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1 IntroductionTiling is a widely used compiler technique to increase the granularity ofcomputations and the locality of data references. Indeed, as pointed out byCarter et al [8], \Good parallel algorithms are not enough; computer fea-tures such as the memory hierarchy and processor architecture need to beexploited to achieve high-performance on parallel machines". The basic ideaof tiling (also known as \loop blocking") is to group elemental computationpoints into tiles that will be viewed as computational units. The larger thetiles, the more e�cient the computations performed using state-of-the-artprocessors with pipelined arithmetic units and a multilevel memory hier-archy. This is best illustrated by the recasting of numerical linear algebraalgorithms in terms of blocked Level 3 BLAS kernels [12, 10]. Anotheradvantage of tiling is the decrease in communication time (which is propor-tional to the surface of the tile) relative to the computation time (which isproportional to the volume of the tile). The price to pay for tiling may be anincreased latency (if there are data dependencies, for example, we need towait for the �rst processor to complete the whole execution of the �rst tilebefore another processor can start the execution of the second one, and soon), as well as some load-imbalance problems (the larger the tile, the moredi�cult to distribute computations equally among the processors).The tiling technique was originally restricted to perfect loop nests withuniform dependencies, as de�ned by Banerjee [4], but has been extendedto sets of fully permutable loops [24, 16, 11]. Tiling has been studied byseveral researchers and in di�erent contexts [15, 21, 23, 20, 22, 5, 6, 18, 1,9, 17, 7, 14, 3]1. Most of the work amounts to partitioning the iterationspace of a uniform loop nest into tiles whose shape and size are optimizedaccording to some criteria (such as the communication-to-computation ra-tio): see Section 2 for an example. Once the tile shape and size are de�ned,there remains to distribute the tiles to physical processors and to computethe �nal scheduling. Little attention has been paid to this last problem.For example, if each physical processor is assigned several tiles, what shouldbe the computation ordering of these tiles? An in-depth study has beenpresented by Ohta et al [18], who have extended results of Hiranandani etal. [13] on �ne grain pipelining for DOACROSS loops. We survey their workin Section 3.In this paper, we build upon the work of Ohta et al [18]. We reformulatethe problem of tiling with limited resources using more realistic assump-1This small list is far from being exhaustive.2



tions on data dependences and communication-computation overlap thanthose used in [18]. Our most important result is the derivation of an opti-mal mapping to assign tiles to physical processors. This result is importantbecause it has clear practical implications: indeed, it turns out that in mostsituations, a columnwise or rowwise mapping is optimal, which greatly sim-pli�es the task of code generation. All our results are presented in Sections 4and 5. Finally, we state some conclusions in Section 6.2 Tiling as a loop transformation techniqueWhen targeting a data-parallel or SPMD style of programming, classicalconstraints in the literature to de�ne tiles are the following:Tiles are bounded For scalability reasons, we want the number of pointsinside a tile to be bounded by a constant independent of the domainsize.Tiles are identical by translation This constraint is imposed to allowfor automatic code generation: a tile must be the image by a transla-tion of any other one unless it crosses the computation domain bound-aries.Tiles are \atomic" Each tile is a unit of computation: all synchronizationpoints are beginnings and ends of tiles. The order on tiles must becompatible with the order on nodes: one must avoid that two distincttiles depend upon each other.Consider the following simple example:for i = 0 to N1 dofor j = 0 to N2 doa(i; j) = a(i� 3; j) + a(i; j � 2)b(i; j) = a(i� 2; j � 3) + b(i� 2; j � 1)enddoenddoThis loop nest has depth 2. The dependences are uniform (intuitively,dependence vectors are translations), and they can be encapsulated into thedependence matrix D = � 3 0 2 20 2 3 1 � :3



The atomicity constraint can be expressed by the analytical conditionHD � 0, where H is the matrix of vectors normal to the faces (or the edgesin two-dimensional problems) of the tile [15]. In Figure 1, we sketch a validtiling for our example. The matrix H is the one derived using the scalablecommunication-to-computation criteria of Boulet et al. [5]:H = 116 � 0 1312 0 � :We check that HD � 0. Note that the volume of the tile, which representsthe number of computations per tile, is given by the determinant of H�1:Vcomp = det(H�1) = 96. The number of communications is the following:each tile sends� 24 data items to its right neighbor,� 34 data items to its lower neighbor,� and 6 data items to its lower-right neighbor.Note that the third message (the diagonal communication) may be routedhorizontally and then vertically, or the other way round, and even may becombined with any of the �rst two messages.Please insert Figure 1 hereIt is important to point out that the dependences between tiles are sum-marized by the vector pair f� 10 � ;� 01 �g:In other words, the computation of a tile cannot be started before both itsleft and upper neighbor tiles have been executed.As stated above, the atomicity constraint implies that inter-processorcommunications only take place at the end of the processing of each tile.Note that current architectures do allow for communications and computa-tions to overlap, and it is important to point out that the atomicity con-straint does not prevent a given processor from simultaneously communi-cating boundary data of one tile (whose execution it just completed) andstarting the computation of another tile. Also, minimizing communication4



start-up overheads is a \sine-qua-non" condition towards achieving goodperformance. Even though sophisticated routing strategies are designedand implemented in hardware, communication start-up costs remain veryexpensive as opposed to the elemental time for communicating one dataitem (and even worse for performing a computation). Frequent exchangesof short messages should therefore be replaced by fewer sends and receivesof longer messages. To summarize, in the context of distributed memoryarchitectures, tiling is a technique that permits to optimize communicationswhile increasing the granularity of computations.3 Tiling with resource constraintsOhta et al. [18] aim at determining the best tile size under the followinghypotheses:(H1) There are P available processors interconnected as a ring.(H2) The computation domain is a two-dimensional rectangle of size N1�N2.(H3) Tiles are rectangular and their edges are parallel to the axes (seeFigure 2). The size of a tile is n1�n2, where n1 and n2 are unknowns.(H4) Dependences between tiles are summarized by the vector pair f� 10 � ;� 01 �g(as in the example of Section 2).(H5) Tiles are assigned to processor using a one-dimensional cyclic distri-bution: in other words, tile (i; j) is allocated to processor j mod P .(H6) The scheduling of the tiles is column-wise: at step 0, processor P0executes tile (0; 0) and the computed value is communicated to theadjacent processor P1 (more precisely, a rectangular slice of width wand height n2 is sent). At step 1, processors P0 and P1 execute tiles(0; 1) and (1; 0) simultaneously. After having executed a whole columnof tiles, a processor moves on to its next column.Please insert Figure 2 here
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A step is the time required to compute a tile and to communicate data.Ohta et al. [18] use the following expression:Ttile = Tcomp + Tcomm = n1n2t+ (a+ bn2)where t is the elemental computation time, a is a communication start-upand b is the inverse of the communication bandwidth times the width w ofthe slice being communicated (the communication cost is a linear expressionin the message size).To compute the total execution time, Ohta et al. [18] use the formula(Ml + Mp)Ttile, where Ml = P � 1 is the latency (the step at which thelast processor begins to work) and Mp = N1�N2P�n1�n2 is the number of tiles perprocessor (assumed to be an integer). Using the approximation Ml = P ,they derive the total execution time T asT = (P + N1N2Pn1n2 )(n1n2t+ a+ bn2):The execution time is found to be minimal when choosing n1 = N1P and n2 =qN2aN1t .The objective of this paper is to discuss the hypotheses (H1) to (H6)of Ohta et al., and to reformulate their results using a more accurate mod-eling of current architectures. Indeed, their study is conducted while as-suming that processors cannot simultaneously communicate bordering dataitems of the last tile and perform computations for the next tile. However,overlapping computations and communications is a facility provided by alldistributed memory computers, so we relax this restriction. This simplemodi�cation has a tremendous e�ect on the determination of the best tilesize.4 Allowing for communication-computation over-lap4.1 On the modelHypotheses (H2), (H3) and (H4) may appear very restricting. However, wepoint out the following justi�cations:Tile shape We assume that the tiles are rectangular. This is to be un-derstood as the outcome of previous program transformations. The6



�rst step in tiling amounts to determining the best shape and size ofthe tiles, assuming an in�nite grid of virtual processors. Because thisstep will lead to tiles whose edges are parallel to extremal dependencevectors in the convex hull of the dependence cone, we can perform aunimodular transformation and rewrite the original loop nest alongthe edge axes. The resulting domain may not be a rectangular, butwe can approximate it using the smallest bounding box (however, thisapproximation may impact the accuracy of our results).Dependence vectors We assume that dependencies are summarized bythe vector pair V = f(1; 0)t; (0; 1)tg. Note that these are dependenciesbetween tiles, not between elementary computations. Hence, havingright- and top-neighbor dependencies is a very general situation if thetiles are large enough. In the example of Section 2, we had 4 depen-dence vectors in the original loop nest, but we ended up with V aftertiling. Technically, since we deal with a set of fully permutable loops,all dependence vectors have nonnegative components only, so that Vpermits all other dependence vectors to be generated by transitivity.Note that having a dependence vector (0; a)t with a � 2 between tiles,instead of having vector (0; 1)t, would mean unusually long depen-dencies in the original loop nest (in the example of Section 2, a(i; j)would depend upon a(i; j � 8) but not on a(i; j � x) for x � 7), whilehaving (0; a)t in addition to (0; 1)t as a dependence vector betweentiles is simply redundant. In practical situations, we might have anadditional diagonal dependence vector (1; 1)t between tiles, but thediagonal communication may be routed horizontally and then verti-cally, or the other way round, and even may be combined with anyof the other two messages (induced by dependence vectors (0; 1)t and(1; 0)t).On the other hand, hypotheses (H5) and (H6) are unnecessarily restric-tive, because the mapping and scheduling of the tiles should be an outputdecision of the procedure of tiling with limited resources, rather than beinggiven a priori. We overcome this restriction in Section 5.4.2 Revisiting the results of Ohta et al.The total execution time is given by the following proposition:Proposition 1 Under the hypotheses (H1) to (H6) of Section 3, and allow-ing for communication-computation overlap, the total computation time T7



is (assuming all fractions to be integer):T = � T1 = (P � 1)(n1n2t+ a+ bn2) + N1N2P t if N2n1t � P (n1n2t+ a+ bn2)T2 = (N1n1 � 1)(n1n2t+ a+ bn2) +N2n1t otherwise (1)Proof According to hypothesis (H4), the computation goes column-wise.When a processor has completed the execution of a whole column of tiles,it starts the next column that has been assigned to it. The time to processa whole column of tiles is the number of tiles in the column, namely N2n2 ,times the time to compute a tile, namely Tcomp = n1n2t. We obtain thevalue N2n1t for processing a whole tile column.Now, according to hypothesis (H5), tile columns are distributed cycli-cally to processors. If a processor starts the execution of the �rst tile ina given column at time-step t, its right neighbor cannot start the execu-tion of the �rst tile in the next column before time-step t + Ttile, whereTtile = Tcomp + Tcomm = n1n2t + (a + bn2) (this is due to the dependencevector (1; 0)t). Note that Ttile is the same as in Section 3, but we pay acommunication cost only when the processors owning the tiles are not thesame. Two cases can occur:Please insert Figure 3 here� Either there are enough tiles in each column so that when a processorhas completed the execution of a whole tile column, it does not have towait for its next tile column to be ready. This will happen if N2n2 Tcomp =N2n1t is greater than or equal to the delay imposed by horizontalconstraints, i.e. if N2n2 Tcomp � P Ttile:If this condition holds, all processors remain active throughout theentire computation, once they have started execution. Since the lastprocessor starts at time (P � 1)Ttile and has N1N2Pn1n2 tiles to execute(each in time Tcomp = n1n2t), we obtain T1, the �rst expression inEquation (1). See Figure 3 where Tcomp = Tcomm = 1, and P = 3.There are N2n2 = 8 tiles per column, and PTtile = 6, hence the conditionis satis�ed. 8



Please insert Figure 4 here� Or each processor has to wait upon �nishing a tile column until thenext column is ready. This translates into the condition N2n2 Tcomp �PTtile. In that case, the total computation time is equal to the timeat which the last processor starts the execution of the �rst tile in thelast column, namely (N1n1 � 1)Ttile plus the time needed to process thiscolumn. We obtain the expression (N1n1 � 1)Ttile + N2n2 Tcomp, as statedin the second formula of Equation (1). See Figure 4 where Tcomp = 1,Tcomm = 2, and P = 3. There are N2n2 = 8 tiles per column, andPTtile = 9, hence N2n2 Tcomp � PTtile. Processors remain idle at the endof each tile column, waiting for their next column to be ready.The optimal number of processors that should be used so as to minimizethe total execution time is given by the following proposition:Corollary 1 Under the hypotheses (H2) to (H6) of Section 3, and allowingfor communication-computation overlap, letP� =r N1N2tn1n2t+ a+ bn2 and P� = N2n1tn1n2t+ a+ bn2The number of processors P that minimizes the total execution time is givenby: � if P� � 1 or P� � 1 � P�, then P = 1,� if 1 � P� � P� then P = P�,� if 1 � P� � P� then P = P�.Proof The \steady-state" condition N2n1t � P (n1n2t+a+ bn2) in Equa-tion (1) can be rewritten as P � P� :Consider T1 = (P � 1)(n1n2t + a + bn2) + N1N2P t (see Equation (1)). Theminimum of T1 is obtained for P = P�. The expression of T1 shows thatis a non-increasing function of P when P � P�, and then a non-decreasing9



function of P when P � P�. Also, note that T2 does not depend on P (ex-cept than through the condition P � P�). Then the result follows accordingto a simple case analysis.For large domains, we will have 1 � P� � P�, and it is no surprise thatthe optimal number of processors is the one required to ensure steady-stateexecution: Equation (1) in Proposition 1 states that all processors remainactive once started if N2n1t � P (n1n2t+ a+ bn2):So far, we have assumed that n1 and n2 were input parameters, becausethe size and shape of the tiles may be imposed by some a priori considera-tions (such as the cache size). We can try to determine the values of n1 andn2 in the range 1 � n1 � N1, 1 � n2 � N2 that would minimize the totalexecution time. We rewrite the steady-state inequality by introducing thefollowing function f : f(n1) = N2n1t� PaP (n1t+ b) (2)f is de�ned so that N2n1t � P (n1n2t + a + bn2) () n2 � f(n1). Wehave the following result:Corollary 2 Under the hypotheses (H1) to (H6) of Section 3, and allowingfor communication-computation overlap, the total execution time is mini-mum for� n1 =qN1(a+b)(N2�1)t and n2 = 1 if f(N1P ) � 1� n1 = P (a+b)t(N2�P ) and n2 = 1 otherwise.Proof We break down the problem into two sub-cases depending on thevalues taken by the function f , whose argument n1 ranges from 1 to N1P ;� 8n1; f(n1) � 1. Since f is a nondecreasing function of n1, this con-dition is equivalent to f(N1P ) � 1. In this case, Equation (2) is neversatis�ed (n2 � 1). Then the minimum of T is obtained by minimizingT2 with n2 = 1, namelyT = (N1n1 � 1)(n1t+ a+ b) +N2n1t10



This easily leads to n1 =qN1(a+b)(N2�1)t , as stated in the theorem� 9n1; f(n1) � 1. We take n01 such that f(n01) = min f(n1) and n01 � 1.Note that all values of n1 � n01 will lead to admissible values for n2,because we always have f(n1) � N2P by de�nition of f . Now considerthe expression of T for arbitrary n1 and n2:{ if n2 � f(n1), then T = T1, T is a non-increasing function of bothn1 and n2 decreases, then the minimum is obtained with n2 = 1and n1 = n01.{ if n2 � f(n1) then T = T2 and is a non-increasing function of n2.Then the minimum of T is reached if n2 = f(n1). In that caseT2 = T1, and again the minimum is reached when n2 = 1 andn1 = n01.This result is disappointing in that we end up with degenerate tiles inmost practical situations. For instance if P � N2 (which is very likely tohappen in practice), f(1) � 1, and the optimal tile size is n1 = n2 = 1, nota very coarse-grain tiling indeed! For other values of the problem parame-ters we would have an optimal tile size that depends upon the domain size,thereby contradicting the assumption that tiles are bounded (Section 2).Note that Ohta et al [18] also have this problem in their original model.The aw is that the model is not accurate enough to take the impact ofdata locality and data reuse into account (which are the main objectives oftiling, and the main motivation for designing blocked linear algebra algo-rithms [12]). A �rst solution is to model the computation cost of a tile byan a�ne expression like Tcomp = n1n2t+ u, where u represents some accessoverhead. It is not di�cult to plug this expression into the formula givenfor the total execution time T , and to derive the optimal tile size. Anothersolution is to assume a �xed tile size that would be imposed by some a pri-ori considerations (such as the cache size). Again, we can let n1n2 = S inEquation (1), and minimize T for n1, say.4.3 Generalizing the modelAssuming communication-computation overlap seems a reasonable hypoth-esis for current machines which have communication coprocessors and allowfor asynchronous communications (posting instructions ahead, or using ac-tive messages). We can think of independent computations going along a11



thread while communication is initiated and performed by another thread.As written in Pacheco [19, p. 268], \if we have communication coproces-sors (and smart compilers) ... the actual running time [for performing kcomputations and sending/receiving a message of length m] ... might bemaxfts +mtc; ktag" (with our notations, ta = t, ts = a and tc = b=w).A very interesting approach has been proposed by Andonov and Ra-jopadhye [3]: they introduce the tile period Pt as the time elapsed betweencorresponding instructions of two successive tiles that are mapped to thesame processor, while they de�ne the tile latency Lt to be the time be-tween corresponding instructions of two successive tiles that are mappedto di�erent processors. With these notations, the parallel execution timebecomes [3]T = 8<: T1 = (P � 1)Lt + N1n1 N2n2 1P Pt if N2n2 Pt � PLtT2 = (N1n1 � 1)Lt + N2n2 Pt otherwise (3)The power of this approach is that the expressions for Lt and Pt canbe modi�ed to take into account several architectural models, while Equa-tion (3) still remains valid. A very detailed architectural model is presentedin [3], and several other models are explored in [2].With our notations, Pt = Tcomp and Lt = Tcomp+Tcomm. We can rewriteEquation (1) asT = 8<: T1 = (P � 1)(Tcomp + Tcomm) + N1n1 N2n2 1P Tcomp if N2n2 Tcomp � P (Tcomp + Tcomm)T2 = (N1n1 � 1)(Tcomp + Tcomm) + N2n2 Tcomp otherwise (4)Equation (3), or its variant Equation (4), is the key to our tiling problem,because it expresses the parallel execution time as a function of the domainsize, of the number of processors, and of the tile parameters Pt and Lt, orequivalently Tcomp and Tcomm.5 Optimal mapping and schedulingHypotheses (H5) and (H6) are very restrictive in that they impose the map-ping of tiles to processors as well as their scheduling. The intuitive moti-vation for (H5) is that a cyclic distribution of tiles is quite natural to load-balance computations. Once the distribution of tiles to processors is �xed,12



there are several possible schedulings (any wavefront execution that goesalong a left-to-right diagonal is valid). Specifying a column-wise executionmay lead to the simplest code generation.It turns out that (H5) and (H6) provide the best solution among allpossible distributions of tiles to processors, which is a very strong result.This result holds true under the assumption that the communication costfor a tile is not larger than its computation cost. Since the communicationcost for a tile grows linearly with its size, while the computation costs growsquadratically, this hypothesis will be satis�ed if the tile is large enough2.This result is formally stated in the theorem below. Beforehand, we need tore�ne the communication cost as follows:� Tcomm horiz = a + bn2 is the cost of communicating data from (theprocessor owning) tile (i; j) to (the processor owning) its right neighbortile (i+ 1; j),� Tcomm vert = a0+b0n1 is the cost of communicating data from (the pro-cessor owning) tile (i; j) to (the processor owning) its bottom neighbortile (i; j + 1).We pay a communication cost only when the two processors that own theneighboring tiles are not the same. So far we never paid any cost for verticalcommunications, and we always did for horizontal communications, becauseof hypothesis (H5). We had to re�ne the communication cost because inthis section, we do not make any assumption on the mapping of tiles toprocessors. Depending upon the values of Tcomm horiz and Tcomm vert, thebest mapping will be column-wise or row-wise:Theorem 1 Under the hypotheses (H2) to (H4) of Section 3, and allowingfor communication-computation overlap, let n1 and n2 be chosen so thatmaxfTcomm horiz; Tcomm vertg = maxfa+ bn2; a0 + b0n1g � Tcomp = n1n2t:1. If Tcomm horiz � Tcomm vert, assume that the steady state equationholds: N2n1t � P (n1n2t + a + bn2). Then the absolute minimumfor the total execution time isT1 = (P � 1)(Tcomp + Tcomm horiz) + N1N2P tand it is achieved by mapping and scheduling tiles according to hy-potheses (H5) and (H6),2Of course, we can imagine theoretical situations where the communication cost is solarge that a sequential execution would lead to the best result.13



2. If Tcomm vert � Tcomm horiz, assume that the steady state equationholds: N1n2t � P (n1n2t + a0 + b0n1). Then the absolute minimumfor the total execution time isT 01 = (P � 1)(Tcomp + Tcomm vert) + N1N2P tand it is achieved by mapping rows of tiles using a one-dimensionalcyclic distribution (tile (i; j) is allocated to processor i mod P ), and byscheduling the tiles with a row-wise ordering.Proof Without loss of generality, assume that Tcomm vert � Tcomm horiz(the result is symmetric in the rows and columns), and let Tcomm = Tcomm vert.We begin the proof with the following preliminary result, where � denotesany valid scheduling of the tiles (�(I) is the time-step at which the executionof I begins):Lemma 1 Let I = (i; j) be a tile index, and let I 0 = (i + 1; j) and I 00 =(i; j + 1) be its successor tiles. We havemaxf�(I 00)� �(I); �(I 0)� �(I)g � Tcomm + Tcomp:Proof Let proc(I) be the processor that executes tile I. We have threecases to consider, depending upon whether proc(I) also executes both suc-cessors I 0 and I 00, or exactly one of them, or none of them:both successors: proc(I) = proc(I 0) = proc(I 00)The same processor executes both successors. They are executed se-quentially and the last one being executed cannot begin execution be-fore time-step �(I) + 2Tcomp. As Tcomm � Tcomp the result is proven.one successor: proc(I) = proc(I 0) and proc(I) 6= proc(I 00)(respectively proc(I) = proc(I 00) and proc(I) 6= proc(I 0)). A commu-nication is needed between I and I 00 (respectively I and I 0), hence�(I 00) � �(I) � Tcomm + Tcomp (respectively �(I 0) � �(I) � Tcomm +Tcomp)no successor: proc(I) 6= proc(I 0) and proc(I) 6= proc(I 00)This case is similar to the previous one.
14



Back to the proof of the theorem, let T== the total execution time usingP processors. Let Idle be the cumulated idle time of all processors dur-ing execution. Finally, let Tseq = N1N2t be the sequential execution time.Clearly, PT== = Idle+ Tseq:Hence, to show that T== � T1 = (P � 1)(Tcomp + Tcomm) + TseqP , we need toshow that Idle � P (P � 1)(Tcomp + Tcomm):The structure of the dependence graph does impose that some proces-sors are idle at the beginning of the computation, which will lead to a lowerbound for Idle. For instance, during the execution of tile (0; 0), there arenecessarily P�1 idle processors. To go on, we recursively de�ne pivot tile(k)as follows (see Figure 5):Please insert Figure 5 here� pivot tile(0) = (0; 0), and� for k � 1, pivot tile(k) is the one of the two successors of pivot tile(k�1) which is executed last: if pivot tile(k � 1) = I = (i; j), let I 0 =(i+ 1; j) and I 00 = (i; j + 1) be the successors of tile I:{ If �(I 0) � �(I 00), then pivot tile(k) = I 0, and we de�ne S(k) asthe remaining tiles in column j: S(k) = f(i; j + l); l � 1g),{ If �(I 00) � �(I 0), then pivot tile(k) = I 00, and we de�ne S(k) asthe remaining tiles in row i: S(k) = f(i+ l; j); l � 1g,We know from Lemma 1 that for all k � 1,�(pivot tile(k)) � �(pivot tile(k � 1)) � Tcomm + Tcomp:We prove by induction that for 1 � k � P � 1, at least P � k processorsare kept idle between the beginning of the execution of pivot tile(k�1) andthat of pivot tile(k). This will lead to:Idle � ((P�1)+(P�2)+: : :+1)(Tcomm+Tcomp) = P (P � 1)2 (Tcomm+Tcomp):This will prove the desired result, because the same amount of idleness, soto speak, will be spent at the end of the computation (by symmetry of thedependence graph). Now, for the induction:15



� Let k = 1: pivot tile(1) is either (0; 1) or (1; 0). See Figure 5 wherepivot tile(1) = (1; 0) and S(1) = f(0; 0 + l); l � 1g. Between the thebeginning of the execution of pivot tile(0) and that of pivot tile(1),the only successors of pivot tile(0) that can be executed are in S(1).But all tasks in S(1) must be executed sequentially, hence between thebeginning of the execution of pivot tile(0) and that of pivot tile(1), atleast (P � 1) processors are kept idle.� Assume that the hypothesis is true until step k. Between the beginningof the execution of pivot tile(k) and that of pivot tile(k + 1), at mostone processor can be active in S(1), at most another one in S(2), : : : ,and at most one processor in S(k+1), so that at most k+1 processorscan be active, or equivalently, at least P � (k + 1) processors remainidle.It is worth to point out that Theorem 1 holds true in a large framework.Whatever the model used for estimating the communication time Tcomm andthe computation time Tcomp, the parallel execution time for a columnwiseallocation of tiles to processors is given by Equation (4). Theorem 1 basicallysays that such a columnwise or rowwise allocation will be optimal as soonas 1. Tcomm � Tcomp2. Steady-state condition: the weight of a tile column (or tile row) isgreater that the tile latencyLt = P (Tcomm + Tcomp)The �rst hypothesis will be ful�lled if the tile is large enough (becausethe communication cost grows linearly while the computation cost growsquadratically). The second hypothesis will be ful�lled as soon as the domainis large enough in front of the number of processors, a situation very likelyto happen in practice.Finally, note that when the steady-state condition is not satis�ed, we canstill derive similar results. For instance assume a square N�N tiled iterationspace (N tiles per row and per column). Let Tcomp be the computation timefor a tile, and let Tcomm be the communication time (either horizontal orvertical). With P processors, if NTcomp � P (Tcomm + Tcomp), a columnwise16



allocation of tiles to processors leads to the parallel execution time T =(N � 1)(Tcomp + Tcomm) + NTcomp. If Tcomm � Tcomp, this is optimal: useLemma 1 to show that the execution of diagonal tile (i; i), 0 � i < N , cannotstart before time-step (i� 1)(2Tcomp + Tcomm).6 ConclusionIn this paper, we have studied tiling techniques aimed at adapting the gran-ularity of permutable loop algorithms towards execution on distributed-memory machines. We view tiling as a two-step process: the �rst stepamounts to determining the best shape and size of the tiles (assuming anin�nite grid of virtual processors), while the second step consists in mappingand scheduling the tiles to physical processors. We have concentrated onthe second step, assuming a realistic model where (independent) communi-cation and computation may overlap. We have obtained several new results,including a strong result on the optimal mapping and scheduling. However,much remains to be done to extend these results to arbitrary dimensionsand domain shapes.More generally, the relationship between tiling, scheduling and mappingis not yet well understood, and the two-step approach may prove too com-plicated for practical problems. Yet, such a two-step approach is typical inthe �eld of parallelizing compilers (other examples are general task graphscheduling, software pipelining and loop parallelization algorithms).Finally, the recent development of heterogeneous computing platformsmay well lead to using tiles whose size and shape will depend upon thecharacteristics of the processors they are assigned to ... a truly challengingproblem!Acknowledgment We are deeply indebted to Sanjay Rajopadhye for hisuseful comments on a �rst version of this paper. We also thank the refereesfor suggesting several improvements.References[1] A. Agarwal, D.A. Kranz, and V. Natarajan. Automatic partitioningof parallel loops and data arrays for distributed shared-memory mul-tiprocessors. IEEE Trans. Parallel Distributed Systems, 6(9):943{962,1995. 17
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Figure 1: Optimal tiling for a computation volume Vcomp = 96.
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Figure 2: Mapping rectangular tiles onto a ring of processors.
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