > m0 � 
0i0 ti0
i0 > 
0i09i1; 
i1 < 
0i1 �be
ause X0�i�P�1 
i = s = X0�i�P�1 
0i�
i1 + 1 � 
0i1ti1(
i1 + 1) � ti1
0i1m � m0 (by de�nition of m and m0)whi
h 
ontradi
ts the non-optimality of the original allo
ation.There remains to build allo
ations satisfying Condition (1). The following algorithm gives theanswer:� For the 
hunk size s = 0, take the optimal allo
ation (0; 0; : : : ; 0).12



� To derive an allo
ation C0 verifying equation (1) with 
hunk size s from an allo
ation Cverifying (1) with 
hunk size s� 1, add 1 to a well-
hosen 
j, one that veri�estj(
j + 1) = min0�i�P�1 ti(
i + 1): (2)In other words, let 
0i = 
i for 0 � i � P � 1; i 6= j, and 
0j = 
j + 1.Lemma 5 This algorithm is 
orre
t.Proof We have to prove that allo
ation C0, given by the algorithm, veri�es Equation (1).Sin
e allo
ation C veri�es equation (1), we have ti
i � m � tj(
j + 1). By de�nition of j fromEquation (2), we havem0 = max0�i�P�1 ti
0i = max�tj(
j + 1); max1�i�q;i 6=j ti
i� = tj
0j:We then have tj
0j � m0 � tj(
0j + 1) and8i 6= j; 1 � i � q;ti
0i =ti
i � m�m0 �tj
0j = min0�i�P�1 ti(
i + 1) � ti(
i + 1) = ti(
0i + 1);so the resulting allo
ation does verify Equation (1).To summarize, we have built an algorithm to 
ompute \good" blo
k sizes for the heuristi
allo
ation by blo
ks of 
olumns. On
e an upper bound for the 
hunk size has been sele
ted, ouralgorithm returns the best blo
k sizes, a

ording to our 
ost fun
tion, with respe
t to this bound.The 
omplexity of this algorithm is O(Ps), where P is the number of pro
essors and s, theupper bound on the 
hunk size. Indeed, the algorithm 
onsists of s steps where one 
omputes aminimum over the pro
essors. This low 
omplexity allows us to perform the 
omputation of thebest allo
ation at runtime.A Small Example. To understand how the algorithm works, we present a small example withP = 3, t0 = 3, t1 = 5, and t2 = 8. In Table 2, we report the best allo
ations found by thealgorithm up to s = 7. The entry \Sele
ted j" denotes the value of j that is 
hosen to build thenext allo
ation. Note that the 
ost of the allo
ations is not a de
reasing fun
tion of s. If we allow
hunks of size not greater than 7, the best solution is obtained with the 
hunk (3; 2; 1) of size 6.Finally, we point out that our modi�ed heuristi
 \
onverges" to the original asymptoti
allyoptimal heuristi
. For a 
hunk of size C = L�PP�1i=0 1ti , where L = l
m(t0; t1; : : : ; tP�1) 
olumns,we obtain the optimal 
ost 
ostopt = LC = 0� X0�i�P�1 1ti1A�1 ;whi
h is the inverse of the harmoni
 mean of the exe
ution times divided by the number of pro
es-sors.
13



Chunk Size 
0 
1 
2 Cost Sele
ted j0 0 0 0 01 1 0 0 3 12 1 1 0 2.5 03 2 1 0 2 24 2 1 1 2 05 3 1 1 1.8 16 3 2 1 1.67 07 4 2 1 1.71Table 2: Running the algorithm with 3 pro
essors: t0 = 3, t1 = 5, and t2 = 8.4.2.3 Choosing the 
hunk sizeChoosing a 
hunk size s is not easy. A possible approa
h is to sli
e the total work into phases.We use small-s
ale experiments to 
ompute a �rst estimation of the ti, and we allo
ate the �rst
hunk of s 
olumns a

ording to these values for the �rst phase. During the �rst phase we measurethe a
tual performan
e of ea
h ma
hine. At the end of the phase we 
olle
t the new values ofthe ti, and we use these values to allo
ate the se
ond 
hunk during the se
ond phase, and so on.Of 
ourse a phase must be long enough, say a 
ouple of se
onds, so that the overhead due to the
ommuni
ation at the end of ea
h phase is negligible. Hen
e the size s of the 
hunk is 
hosen bythe user as a trade-o�: the larger s, the more even the predi
ted load, but the longer the delay toa

ount for variations in pro
essor speeds.4.2.4 Remark on the Multidimensional Approximation ProblemOur algorithm is related to the multidimensional approximation problem where one wants to ap-proximate some real numbers with rationals sharing the same denominator. Many algorithms existto solve this problem (see [7℄, for example), but these algorithms fo
us on �nding a \best approx-imation" with respe
t to the real numbers while we want \good" approximations made up withsmall numbers.4.3 MPI ExperimentsWe report several experiments on the network of workstations presented in Se
tion 4.1. After
omments on the experiments, we fo
us on 
y
li
 and blo
k-
y
li
 allo
ations and then on ourmodi�ed heuristi
s.4.3.1 General RemarksWe study di�erent 
olumnwise allo
ations on the heterogeneous network of workstations presentedin Se
tion 4.1. Our simulation program is written in C using the MPI library for 
ommuni
ation.It is not an a
tual tiling program, but it simulates su
h behavior: we have not inserted the 
oderequired to deal with the boundaries of the 
omputation domain. A
tually, our 
ode only simulatesthe 
ommuni
ations generated by a tiling, it does fake 
omputations (hen
e, no data allo
ation).The tiling is assumed given. Our aim is not to �nd the \best" tiling. The tile domain has 100rows and a number of 
olumns varying from 200 to 1000 by steps of 100. An array of doubles14



of size the square root of the tile area is 
ommuni
ated for ea
h 
ommuni
ation (we assume herethat the 
omputation volume is proportional to the tile area while the 
ommuni
ation volume isproportional to its square root).The a
tual 
ommuni
ation network is a 
oax type Ethernet network. It 
an be 
onsidered asa bus, not as a point-to-point 
onne
tion ring; hen
e our model for 
ommuni
ation is not fully
orre
t. However, this 
on�guration has little impa
t on the results, whi
h 
orrespond well to thetheoreti
al 
onditions.As already pointed out, the workstations we use are multiple-user workstations. Although oursimulations were made at times when the workstations were not supposed to be used by anybodyelse, the load may vary. The timings reported in the �gures are the average of several measuresfrom whi
h aberrant data have been suppressed.In Figures 4 and 6, we show for referen
e the sequential time as measured on the fastest ma
hine,namely, \nala".4.3.2 Cy
li
 Allo
ationsWe have experimented with 
y
li
 allo
ations on the 6 fastest ma
hines, on the 7 fastest ma
hines,and on all 8 ma
hines. Be
ause 
y
li
 allo
ation is optimal when all pro
essors have the samespeed, this will be a referen
e for other simulations. We have also tested a blo
k 
y
li
 allo
ationwith blo
k size equal to 10, in order to see whether the redu
ed amount of 
ommuni
ation helps.Figure 4 presents the results10 for these 6 allo
ations (3 purely 
y
li
 allo
ations using 6, 7, and 8ma
hines, and 3 blo
k-
y
li
 allo
ations).We 
omment on the results of Figure 4 as follows:� With the same number of ma
hines, a blo
k size of 10 is better than a blo
k size of 1 (pure
y
li
).� With the same blo
k size, adding a single slow ma
hine is disastrous, and adding the se
ondone only slightly improve the disastrous performan
es.� Overall, only the blo
k 
y
li
 allo
ation with blo
k size 10 and using the 6 fastest ma
hinesgives some speedup over the sequential exe
ution.We 
on
lude that 
y
li
 allo
ations are not eÆ
ient when the 
omputing speeds of the availablema
hines are very di�erent. For the sake of 
ompleteness, we show in Figure 5 the exe
ution timesobtained for the same domain (100 rows and 1000 
olumns) and the 6 fastest ma
hines, for blo
k
y
li
 allo
ations with di�erent blo
k sizes. We see that the blo
k-size as a small impa
t on theperforman
es, whi
h 
orresponds well to the theory: all 
y
li
 allo
ations have the same 
ost.We point out that 
y
li
 allo
ations would be the out
ome of a greedy master-slave strategy.Indeed, pro
essors will be allo
ated the �rst P 
olumns in any order. Re-number pro
essors a
-
ording to this initial assignment. Then throughout the 
omputation, Pj will return after Pj�1 andjust before Pj+1 (take indi
es modulo p), be
ause of the dependen
es. Hen
e 
omputations wouldonly progress at the speed of the slowest pro
essor, with a 
ost max tpP .4.3.3 Using our modi�ed heuristi
Let us now 
onsider our heuristi
s. In Table 3, we show the blo
k sizes 
omputed by the algorithmdes
ribed in Se
tion 4.2 for di�erent upper bounds of the 
hunk size. The best allo
ation 
omputedwith bound u is denoted as Cu. 15



sequential
y
li
(10,8)
y
li
(10,7)
y
li
(10,6)
y
li
(1,8)
y
li
(1,7)
y
li
(1,6)


olumns
se
onds

10008006004002000

9008007006005004003002001000 Remark 
y
li
(b,m) 
orresponds to a blo
k 
y
li
 allo
ationwith blo
k size b, using the m fastest ma
hines of Table 1.Figure 4: Experimenting with 
y
li
 and blo
k-
y
li
 allo
ations.nala bluegrass dan
er donner vixen rudolph zazu simba 
ost 
hunkC25 7 3 2 2 2 2 0 0 4.44 18C50 15 6 5 5 4 4 0 0 4.23 39C100 33 14 11 11 9 9 0 0 4.18 87C150 52 22 17 17 15 14 1 1 4.12 139Table 3: Blo
k sizes for di�erent 
hunk size bounds.The time needed to 
ompute these allo
ations is 
ompletely negligible with respe
t to the
omputation times (a few millise
onds versus several se
onds).Figure 6 presents the results for these allo
ations. Here are some 
omments:� Ea
h of the allo
ations 
omputed by our heuristi
 is superior to the best blo
k-
y
li
 allo
a-tion.� The more pre
ise the allo
ation, the better the results.� For 1000 
olumns and allo
ation C150, we obtain a speedup of 2:2 (and 2:1 for allo
ation C50),whi
h is very satisfying (see below).The optimal 
ost for our workstation network is 
ostopt = LC = 34;560;2408;469;789 = 4:08. Note that
ost(C150) = 4:12 is very 
lose to the optimal 
ost. The peak theoreti
al speedup is equal to10Some results are not available for 200 
olumns be
ause the 
hunk size is too large.16



blo
k sizes in 
olumns
se
onds

6050403020100

120100806040200Figure 5: Cy
li
 allo
ations with di�erent blo
k sizes.mini ti
ostopt = 2:7. For 1000 
olumns, we obtain a speedup equal to 2:2 for C150. This is satisfying
onsidering that we have here only 7 
hunks, so that side e�e
ts still play an important role. Notealso that the peak theoreti
al speedup has been 
omputed by negle
ting all the dependen
es inthe 
omputation and all the 
ommuni
ations overhead. Hen
e, obtaining a twofold speedup with8 ma
hines of very di�erent speeds is not a bad result at all!5 Con
lusionIn this paper, we have extended tiling te
hniques to deal with heterogeneous 
omputing platforms.Su
h platforms are likely to play an important role in the near future. We have introdu
ed anasymptoti
ally optimal 
olumnwise allo
ation of tiles to pro
essors. We have modi�ed this heuristi
to allo
ate 
olumn 
hunks of reasonable size, and we have reported su

essful experiments on anetwork of workstations. The pra
ti
al signi�
an
e of the modi�ed heuristi
s should be emphasized:pro
essor speeds may be ina

urately known, but allo
ating small but well-balan
ed 
hunks turnsout to be quite su

essful: in pra
ti
e we approa
h the peak theoreti
al speedup.Heterogeneous platforms are ubiquitous in 
omputer s
ien
e departments and 
ompanies. Thedevelopment of our new tiling te
hniques allows for the eÆ
ient use of older 
omputational resour
esin addition to newer available systems.The work presented in this paper is only a �rst step towards using heterogeneous systems.Heterogeneous networks of workstations or PCs represent the low end of the �eld of distributed andheterogeneous 
omputing. At the high end of the �eld, linking the most powerful super
omputersof the largest super
omputing 
enters through dedi
ated high-speed networks will give rise to themost powerful 
omputational s
ien
e and engineering problem-solving environment ever assembled:the so-
alled 
omputational grid. Providing desktop a

ess to this \grid" will make 
omputingroutinely parallel, distributed, 
ollaborative and immersive [15℄. In the middle of the �eld, we 
anthink of 
onne
ting medium-size parallel servers through fast but non-dedi
ated links. For instan
e,ea
h institution 
ould build its own spe
ialized parallel ma
hine equipped with appli
ation-spe
i�
databases and appli
ation-oriented software, thus 
reating a \meta-system". The user is then ableto a

ess all the ma
hines of this meta-system remotely and transparently, without ea
h institutiondupli
ating the resour
es and the exploitation 
osts.17



sequentialC150C100C50C25


olumns
se
onds

10008006004002000

100806040200 Figure 6: Experimenting with our modi�ed heuristi
s.Whereas the ar
hite
tural vision is 
lear, the software developments are not so well understood.Lots of e�orts in the area of building and operating meta-systems are targeted to infrastru
ture,servi
es and appli
ations. Not so many e�orts are devoted to algorithm design and programmingtools, while (we believe) they represent the major 
on
eptual 
hallenge to be ta
kled.A
knowledgmentsWe thank the reviewers whose 
omments and suggestions have greatly improved the presentationof the paper.Referen
es[1℄ A. Agarwal, D.A. Kranz, and V. Natarajan. Automati
 partitioning of parallel loops anddata arrays for distributed shared-memory multipro
essors. IEEE Trans. Parallel DistributedSystems, 6(9):943{962, 1995.[2℄ Stergios Anastasiadis and Kenneth C. Sev
ik. Parallel appli
ation s
heduling on networsk ofworkstations. Journal of Parallel and Distributed Computing, 43:109{124, 1997.[3℄ Rumen Andonov, Ha�d Bourzou�, and Sanjay Rajopadhye. Two-dimensional orthogonaltiling: from theory to pra
ti
e. In International Conferen
e on High Performan
e Computing(HiPC), pages 225{231, Trivandrum, India, 1996. IEEE Computer So
iety Press.[4℄ Rumen Andonov and Sanjay Rajopadhye. Optimal orthogonal tiling of two-dimensional iter-ations. Journal of Parallel and Distributed Computing, 45(2):159{165, 1997.18



[5℄ F. Berman. High-performan
e s
hedulers. In I. Foster and C. Kesselman, editors, The Grid:Blueprint for a New Computing Infrastru
ture, pages 279{309. Morgan-Kaufmann, 1998.[6℄ Pierre Boulet, Alain Darte, Tanguy Risset, and Yves Robert. (Pen)-ultimate tiling? Integra-tion, the VLSI Journal, 17:33{51, 1994.[7℄ A. J. Brentjes. Multi-dimensional 
ontinued fra
tion algorithms. Mathematis
h Centrum,Amsterdam, 1981.[8℄ P.Y. Calland, J. Dongarra, and Y. Robert. Tiling with limited resour
es. In L. Thiele, J. Fortes,K. Vissers, V. Taylor, T. Noll, and J. Tei
h, editors, Appli
ation Spe
i�
 Systems, A
hite
tures,and Pro
essors, ASAP'97, pages 229{238. IEEE Computer So
iety Press, 1997. Extendedversion available on the WEB at http://www.ens-lyon.fr/�yrobert.[9℄ Y-S. Chen, S-D. Wang, and C-M. Wang. Tiling nested loops into maximal re
tangular blo
ks.Journal of Parallel and Distributed Computing, 35(2):123{32, 1996.[10℄ J. Choi, J. Demmel, I. Dhillon, J. Dongarra, S. Ostrou
hov, A. Petitet, K. Stanley, D. Walker,and R. C. Whaley. S
aLAPACK: A portable linear algebra library for distributed memory
omputers - design issues and performan
e. Computer Physi
s Communi
ations, 97:1{15, 1996.(also LAPACK Working Note #95).[11℄ Ph. Chretienne. Task s
heduling over distributed memory ma
hines. In M. Cosnard, P. Quin-ton, M. Raynal, and Y. Robert, editors, Parallel and Distributed Algorithms, pages 165{176.North Holland, 1989.[12℄ Mi
hal Cierniak, Mohammed J. Zaki, and Wei Li. S
heduling algorithms for heterogeneousnetwork of workstations. The Computer Journal, 40(6):356{372, 1997.[13℄ Alain Darte, Georges-Andr�e Silber, and Fr�ed�eri
 Vivien. Combining retiming and s
hedulingte
hniques for loop parallelization and loop tiling. Parallel Pro
essing Letters, 7(4):379{392,1997.[14℄ J. J. Dongarra and D. W. Walker. Software libraries for linear algebra 
omputations on highperforman
e 
omputers. SIAM Review, 37(2):151{180, 1995.[15℄ I. Foster and C. Kesselman, editors. The Grid: Blueprint for a New Computing Infrastru
ture.Morgan-Kaufmann, 1998.[16℄ K. H�ogstedt, L. Carter, and J. Ferrante. Determining the idle time of a tiling. In Prin
iplesof Programming Languages, pages 160{173. ACM Press, 1997. Extended version available asTe
hni
al Report UCSD-CS96-489, and on the WEB at http://www.
se.u
sd.edu/�
arter.[17℄ Fran�
ois Irigoin and R�emy Triolet. Supernode partitioning. In Pro
. 15th Annual ACM Symp.Prin
iples of Programming Languages, pages 319{329, San Diego, CA, January 1988.[18℄ AmyW. Lim andMoni
a S. Lam. Maximizing parallelism and minimizing syn
hronization withaÆne transforms. In Pro
eedings of the 24th Annual ACM SIGPLAN-SIGACT Symposium onPrin
iples of Programming Languages, pages 201{214. ACM Press, January 1997.[19℄ H. Ohta, Y. Saito, M. Kainaga, and H. Ono. Optimal tile size adjustment in 
ompiling generalDOACROSS loop nests. In 1995 International Conferen
e on Super
omputing, pages 270{279.ACM Press, 1995. 19



[20℄ Peter Pa
he
o. Parallel programming with MPI. Morgan Kaufmann, 1997.[21℄ J. Ramanujam and P. Sadayappan. Tiling multidimensional iteration spa
es for multi
omput-ers. Journal of Parallel and Distributed Computing, 16(2):108{120, 1992.[22℄ M. E. Wolf and M. S. Lam. A data lo
ality optimizing algorithm. In SIGPLAN Conferen
eon Programming Language Design and Implementation, pages 30{44. ACM Press, 1991.[23℄ Mi
hael E. Wolf and Moni
a S. Lam. A loop transformation theory and an algorithm tomaximize parallelism. IEEE Trans. Parallel Distributed Systems, 2(4):452{471, O
tober 1991.

20


