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bers of geographically dispersed information sources, supplying informationto a large number of geographically dispersed consumers. Such applicationswill require an environment which supports long-term or continuous, reliableand fault-tolerant, highly distributed, heterogeneous, and scalable informationprocessing.Examples of such applications include:� Indexing and cataloging the worldwide digital library, which will have hun-dreds of millions of documents, produced at millions of di�erent locations.The collection can be expected to have a high rate of change, both in thenumber of new documents issued and in the locations by which the docu-ments are accessed.� Monitoring of weather and prediction of catastrophic conditions to provideplanning and decision support for emergency relief.� Semi-automated air-tra�c control on a signi�cantly larger scale, and withgreater reliability, than exists today.� Large-scale same-day shipping of goods over long distances, with automaticrerouting to adapt to equipment failures or weather problems, and loadbalancing to accommodate uctuations in tra�c.The characteristics of such applications include: distributed data collection,distributed computation (often in signi�cant amounts), distributed control,and distributed output. Many of these applications will require high reliabil-ity and continuous operation, even though individual nodes or links will failor otherwise be unavailable. Such applications will be constructed out of awide variety of computational components (including smart sensors, personaldigital assistants, workstations, and supercomputers), and a wide variety ofcommunications media (wire, optical �ber, terrestrial radio, satellite) withvarying degrees of link reliability, bandwidth, and message loss. The reliabil-ity requirement means that such applications must degrade gracefully ratherthan fail in the presence of node or link failures, or with insu�cient commu-nications bandwidth and high message loss rates. Since some computationalresources may not be available on a continuous basis, applications may haveto adapt to varying computational power. The potential for hostile attackto such systems requires that they have a high degree of security, both forauthentication of data and privacy of sensitive information.To facilitate construction of such systems, we are developing a new program-ming environment which integrates computational, data gathering, data stor-age, resource management, and human-computer interaction into a commonframework. The framework provides high availability and reliability throughreplication of both data and computational resources and by careful resourcemanagement. This programming environment, called SNIPE, is based on tech-nology developed for the Resource Cataloging and Distribution System (RCDS)2



[21] and initially the network messaging layers and process control from theParallel Virtual Machine (PVM) project[14].2 SNIPEs origins in RCDS and PVMThe design of SNIPE was greatly infulenced by both the RCDS and PVMprojects. Both projects provided a starting point for both a code base and forconcepts, functions, facilities and short comings that could be learned from.2.1 Resource Cataloging and Distribution SystemThe Resource Cataloging and Distribution System (RCDS) is designed tofacilitate very scalable and fault-tolerant access to network-accessible resourcesand Metadata, and to provide end-to-end authenticity and integrity guaranteesfor those resources and Metadata.RCDS accomplishes this by replicating the resources and Metadata at a po-tentially large number of (perhaps geographically dispersed) locations. Theset of locations for a resource are maintained in a highly distributed andreplicated location registry. Similarly, the Metadata for a resource (a list ofattribute "name=value" pairs called assertions) are maintained in a separatedistributed and replicated registry, which is indexed by the resource's UniformResource Identi�er (URI) such as a Uniform Resource Locator (URL) or Uni-form Resource Name (URN). The Metadata for a resource is self-de�ning andcan contain elements from arbitrary schema or data models. Subsets of Meta-data can also be cryptographically signed, using a variety of algorithms, andthe signatures provided to RCDS clients. Authentication of resources is ac-complished by the use of cryptographic hash functions (such as MD5 or SHA)which are signed by the providers of the information, and made available toclients along with the resource's other Metadata.A primary design goal of RCDS was to facilitate world wide web access to verylarge and geographically distributed populations on the scale of the Internet- potentially millions of users accessing the same resource at the same time.Scalability and fault-tolerance were therefore paramount in RCDS's design. Inreplicated databases there are inherent tradeo�s between consistency amongreplicas and resource availability in the presence of node and link failures[23,4,22]. When the semantics of the application permit, higher availabilitycan be obtained by using a consistency model which sacri�ces strict atomicityand serializability [16]. 3



With its clean separation between replication of data and Metadata, RCDSprovides a substrate upon which to implement consistency models of variousstrengths, according to the needs of the application.2.2 PVMPVM is a library and runtime system that transforms heterogeneous networksof workstations (NOWs) and massively parallel supercomputers (MPPs) into ascalable virtual parallel computer. PVM provides an easy-to-use programminginterface for several high level languages. It has facilities for process creationand monitoring, inter-process message passing, multicast message passing, andasynchronous signal delivery. It has a simple facility for global registration ofwell-known services. It allows tasks to detect and recover from failures ofother tasks. It is very portable, having been adapted to a wide variety ofarchitectures and operating systems. PVM has been widely embellished, forexample, to add security [6] and management of computational resources [7,9],and SNIPE also borrows technology from these e�orts.The PVM system has proven to be highly useful for supporting large-scaledistributed scienti�c applications. However, PVM has limited exibility, scal-ability, fault tolerance, and security compared to what is needed for criticalinformation analysis applications:� PVM allows practical scalability to tens of hosts. While larger con�gurationsare possible, limitations in PVM's resource management and internal statemanagement tend to make such con�gurations unreliable and ine�cient.� PVM can tolerate slave failures but not failure of its master host. It alsocannot tolerate link failures during host table updates. It can tolerate net-work partitionings only in the sense that hosts that have been disconnectedcan rejoin the virtual machine for new computations.� The PVM resource manager uses centralized decision making. This wouldbe a bottleneck for a very large virtual machine. If the single resource man-ager fails, the default built-in allocation scheme will make ine�cient use ofcomputational resources.PVM lacks a global name space. Process names are valid only within a sin-gle \virtual machine." While it is possible for new PVM processes to joinan existing virtual machine, a process can only be a member of one virtualmachine at a time. This limits PVM's applicability for data gathering andvisualization applications, where the data gathered might need to be sup-plied to multiple computational processes, or the data presented derived frommultiple computational processes, which are not speci�cally determined andcon�gured in advance. PVM provides insu�cient security for large or widely4



distributed applications. PVM lacks built-in facilities for process migration orcheckpointing, though it does have low-level system hooks to support condor-based projects [19] such as Co-Check [14][25]. PVM also lacks facilities forredundant data storage. While it is possible for PVM process to run code thatis loaded from other network nodes, PVM provides no protection for its hostsagainst malicious or errant behavior from downloaded code.3 SNIPE and its componentsSNIPE originally used the message passing, task management, and resourcemanagement aspects of PVM, together with a modi�ed form of RCDS as aframework for replication of resource registries and globally-accessible state.During development some of PVMs shortcoming already indicated in previ-ously led to the development of a separate non-PVM based communicationssub-library within SNIPE. This library was based initially upon the UDP andTCP Internet protocols. Some of the PVM code base has been maintained,in particular the General Resource Manager (GRM)[9] has be modi�ed toallow for redundant resource management processes. Also some of the PVMdaemons task startup and signal handling code has been retained.These facilities have been used as a substrate onto which support for secureexecution, checkpoint/restart, and migration of mobile code have been added.The resulting tools (servers and run time libraries) are intended to facili-tate construction of very large decision support networks, combining datagathering, computational, data storage, resource management, and human-interaction nodes into a coherent framework. This system contains seven majorcomponents: Metadata servers, �le servers, per-host SNIPE daemons, clientlibraries, resource managers, \playgrounds", and consoles.3.1 Metadata serversThe RCDS based resource catalog servers (RC/Metadata servers) are usedto store and provide access to metadata needed for communication betweenSNIPE processes. This ability to store data which is commonly held internallyby distributed systems, in the SNIPE RC servers has allowed for rapid proto-typing and implementation of the SNIPE system. This facility has also provenuseful to SNIPE user applications as it allows them to share data without thecreation of many temporary small �les which are usually required. Automatictime stamping of Metadata by the RC servers also helps temporally dis-jointtasks communication by allowing them to decide for themselves the age and5



therefore relevance of any Metadata previously stored.Such Metadata includes:� information about SNIPE hosts (URI-to-address mappings, host architec-ture and operating system, network con�guration, permissions and publickeys),� location and authentication information (public keys and certi�cates) forSNIPE processes that require global visibility,� location information for distributed services which provide service at mul-tiple locations, and� routing information for multicast groups.In addition, SNIPE Metadata may contain name-to-address bindings for repli-cated �les, including data �les consumed or produced by computational nodes,checkpoint �les, and mobile code. Finally, the Metadata can contain signeddescriptions of mobile code, allowing playgrounds to verify the codes authen-ticity and integrity and to identify the resources and access rights needed forthat code to operate.Because RCDS resources are named by URLs or URNs, SNIPE processes andtheir Metadata are addressable using a widely-deployed global name space. In-stead of having isolated virtual machines as in the current PVM environment,any SNIPE process can potentially communicate (subject to access controlrestrictions) with any other process. Thus data gathering nodes and visual-ization/control nodes can communicate with a variety of computational tasks,not just those in a particular virtual machine.3.2 File serversRCDS �le servers will be used to replicate �les that are used by SNIPE pro-cesses, including data �les, mobile code, and checkpoint �les, and provideaccess to these �les. Replication daemons on these servers communicate withone another, creating and deleting replicas of �les according to local policy,redundancy requirements, and demand. Name-to-location binding for these�les is maintained by Metadata servers, which are informed as replicas arecreated and deleted. Access to the �les themselves is provided by ordinary �leaccess protocols such as HTTP, FTP, NFS, or CIFS.6



3.3 SNIPE daemonsEach SNIPE daemon mediates the use of resources on its particular host.SNIPE daemons are responsible for authenticating requests, enforcing accessrestrictions, management of local tasks, delivery of signals to local tasks, mon-itoring machine load and other local resources, and name-to-address lookupof local tasks. Task management includes starting local tasks when requested,monitoring those tasks for state changes and quota violations, and inform-ing interested parties of changes to the status of those tasks (exit, suspend,checkpoint).3.4 Client LibrariesThe SNIPE client libraries provide interfaces for resource location, communi-cations, authentication, task management, and access to external data stores.Resource location allows the client to obtain information about named re-sources (hosts, processes and data �les) including location, characteristics,public keys, certi�cates, etc. Communication includes message passing, rout-ing (especially between di�erent types of network media), fragmentation, dataconversion (e.g. between di�erent host architectures), and optionally encryp-tion, as well as the ability to use di�erent kinds of media (IP, ATM, Myrinet,etc.) Task management includes the ability to initiate tasks (either directly orvia a resource manager) and monitor changes in those tasks.3.5 Resource ManagersResource managers are tasked with managing resources and monitoring thestate of the resources they manage. Such resources can include hosts, pro-cesses, and �le servers. A resource manager may manage resources for severalhosts at once. For the sake of redundancy, any host may be managed bymultiple resource mangers. Resource management functions include allocat-ing resources as needed from those available, attempting to adhere to resourceallocation goals, and enforcing restrictions on the use of resources. Dependingon con�guration, resource management may either be \passive" (allowing aprocess to reserve resources on a particular host, without actually providingthe access to those resources), or \active" (where the resource manager actsas a proxy for the requester, allocating resources on its behalf.) In the lattermode, a resource manager may actually suspend, kill, or (if the code is mo-bile) migrate processes between hosts. Resource managers are also responsiblefor clarifying requests for resources, selecting the actual resources in response7



to a request. Finally, resource managers may also be used to manage RCDSMetadata servers according to demand.3.6 PlaygroundsA \playground" runs under the supervision of a SNIPE daemon and facilitatesthe secure execution of mobile code. It is a trusted environment which safelyallows the execution of such code within an untrusted environment.The playground is responsible for downloading the code from a �le server,verifying its authenticity and integrity, verifying that the code has the rightsneeded to access restricted resources, enforcing access restrictions and resourceusage quotas, and logging access violations and excess resource use. It alsoprovides a run time environment for the untrusted process which generallyallows it access to the functions of the SNIPE client library, but which enforcesaccess restrictions.While SNIPE playgrounds are capable of supporting native code, we antici-pate that most mobile code will be written in a machine-independent languagesuch as Java, Python, or Limbo, or some other language speci�cally designedto allow controlled execution of untrusted code. Implementations of such lan-guages may also be able to arrange the allocation of program storage, in away that facilitates checkpointing, restart, and migration. When possible, theplayground provides hooks for checkpointing, restart, and process migrationfor use by resource managers.3.7 ConsolesA SNIPE console is any SNIPE process which communicates with humans.Communication can be via a character-based or graphical user interface. ASNIPE process can also function as an HTTP server, allowing text and graph-ical output and forms and mouse-click input from any web browser. A SNIPE-based HTTP server can register a binding between a URN or URL and itscurrent location, allowing a web browser to �nd it even though it may migratefrom one host to another, or if the HTTP server is replicated across multiplehosts. SNIPE will make use of standards for Internet resource registration,as those standards are developed. In the meantime, a proxy server is avail-able which allows any web browser to resolve the URI of any RCDS-registeredresource (including SNIPE �les and processes).Just as in PVM, there can be multiple SNIPE consoles for any particular ap-plication. However due to the highly distributed nature of SNIPE, and the8



fact that there is no SNIPE virtual machine apart from the entire Internet,there is no way to list all SNIPE processes. The state of each process in aprocess group is maintained as Metadata associated with that process group,which can be queried by any process with appropriate credentials. Similarly,the SNIPE processes which were initiated by the SNIPE daemon on any par-ticular host are registered in Metadata associated with that host.4 SNIPE security modelAuthentication is accomplished using public key cryptography. Each princi-pal's public key is stored as an attribute of that principal's RC Metadata.A signed subset of RC Metadata serves as a key certi�cate. Before a clientwill consider a signed statement to be valid, the key certi�cate must itself besigned by a party whom that client trusts for that particular purpose.In general, each client or service may determine its own requirements for whichparties to trust for which purposes. However, certain trust relationships withinSNIPE are very common. Since a resource manager must be trusted by theresources that it manages, it is convenient if the resource manager also servesas a certi�cate authority for users that have permission to use the managedresources, and realms of hosts from which those users may access the resources.Before the resource manager will grant access to a resource, it must have twoveri�able certi�cates. One is a signed statement from the user, granting a par-ticular process on a particular host, access to the desired resources. The secondis a signed statement from the requesting host indicating that the resourcesare requested by that process. The �rst certi�cate is veri�ed by checking theuser's key certi�cate to see whether it is signed by a party that the resourcemanager trusts to grant access to the indicated resources; the second certi�cateis veri�ed by checking the requesting host's key certi�cate. If both certi�catesare veri�able, and if the requester has permission to access the requested re-sources, the resource manager then issues its own signed statement authorizinguse of the requested resources by that process, and transmits that statementto the hosts where the resources reside. This processes is designed to obviatethe need for exposure of any user's public keys. Ideally, the user exposes hispublic key only to a single trusted host, which issues limited authorizations foraccess to speci�c resources. Similarly, a host's public key is never transmittedto any other host.For the sake of e�ciency some of the veri�cation transactions are optimized.For example, rather than having the resource manager separately sign eachresource authorization that is transmitted to a managed resource, the resourcemanager may instead maintain an authenticated connection with each of its9



managed resources, which is able to detect connection hijacking, and transmitthe resource authorization without signatures. Similarly if a particular clienthost frequently makes requests of a particular resource manager, the clienthost can establish a secure connection with the resource manager (on behalfof its user) and avoid the need to separately sign each request.Plans are to provide privacy using the Transport Layer Security protocol [5]with the slight modi�cation that the TLS certi�cates may be signed RC Meta-data in addition to X.509v3 format.5 Implementation Details5.1 Host EnvironmentSNIPE nodes can vary in power from personal digital assistants to supercom-puters. The only minimum requirement is an Internet Protocol (IP) imple-mentation, though other protocols can be used { either via a gateway (fornon-IP capable hosts), or between IP-capable hosts that also share a fastercommunications medium.While all SNIPE host environments provide commu-nications and therefore the ability to access and manipulate SNIPE-registeredresources, a preemptive multitasking operating system with reasonable secu-rity is generally required for implementation of SNIPE �le servers, daemons,resource managers, and playgrounds. Due to a lack of computational resources,less powerful host environments may lack some security features and thus berestricted on how they access other SNIPE entities.5.2 RC Data StructuresThe Metadata servers hold shared and private data for each SNIPE componentand allows for a very open and exible system, where little is hidden in internaldata structures. This enables rapid prototyping of new components and fastmodi�cation of existing ones.The following section lists the types of Metadata used by the main SNIPEcomponents as an illustration of the types of Metadata that can be storedwithin SNIPE. 10



5.2.1 Host MetadataA host is a resource on which processes can be spawned. It may have one ormore CPUs, and one or more network interfaces. There may be restrictionson the use of certain CPUs and/or interfaces, which are enforced by the hostdaemon. The actual management of host resources may be performed by thehost daemon or one or more broker processes.So the RCDS Metadata for a host includes:� The distinguished URL for the host� The number and types of CPUs available on that host� The number and types of network interfaces available on the host� The data formats supported by the host� The protocols supported by the host daemon� The URL of the host daemon� The URLs of any brokers which manage this host's resources� Authentication credentials { public keys and key certi�cates to be used toauthenticate the host to potential clients.The network interface Metadata includes such things as protocol (IPv4, IPv6,Myranet, raw ATM), addresses, per-message latency, and bandwidth. For IPnetworks, the netmask is also included; for non-IP networks, a "net name"(which is shared by all hosts on that network, but otherwise globally unique)is included. This information is used by the message routing library to choosean e�cient path to the destination, taking advantage of fast, private, and/ornon-IP networks where available. It is also used to determine where to establishmulticast routers.5.2.2 File Server MetadataA �le server is a host which is capable of spawning \�le sinks", which acceptdata from SNIPE processes to be stored in �les, and make that data availableto other processes. The �les thus stored may be replicated to other locations,and made available by multiple protocols such as http and ftp. The RCDSMetadata for a �le server includes:� A URL for that �le server� The protocols via which data are accepted� The protocols via which data are providedA single host may provide both computational and �le storage services, inwhich case both kinds of Metadata are used.11



5.2.3 Process MetadataA process runs on one or more hosts and provides computational or otherservices. The process Metadata allows other processes to monitor it or com-municate with it. The process also has a \notify list" of other processes whichwish to be noti�ed if a process changes state. This Metadata includes:� The distinguished URN for that process� The supervisor LIFN[3] for the process� The communications addresses for the process (including interface charac-teristics such as netmask or net name)� The \notify list" for that process. Each member of the notify list is a URNof another process.5.2.4 Multicast Group MetadataA multicast group is a named group of processes, to which one can send amessage as if it were a single process. The actual routing of multicast messagesis performed by host daemons which elect themselves as multicast routers ona per-group basis. The RCDS Metadata for a multicast group exists to allowother hosts to �nd the multicast routers for a particular group, and thus joinor leave the group. (It should be noted here, that this type of Multicast groupis not designed for high performance of closely coupled processes as in MPIfor example, but rather for reliable group communication across the Internet.Although a high performance multicast protocol has been tested, see section6).Multicast group Metadata includes:� The name of the multicast group (a URN or URL)� The URLs of multicast routers for the group� A \notify list" of processes that wish to be noti�ed if the set of multicastrouters changes.5.3 Unicast Message RoutingUnicast message routing is performed using the RCDS Metadata for the des-tination process, and the RCDS Metadata for the host on which that processcurrently resides. If the source and destination are on a common private net-work or common IP subnet, the message is sent using the fastest of those.Otherwise, the message is sent using the host's normal IP routing.12



5.4 Multicast Message RoutingMulticast messages are sent to one or more host daemons which are actingas routers for that particular multicast group. Each router is responsible forrelaying messages to a subset of the processes in the group, and to other routerswhich have not received the message. Whenever a process joins a multicastgroup, its host daemon heuristically determines (based on the presence orabsence of other routers in the group, and the networks to which those routersare attached) whether it should become a router for that group.For the sake of fault-tolerance, each process wishing to participate in a multi-cast group may register its membership in the group with multiple multicastrouters. Each router which adds itself to the group also registers itself withmore than half of the other routers for that group, and any message sent tothat group is initially sent to more than half of the routers for that group.This is intended to ensure that there is at least one path from the sendingprocess to each recipient process.5.5 Spawning ProcessesA request to spawn a process is made relative to a particular host, or moregenerally, to a set of resources named by a URL (of which a URL for a host isa special case). The request is accompanied by a speci�cation of the programto be run and the environment which the program requires. For instance, theprogram may require direct access to a particular network or resources, it mayrun only on certain CPU types, it may require a certain amount of memoryor CPU time or local disk space. If the program must be run on a particularhost, that is also part of the environment speci�cation.If the RC Metadata for a host contains a list of brokers, the request to spawnis sent to one of the brokers for that host. Otherwise, the request is sent tothe host daemon. The host daemon may handle the request itself, or refer therequest to a broker.Whichever host daemon or broker actually the process will also create a distin-guished URL for the process and associate the per-process RC Metadata withthat URL. This makes the new process globally visible so that other processescan �nd it and communicate with it.13



5.6 Process MigrationGeneral process migration is facilitated by the migrating process initiatingits own migration. After migration the process updates RC servers with itsnew location and also informs other SNIPE tasks on its notify list that it hasmoved. The original process maybe required to act as a relay or redirect fora short period depending on the communication subsystem characteristics ofother communicating peers. Any processes that do not notice its migrationwill be unable to establish communication with the original task and will �ndits new location (or pending location) via the RC servers. Processes with opencommunications are guaranteed no loss of data while migration is in progress.Temporary storage of state is provided by the SNIPE �le servers.Some programming environments are designed to make it easy for a processto be migrated from one host to another without explicit code in the programto perform that operation. For such programming environments, the detailsof process migration may be arranged by the host daemon rather than theprocess itself.5.7 Replicated ProcessesSeveral kinds of replicated processes are supported by SNIPE:� If several computational processes are run concurrently, provided with thesame input, and expected to produce the same result, a multicast group canbe created to provide input to all of those processes. SNIPE Metadata canthen be created for the new pseudo-process, consisting of all of the processesin the group, and with the multicast group listed as the communicationsURL. All data sent to the pseudo-process will then be transmitted to eachmember of the group. However, if multiple processes send data to thatmulticast group, there is no assurance that each of those replicated processeswill receive the data in the same order.� If it is desirable to provide a service at multiple locations, using multipleprotocols, or at multiple hosts, a LIFN can be created for that service, andeach of the service locations (URLs) associated with that LIFN. Any processattempting to communicate with that service will then see multiple servicelocations (URLs) from which to choose.14



5.8 PlaygroundsA process may be executed on a host subject to certain restrictions. Thehost daemon is responsible for enforcing those restrictions. If the restrictionsare severe, the host daemon may execute the process within a playground. Aplayground is an environment which enforces restrictions that cannot easily beprovided via the normal operating system. It may, for instance, limit access tolocal �les, or to the machine's network interfaces, or the amount of cpu timeor memory used.A playground may provide a restricted environment for the execution of \na-tive" programs, or it may provide an environment for the execution of pro-grams believed to be \safe", such as Java bytecode, safe-tcl,etc. In either casethe playground is responsible for verifying the authenticity and integrity ofthe program, and checking the credentials of the process making the requestto ensure that the process has the appropriate permissions.Implementation of playgrounds varies widely from one platform to another,and not all platforms are capable of imposing the restrictions which may be re-quired without modi�cation to the operating system. Native code playgroundsare complex to implement and di�cult to verify. A playground's capabilitiesare therefore advertised as RCDS Metadata, which can be used by a processor resource manager in scheduling mobile code.5.9 File Servers, Sinks, Sources and I/OSNIPE �le servers provide the ability for SNIPE processes to store data in�les and retrieve the data from those �les, using the normal message passingroutines used to send messages between processes.� A \�le sink" process reads SNIPE messages sent to it and stores them intoa �le.� A \�le source" process reads a �le consisting of SNIPE messages and sendsthem to a SNIPE address.Opening a �le for writing thus consists of spawning a �le sink process whichwill store its output in such a way that it can be accessed by another processvia its URN or URL. Opening a �le for reading is implementing by spawninga �le source process which reads a particular �le (named by a URN or URL)and transmits that to a particular SNIPE address.SNIPE �le servers can also be used to access ordinary data �les via URLs andLIFNs, and to export data to �les which can then be accessed by external15



programs using common protocols such as HTTP.6 Current Implementation Status and TestbedAs of spring 1998, the SNIPE system consisted of the following components:� RC/Metadata servers: based on RCDS using SUN RPC with authenticationbased on MD5 hashed shared secrets.� SNIPE communications module: which supported a selective re-send UDPprotocol as well as TCP/IP and an experimental multicast protocol forethernet. Performance �gures for 100M-bit ethernet and 155 M-bit ATM aregiven in Figure 1. The module provided system bu�ering of messages so thatmigrating or temporarily unavailable tasks did not result in lost messagesand/or data. The system also provided the ability to switch routes/interfacesas links failed without user applications intervention (unless it e�ected arequired QoS for example).� Simple SNIPE daemons that start and monitor tasks and resources. Thesedaemons provide asynchronous messaging and signal delivery.� SNIPE resource managers that can select resources based on user applica-tion requests and system loading.� SNIPE �le servers. Currently no support is o�ered for automatic duplicationof updates when writing to or modifying a duplicated �le. Duplicated �lereading/access is supported via location of closest resource daemons.
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SNIPE testbeds have been running at the University of Tennessee since au-tumn 1997 and due to replication have maintained an almost perfect levelof availability. SNIPE testbeds have also extended to the University of Read-ing, UK and the Aeronautical Systems Center, Major Shared Resource Center(ASC MSRC), Wright-Patterson AFB, in support of an across MPP inter-MPIapplication system.6.1 PVMPI/MPI Connect: A SNIPE ApplicationPVMPI[8,10] is a software system from the University of Tennessee that al-lowed di�erent vendor implementations of MPI-1.1[20] to inter-operate almosttransparently. Its original aim was to allow di�erent sub-sections of an appli-cation to execute on di�erent MPPs that suited each sub-task and utilized thevendors optimized MPI implementations on each, while still inter-operatingacross MPPs without having to use a non-optimal implementation such assocket based MPICH-p4.The PVMPI system su�ered from the need to provide access to a PVM daemonpvmd at all times. On many MPP systems that enforce the use of a batchqueuing job control system on top of their native run-time systems as in PBS-POE [2] it was not possible to provide con-current access to both a PVMdaemon and the MPI application.Thus PVMPI was modi�ed into MPI Connect, a new system based uponPVMPI that used SNIPE for name resolution and across host communica-tion instead of utilizing PVM. This system proved easier to maintain (novirtual machine to disappear) and also oftered a slightly higher point-to-pointcommunication performance.7 Related WorkMetacomputing frameworks have been popular for nearly a decade, whenthe advent of high end workstations and ubiquitous networking in the late80's enabled high performance concurrent computing in networked environ-ments[24,1].Both Legion[15] and Globe[18] are metacomputing systems based on an Ob-ject Oriented view of the world, where processes, �les and resources are allconsidered instances of known object classes. In both systems the methodsavailable to access and manipulate objects are rather �xed, although bothsystems have well designed security and object location services. Their main17
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