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X. Parallel and Distributed Scienti�c Computing 455which is a distributed-memory version of LAPACK, highlights the equal impor-tance of the above design principles to the development of scalable algorithms forMIMD distributed-memory concurrent computers. The impact of the architectureof high performance computers on the design of such libraries is stressed.Producing hand-optimized implementations of even a reduced set of well de-signed software components such as the BLAS for a wide range of architecturesis an expensive and tedious proposition. For any given architecture, customizinga numerical kernel's source code to optimize performance requires a comprehen-sive understanding of the exploitable hardware resources of that architecture. Sincethis time-consuming customization process must be repeated whenever a slightlydi�erent target architecture is available, the relentless pace of hardware innovationmakes the tuning of numerical libraries a constant burden. This chapter presents aninnovative approach to automating the process of producing such optimized kernelsfor various processor architectures.Finally, many scientists and researchers increasingly tend nowadays to use si-multaneously a variety of distributed computing resources such as massively parallelprocessors, networks and clusters of workstations and \piles" of PCs. This chapterdescribes the NetSolve software system that has been speci�cally designed and con-ceived to e�ciently use such a diverse and lively computational environment and totackle the problems posed by such a complex and innovative approach to scienti�cproblem solving. NetSolve provides the user with a pool of computational resources.These resources are computational servers that provide run-time access to arbitraryoptimized numerical software libraries. This uni�ed, easy-to-access computationalservice can make enormous amounts of computing power transparently available tousers on ordinary platforms.



456 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaley1. IntroductionThe increasing availability of advanced-architecture computers is having avery signi�cant e�ect on all spheres of scienti�c computation, including algo-rithm research and software development in numerical linear algebra. Linearalgebra|in particular, the solution of linear systems of equations|lies at theheart of most calculations in scienti�c computing. In this chapter, particu-lar attention will be paid to dense general linear system solvers, and thesewill be used as examples to highlight the most important factors that mustbe considered in designing linear algebra software for advanced-architecturecomputers. We use these general linear system solving algorithms for illus-trative purpose not only because they are relatively simple, but also becauseof their importance in several scienti�c and engineering applications [Ede93]that make use of boundary element methods. These applications include forinstance electromagnetic scattering [Har90, Wan91] and computational uiddynamics problems [Hes90, HS67].This chapter discusses some of the recent developments in linear algebrasoftware designed to exploit these advanced-architecture computers. Sincemost of the work is motivated by the need to solve large problems on thefastest computers available, we focus on three essential components out ofwhich current and modern problem solving environments are constructed:1. well-designed numerical software libraries providing a comprehensivefunctionality and con�ning most machine dependencies into a small num-ber of kernels, that o�er a wide scope for e�ciently exploiting computerhardware resources,2. automatic generation and optimization of such a collection of numer-ical kernels on various processor architectures, that is, software toolsenabling well-designed software libraries to achieve high performance onmost modern computers in a transportable manner,3. software systems that transform disparate, loosely-connected computersand software libraries into a uni�ed, easy-to-access computational service,that is, a service able to make enormous amounts of computing powertransparently available to users on ordinary platforms.For the past twenty years or so, there has been a great deal of activity inthe area of algorithms and software for solving linear algebra problems. Thelinear algebra community has long recognized the need for help in developingalgorithms into software libraries, and several years ago, as a communitye�ort, put together a de facto standard identifying basic operations requiredin linear algebra algorithms and software. The hope was that the routinesmaking up this standard, known collectively as the Basic Linear AlgebraSubprograms (BLAS) [LHK+79, DDH+88, DDH+90], would be e�cientlyimplemented on advanced-architecture computers by many manufacturers,making it possible to reap the portability bene�ts of having them e�cientlyimplemented on a wide range of machines. This goal has been largely realized.



X. Parallel and Distributed Scienti�c Computing 457The key insight of our approach to designing linear algebra algorithmsfor advanced-architecture computers is that the frequency with which data ismoved between di�erent levels of the memory hierarchy must be minimizedin order to attain high performance. Thus, our main algorithmic approach forexploiting both vectorization and parallelism in our implementations is theuse of block-partitioned algorithms, particularly in conjunction with highly-tuned kernels for performing matrix-vector and matrix-matrix operations. Ingeneral, the use of block-partitioned algorithms requires data to be moved asblocks, rather than as vectors or scalars, so that although the total amountof data moved is unchanged, the latency (or startup cost) associated with themovement is greatly reduced because fewer messages are needed to move thedata. A second key idea is that the performance of an algorithm can be tunedby a user by varying the parameters that specify the data layout. On shared-memory machines, this is controlled by the block size, while on distributed-memory machines it is controlled by the block size and the con�guration ofthe logical process mesh.Section 2. presents an overview of some of the major numerical linearalgebra software library projects aimed at solving dense and banded prob-lems. We discuss the role of the BLAS in portability and performance onhigh-performance computers as well as the design of these building blocks,and their use in block-partitioned algorithms.The Linear Algebra PACKage (LAPACK) [ABB+95], for instance, is atypical example of such a software design, where most of the algorithmsare expressed in terms of a reduced set of computational building blocks, inthis case called the Basic Linear Algebra Subprograms (BLAS). These com-putational building blocks support the creation of software that e�cientlyexpresses higher-level block-partitioned algorithms, while hiding many de-tails of the parallelism from the application developer. These subprogramscan be optimized for each architecture to account for the deep memory hier-archies [AD89, DMR91] and pipelined functional units that are common tomost modern computer architectures, and thus provide a transportable wayto achieve high e�ciency across diverse computing platforms. For fastestpossible performance, LAPACK requires that highly optimized block matrixoperations be already implemented on each machine, that is, the correctnessof the code is portable, but high performance is not|if we limit ourselves toa single source code.Speed and portable optimization are thus conicting objectives that haveproved di�cult to satisfy simultaneously, and the typical strategy for ad-dressing this problem by con�ning most of the hardware dependencies in asmall number of heavily-used computational kernels has limitations. For in-stance, producing hand-optimized implementations of even a reduced set ofwell-designed software components for a wide range of architectures is an ex-pensive and tedious task. For any given architecture, customizing a numericalkernel's source code to optimize performance requires a comprehensive un-



458 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleyderstanding of the exploitable hardware resources of that architecture. Thisprimarily includes the memory hierarchy and how it can be utilized to max-imize data-reuse, as well as the functional units and registers and how thesehardware components can be programmed to generate the correct operandsat the correct time. Clearly, the size of the various cache levels, the latencyof oating point instructions, the number of oating point units and otherhardware constants are essential parameters that must be taken into con-sideration as well. Since this time-consuming customization process must berepeated whenever a slightly di�erent target architecture is available, or evenwhen a new version of the compiler is released, the relentless pace of hardwareinnovation makes the tuning of numerical libraries a constant burden.The di�cult search for fast and accurate numerical methods for solv-ing numerical linear algebra problems is compounded by the complexities ofporting and tuning numerical libraries to run on the best hardware avail-able to di�erent parts of the scienti�c and engineering community. Giventhe fact that the performance of common computing platforms has increasedexponentially in the past few years, scientists and engineers have acquired le-gitimate expectations about being able to immediately exploit these availableresources at their highest capabilities. Fast, accurate, and robust numericalmethods have to be encoded in software libraries that are highly portableand optimizable across a wide range of systems in order to be exploited totheir fullest potential.Section 3. discusses an innovative approach [BAC+97,WD97] to automat-ing the process of producing such optimized kernels for RISC processor archi-tectures that feature deep memory hierarchies and pipelined functional units.These research e�orts have so far demonstrated very encouraging results, andhave generated great interest among the scienti�c computing community.Many scientists and researchers increasingly tend nowadays to use si-multaneously a variety of distributed computing resources such as massivelyparallel processors, networks and clusters of workstations and \piles" ofPCs. In order to use e�ciently such a diverse and lively computational en-vironment, many challenging research aspects of network-based computingsuch as fault-tolerance, load balancing, user-interface design, computationalservers or virtual libraries, must be addressed. User-friendly, network-enabled,application-speci�c toolkits have been speci�cally designed and conceived totackle the problems posed by such a complex and innovative approach toscienti�c problem solving [FK98]. Section 4. describes the NetSolve softwaresystem [CD95] that provides users with a pool of computational resources.These resources are computational servers that provide run-time access toarbitrary optimized numerical software libraries. The NetSolve software sys-tem transforms disparate, loosely-connected computers and software librariesinto a uni�ed, easy-to-access computational service. This service can makeenormous amounts of computing power transparently available to users onordinary platforms.



X. Parallel and Distributed Scienti�c Computing 459The NetSolve system allows users to access computational resources, suchas hardware and software, distributed across the network. These resources areembodied in computational servers and allow users to easily perform scien-ti�c computing tasks without having any computing facility installed on theircomputer. Users' access to the servers is facilitated by a variety of interfaces:Application Programming Interfaces (APIs), Textual Interactive Interfacesand Graphical User Interfaces (GUIs). As the NetSolve project matures, sev-eral promising extensions and applications will emerge. In this chapter, weprovide an overview of the project and examine some of the extensions beingdeveloped for NetSolve: an interface to the Condor system [LLM88], an in-terface to the ScaLAPACK parallel library [BCC+97], a bridge with the Ninfsystem [SSN+96], and an integration of NetSolve and ImageVision [ENB96].Future directions for research and investigation are �nally presented inSection 5..2. Numerical Linear Algebra LibrariesThis section �rst presents a few representative numerical linear algebra pack-ages in a chronological perspective. We then focus on the software designof the LAPACK and ScaLAPACK software libraries. The importance ofthe BLAS as a key to (trans)portable e�ciency as well as the derivation ofblock-partitioned algorithms are discussed in detail.2.1 Chronological PerspectiveThe EISPACK, LINPACK, LAPACK and ScaLAPACK numerical linear al-gebra software libraries are briey outlined below in a chronological order.The essential features of each of these packages are in turn rapidly describedin order to illustrate the reasons for this evolution. Particular emphasis isplaced on the impact of the high-performance computer architecture on thedesign features of these libraries.2.1.1 The pioneers: EISPACK and LINPACK. The EISPACK andLINPACK software libraries were designed for supercomputers used in theseventies and early eighties, such as the CDC-7600, Cyber 205, and Cray-1.These machines featured multiple functional units pipelined for good per-formance [HJ81]. The CDC-7600 was basically a high-performance scalarcomputer, while the Cyber 205 and Cray-1 were early vector computers.EISPACK is a collection of Fortran subroutines that compute the eigen-values and eigenvectors of nine classes of matrices: complex general, complexHermitian, real general, real symmetric, real symmetric banded, real sym-metric tridiagonal, special real tridiagonal, generalized real, and generalized



460 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleyreal symmetric matrices. In addition, two routines are included that use sin-gular value decomposition to solve certain least-squares problems. EISPACKis primarily based on a collection of Algol procedures developed in the sixtiesand collected by J. H. Wilkinson and C. Reinsch in a volume entitled Lin-ear Algebra in the Handbook for Automatic Computation [WR71] series. Thisvolume was not designed to cover every possible method of solution; rather,algorithms were chosen on the basis of their generality, elegance, accuracy,speed, or economy of storage. Since the release of EISPACK in 1972, over tenthousand copies of the collection have been distributed worldwide.LINPACK is a collection of Fortran subroutines that analyze and solvelinear equations and linear least-squares problems. The package solves linearsystems whose matrices are general, banded, symmetric inde�nite, symmetricpositive de�nite, triangular, and tridiagonal square. In addition, the packagecomputes the QR and singular value decompositions of rectangular matricesand applies them to least-squares problems. LINPACK is organized aroundfour matrix factorizations: LU factorization, pivoted Cholesky factorization,QR factorization, and singular value decomposition. The term LU factor-ization is used here in a very general sense to mean the factorization of asquare matrix into a lower triangular part and an upper triangular part, per-haps with pivoting. Some of these factorizations will be treated at greaterlength later, but, �rst a digression on organization and factors inuencingLINPACK's e�ciency is necessary.LINPACK uses column-oriented algorithms to increase e�ciency by pre-serving locality of reference. This means that if a program references an itemin a particular block, the next reference is likely to be in the same block. Bycolumn orientation we mean that the LINPACK codes always reference ar-rays down columns, not across rows. This works because Fortran stores arraysin column major order. Thus, as one proceeds down a column of an array,the memory references proceed sequentially in memory. On the other hand,as one proceeds across a row, the memory references jump across memory,the length of the jump being proportional to the column's length. The e�ectsof column orientation are quite dramatic: on systems with virtual or cachememories, the LINPACK codes will signi�cantly outperform codes that arenot column oriented.Another important inuence on the e�ciency of LINPACK is the use ofthe Level 1 BLAS [LHK+79]. These BLAS are a small set of routines that maybe coded to take advantage of the special features of the computers on whichLINPACK is being run. For most computers, this simply means producingmachine-language versions. However, the code can also take advantage ofmore exotic architectural features, such as vector operations. Further detailsabout the BLAS are presented below in Section 2.2.1.2.1.2 LAPACK. The development of LAPACK [ABB+95] in the late eight-ies was intended to make the EISPACK and LINPACK libraries run e�cientlyon shared-memory vector supercomputers. LAPACK [Dem89] provides rou-



X. Parallel and Distributed Scienti�c Computing 461tines for solving systems of simultaneous linear equations, least-squares solu-tions of linear systems of equations, eigenvalue problems, and singular valueproblems. The associated matrix factorizations (LU, Cholesky, QR, SVD,Schur, generalized Schur) are also provided, along with related computa-tions such as reordering of the Schur factorizations and estimating conditionnumbers. Dense and banded matrices are handled, but not general sparsematrices. In all areas, similar functionality is provided for real and complexmatrices, in both single and double precision. LAPACK is in the public do-main and available from netlib [DG87].The original goal of the LAPACK project was to make the widely usedEISPACK and LINPACK libraries run e�ciently on shared-memory vectorand parallel processors. On these machines, LINPACK and EISPACK areine�cient because their memory access patterns disregard the multilayeredmemory hierarchies of the machines, thereby spending too much time mov-ing data instead of doing useful oating point operations. LAPACK addressesthis problem by reorganizing the algorithms to use block matrix operations,such as matrix multiplication, in the innermost loops [AD90, Dem89]. Theseblock operations can be optimized for each architecture to account for thememory hierarchy [AD89, DMR91], and so provide a transportable way toachieve high e�ciency on diverse modern machines. Here we use the term\transportable" instead of \portable" because, for fastest possible perfor-mance, LAPACK requires that highly optimized block matrix operations bealready implemented on each machine. In other words, the correctness of thecode is portable, but high performance is not|if we limit ourselves to a singleFortran source code.LAPACK can be regarded as a successor to LINPACK and EISPACK. Ithas virtually all the capabilities of these two packages and much more besides.LAPACK improves on LINPACK and EISPACK in four main respects: speed,accuracy, robustness and functionality. While LINPACK and EISPACK arebased on the vector operation kernels of the Level 1 BLAS [LHK+79], LA-PACK was designed at the outset to exploit the Level 3 BLAS [DDH+90]| a set of speci�cations for Fortran subprograms that do various types ofmatrix multiplication and the solution of triangular systems with multipleright-hand sides. Because of the coarse granularity of the Level 3 BLAS op-erations, their use tends to promote high e�ciency on many high-performancecomputers, particularly if specially coded implementations are provided bythe manufacturer.2.1.3 ScaLAPACK. The ScaLAPACK [BCC+97] software library is ex-tending the LAPACK library to run scalably on MIMD distributed-memoryconcurrent computers. For such machines the memory hierarchy includesthe o�-processor memory of other processors, in addition to the hierar-chy of registers, cache, and local memory on each processor. Like LA-PACK, the ScaLAPACK routines are based on block-partitioned algorithmsin order to minimize the frequency of data movement between di�erent



462 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleylevels of the memory hierarchy. The fundamental building blocks of theScaLAPACK library are parallel (distributed-memory) versions of the BLAS(PBLAS) [CDO+95], and a set of Basic Linear Algebra Communication Sub-programs (BLACS) [WD95] for communication tasks that arise frequently inparallel linear algebra computations. In the ScaLAPACK routines, all inter-processor communication occurs within the PBLAS and the BLACS, so thatthe source code of the top software layer of ScaLAPACK looks very similarto that of LAPACK.The ScaLAPACK library contains routines for the solution of systems oflinear equations, linear least squares problems and eigenvalue problems. Thegoals of the LAPACK project, which continue into the ScaLAPACK project,are e�ciency so that the computationally intensive routines execute as fastas possible; scalability as the problem size and number of processors grow;reliability, including the return of error bounds; portability across machines;exibility so that users may construct new routines from well designed com-ponents; and ease of use. Towards this last goal the ScaLAPACK softwarehas been designed to look as much like the LAPACK software as possible.Many of these goals have been attained by developing and promoting stan-dards, especially speci�cations for basic computational and communicationroutines. Thus LAPACK relies on the BLAS [LHK+79, DDH+88, DDH+90],particularly the Level 2 and 3 BLAS for computational e�ciency, and ScaLA-PACK [BCC+97] relies upon the BLACS [WD95] for e�ciency of commu-nication and uses a set of parallel BLAS, the PBLAS [CDO+95], whichthemselves call the BLAS and the BLACS. LAPACK and ScaLAPACK willrun on any machines for which the BLAS and the BLACS are available. APVM [GBD+94] version of the BLACS has been available for some timeand the portability of the BLACS has recently been further increased by thedevelopment of a version that uses MPI [MPI+94, SOH+96].The underlying concept of both the LAPACK and ScaLAPACK librariesis the use of block-partitioned algorithms to minimize data movement be-tween di�erent levels in hierarchical memory. Thus, the ideas discussed inthis chapter for developing a library for dense linear algebra computations areapplicable to any computer with a hierarchical memory that imposes a su�-ciently large startup cost on the movement of data between di�erent levels inthe hierarchy, and for which the cost of a context switch is too great to make�ne grain size multithreading worthwhile. The target machines are, therefore,medium and large grain size advanced-architecture computers. These includerespectively \traditional" shared-memory vector supercomputers, such as theCray Y-MP and C90, and MIMD distributed-memory concurrent computers,such as massively parallel processors (MPPs) and networks or clusters ofworkstations.The ScaLAPACK software has been designed speci�cally to achieve highe�ciency for a wide range of modern distributed-memory computers. Exam-ples of such computers include the Cray T3 series, the IBM Scalable POW-



X. Parallel and Distributed Scienti�c Computing 463ERparallel SP series, the Intel iPSC and Paragon computers, the nCube-2/3computer, networks and clusters of workstations (NoWs and CoWs), and\piles" of PCs (PoPCs).Future advances in compiler and hardware technologies in the mid to latenineties are expected to make multithreading a viable approach for maskingcommunication costs. Since the blocks in a block-partitioned algorithm can behandled by separate threads, our approach will still be applicable on machinesthat exploit medium and coarse grain size multithreading.2.2 Software DesignDeveloping a library of high-quality subroutines for dense linear algebra com-putations requires to tackle a large number of issues. On one hand, the de-velopment or selection of numerically stable algorithms in order to estimatethe accuracy and/or domain of validity of the results produced by these rou-tines. On the other hand, it is often required to (re)formulate or adapt thosealgorithms for performance reasons that are related to the architecture of thetarget computers. This section presents three fundamental ideas to this e�ectthat characterize the design of the LAPACK and ScaLAPACK software.2.2.1 The BLAS as the key to (trans)portable e�ciency. At leastthree factors a�ect the performance of portable Fortran code:1. Vectorization. Designing vectorizable algorithms in linear algebra isusually straightforward. Indeed, for many computations there are severalvariants, all vectorizable, but with di�erent characteristics in performance(see, for example, [Don84]). Linear algebra algorithms can approach thepeak performance of many machines|principally because peak perfor-mance depends on some form of chaining of vector addition and multipli-cation operations, and this is just what the algorithms require. However,when the algorithms are realized in straightforward Fortran 77 code, theperformance may fall well short of the expected level, usually becausevectorizing Fortran compilers fail to minimize the number of memoryreferences|that is, the number of vector load and store operations.2. Data movement. What often limits the actual performance of a vec-tor, or scalar, oating point unit is the rate of transfer of data betweendi�erent levels of memory in the machine. Examples include the transferof vector operands in and out of vector registers, the transfer of scalaroperands in and out of a high-speed scalar processor, the movement ofdata between mainmemory and a high-speed cache or local memory, pag-ing between actual memory and disk storage in a virtual memory system,and interprocessor communication on a distributed-memory concurrentcomputer.3. Parallelism.The nested loop structure of most linear algebra algorithmso�ers considerable scope for loop-based parallelism. This is the principaltype of parallelism that LAPACK and ScaLAPACK presently aim to



464 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleyexploit. On shared-memory concurrent computers, this type of paral-lelism can sometimes be generated automatically by a compiler, but of-ten requires the insertion of compiler directives. On distributed-memoryconcurrent computers, data must be moved between processors. This isusually done by explicit calls to message passing routines, although par-allel language extensions such as Coherent Parallel C [FO88] and Split-C [CDG+93] do the message passing implicitly.The question arises, \How can we achieve su�cient control over thesethree factors to obtain the levels of performance that machines can o�er?"The answer is through use of the BLAS. There are now three levels of BLAS:Level 1 BLAS [LHK+79]: for vector-vector operations (y  �x+ y),Level 2 BLAS [DDH+88]: for matrix-vector operations (y  �Ax+ �y),Level 3 BLAS [DDH+90]: for matrix-matrix operations (C  �AB + �C).Here, A, B and C are matrices, x and y are vectors, and � and � are scalars.Table 2.1. Speed (Mops) of Level 2 and Level 3 BLAS Operations on a CRAY Y-MP. All matrices are of order 500; U is upper triangular.Number of processors: 1 2 4 8Level 2: y  �Ax+ �y 311 611 1197 2285Level 3: C  �AB + �C 312 623 1247 2425Level 2: x Ux 293 544 898 1613Level 3: B  UB 310 620 1240 2425Level 2: x U�1x 272 374 479 584Level 3: B  U�1B 309 618 1235 2398Peak 333 666 1332 2664The Level 1 BLAS are used in LAPACK, but for convenience rather thanfor performance: they perform an insigni�cant fraction of the computation,and they cannot achieve high e�ciency on most modern supercomputers. TheLevel 2 BLAS can achieve near-peak performance on many vector processors,such as a single processor of a CRAYX-MP or Y-MP, or Convex C-2 machine.However, on other vector processors such as a CRAY-2 or an IBM 3090 VF,the performance of the Level 2 BLAS is limited by the rate of data movementbetween di�erent levels of memory. Machines such as the CRAY Y-MP canperform two loads, a store, and a multiply-add operation all in one cycle,whereas the CRAY-2 and IBM 3090 VF cannot. For further details of howthe performance of the BLAS are a�ected by such factors see [DDS+91]. TheLevel 3 BLAS overcome this limitation. This third level of BLAS performsO(n3) oating point operations on O(n2) data, whereas the Level 2 BLASperform only O(n2) operations on O(n2) data. The Level 3 BLAS also allowus to exploit parallelism in a way that is transparent to the software that calls



X. Parallel and Distributed Scienti�c Computing 465them. While the Level 2 BLAS o�er some scope for exploiting parallelism,greater scope is provided by the Level 3 BLAS, as Table 2.1 illustrates.2.3 Block Algorithms and Their DerivationIt is comparatively straightforward to recode many of the algorithms in LIN-PACK and EISPACK so that they call Level 2 BLAS. Indeed, in the simplestcases the same oating point operations are done, possibly even in the sameorder: it is just a matter of reorganizing the software. To illustrate this point,we consider the LU factorization algorithm, which factorizes a general matrixA in the product of the triangular factors L and U .Suppose the M �N matrix A is partitioned as shown in Fig. 2.1, and weseek a factorization A = LU , where the partitioning of L and U is also shownin Fig. 2.1. Then we may write, L00U00 = A00 (2.1)L10U00 = A10 (2.2)L00U01 = A01 (2.3)L10U01 + L11U11 = A11 (2.4)where A00 is r � r, A01 is r � (N � r), A10 is (M � r) � r, and A11 is(M � r)� (N � r). L00 and L11 are lower triangular matrices with ones onthe main diagonal, and U00 and U11 are upper triangular matrices.
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U11A 11Fig. 2.1. Block LU factorization of the partitioned matrix A. A00 is r � r, A01 isr� (N�r), A10 is (M �r)�r, and A11 is (M�r)� (N�r). L00 and L11 are lowertriangular matrices with ones on the main diagonal, and U00 and U11 are uppertriangular matrices.Equations 2.1 and 2.2 taken together perform an LU factorization on the�rstM�r panel of A (i.e.,A00 and A10). Once this is completed, the matricesL00, L10, and U00 are known, and the lower triangular system in Eq. 2.3 canbe solved to give U01. Finally, we rearrange Eq. 2.4 as,A011 = A11 � L10U01 = L11U11 (2.5)



466 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. WhaleyFrom this equation we see that the problem of �nding L11 and U11 reducesto �nding the LU factorization of the (M � r) � (N � r) matrix A011. Thiscan be done by applying the steps outlined above to A011 instead of to A.Repeating these steps K times, whereK = min(dM=re; dN=re); (2.6)and dxe denotes the least integer greater than or equal to x, we obtain theLU factorization of the originalM �N matrix A. For an in-place algorithm,A is overwritten by L and U { the ones on the diagonal of L do not need tobe stored explicitly. Similarly, when A is updated by Eq. 2.5 this may alsobe done in place.After k of these K steps, the �rst kr columns of L and the �rst kr rowsof U have been evaluated, and the matrix A has been updated to the formshown in Fig. 2.2, in which panel B is (M�kr)�r and C is r�(N�(k�1)r).Step k + 1 then proceeds as follows,1. factor B to form the next panel of L, performing partial pivoting overrows if necessary. This evaluates the matrices L0, L1, and U0 in Fig. 2.2,2. solve the triangular system L0U1 = C to get the next row of blocks of U ,3. do a rank-r update on the trailing submatrix E, replacing it with E0 =E � L1U1.
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X. Parallel and Distributed Scienti�c Computing 4672.4 High-Quality, Reusable, Mathematical SoftwareIn developing a library of high-quality subroutines for dense linear algebracomputations the design goals fall into three broad classes: performance, ease-of-use and range-of-use.2.4.1 Performance. Two important performance metrics are concurrente�ciency and scalability. We seek good performance characteristics in ouralgorithms by eliminating, as much as possible, overhead due to load imbal-ance, data movement, and algorithm restructuring. The way the data aredistributed (or decomposed) over the memory hierarchy of a computer is offundamental importance to these factors. Concurrent e�ciency, �, is de�nedas the concurrent speedup per processor [FJL+88], where the concurrentspeedup is the execution time, Tseq, for the best sequential algorithm run-ning on one processor of the concurrent computer, divided by the executiontime, T , of the parallel algorithm running on Np processors. When directmethods are used, as in LU factorization, the concurrent e�ciency dependson the problem size and the number of processors, so on a given parallelcomputer and for a �xed number of processors, the running time should notvary greatly for problems of the same size. Thus, we may write,�(N;Np) = 1Np Tseq(N )T (N;Np) (2.7)where N represents the problem size. In dense linear algebra computations,the execution time is usually dominated by the oating point operation count,so the concurrent e�ciency is related to the performance, G, measured inoating point operations per second by,G(N;Np) = Nptcalc �(N;Np) (2.8)where tcalc is the time for one oating point operation. Occasional exampleswhere variation does occur are sometimes dismissed as \pathological cases".For iterative routines, such as eigensolvers, the number of iterations, andhence the execution time, depends not only on the problem size, but also onother characteristics of the input data, such as condition number.Table 2.2 illustrates the speed of the LAPACK routine for LU factoriza-tion of a real matrix, SGETRF in single precision on CRAY machines, andDGETRF in double precision on all other machines. Thus, 64-bit oating pointarithmetic is used on all machines tested. A block size of one means that theunblocked algorithm is used, since it is faster than { or at least as fast as {a block algorithm. In all cases, results are reported for the block size whichis mostly nearly optimal over the range of problem sizes considered.LAPACK [ABB+95] is designed to give high e�ciency on vector pro-cessors, high-performance \superscalar" workstations, and shared-memorymultiprocessors. LAPACK in its present form is less likely to give good per-formance on other types of parallel architectures (for example, massively



468 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. WhaleyTable 2.2. SGETRF/DGETRF speed (Mops) for square matrices of order n.Machine Block Values of n(No. of processors) size 100 200 300 400 500IBM RISC/6000-530 (1) 32 19 25 29 31 33Alliant FX/8 (8) 16 9 26 32 46 57IBM 3090J VF (1) 64 23 41 52 58 63Convex C-240 (4) 64 31 60 82 100 112CRAY Y-MP (1) 1 132 219 254 272 283CRAY-2 (1) 64 110 211 292 318 358Siemens/Fujitsu VP 400-EX (1) 64 46 132 222 309 397NEC SX2 (1) 1 118 274 412 504 577CRAY Y-MP (8) 64 195 556 920 1188 1408parallel SIMD machines, or MIMD distributed-memory machines). LAPACKcan also be used satisfactorily on all types of scalar machines (PCs, work-stations, mainframes). The ScaLAPACK project, described in Section 2.1.3,adapts LAPACK to distributed-memory architectures.A parallel algorithm is said to be scalable [GK90] if the concurrent e�-ciency depends on the problem size and number of processors only throughtheir ratio. This ratio is simply the problem size per processor, often referredto as the granularity. Thus, for a scalable algorithm, the concurrent e�ciencyis constant as the number of processors increases while keeping the granular-ity �xed. Alternatively, Eq. 2.8 shows that this is equivalent to saying that,for a scalable algorithm, the performance depends linearly on the number ofprocessors for �xed granularity.Fig. 2.3 shows the scalability of the ScaLAPACK implementation of theLU factorization on the Intel XP/S Paragon computer. Fig. 2.3 shows thespeed in Mops per node of the ScaLAPACK LU factorization routine for dif-ferent computer con�gurations. This �gure illustrates that when the numberof nodes is scaled by a constant factor, the same e�ciency or speed per node isachieved for equidistant problem sizes on a logarithmic scale. In other words,maintaining a constant memory use per node allows e�ciency to be main-tained. This scalability behavior is also referred to as isoe�ciency, or isogran-ularity.) In practice, however, a slight degradation is acceptable. The ScaLA-PACK driver routines, in general, feature the same scalability behavior up toa constant factor that depends on the exact number of oating point opera-tions and the total volume of data exchanged during the computation. Moreinformation on ScaLAPACK performance can be found in [BCC+97, BW98].2.4.2 Ease-of-use. Ease-of-use is concerned with factors such as portabil-ity and the user interface to the library. Portability, in its most inclusivesense, means that the code is written in a standard language, such as For-tran, and that the source code can be compiled on an arbitrary machineto produce a program that will run correctly. We call this the \mail-ordersoftware" model of portability, since it reects the model used by software
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Fig. 2.3. LU Performance per Intel XP/S MP Paragon node.servers such as netlib [DG87]. This notion of portability is quite demanding.It requires that all relevant properties of the computer's arithmetic and ar-chitecture be discovered at runtime within the con�nes of a Fortran code. Forexample, if it is important to know the overow threshold for scaling pur-poses, it must be determined at runtime without overowing, since overow isgenerally fatal. Such demands have resulted in quite large and sophisticatedprograms [DP87, Kah87] which must be modi�ed frequently to deal withnew architectures and software releases. This \mail-order" notion of softwareportability also means that codes generally must be written for the worst pos-sible machine expected to be used, thereby often degrading performance onall others. Ease-of-use is also enhanced if implementation details are largelyhidden from the user, for example, through the use of an object-based in-terface to the library [DPW93]. In addition, software for distributed-memorycomputers should work correctly for a large class of data decompositions.The ScaLAPACK library has, therefore, adopted the block cyclic decompo-sition [BCC+97] for distributed-memory architectures.2.4.3 Range-of-use. The range-of-use may be gauged by how numericallystable the algorithms are over a range of input problems, and the range ofdata structures the library will support. For example, LINPACK and EIS-PACK deal with dense matrices stored in a rectangular array, packed matri-ces where only the upper or lower half of a symmetric matrix is stored, andbanded matrices where only the nonzero bands are stored. In addition, somespecial formats such as Householder vectors are used internally to representorthogonal matrices. There are also sparse matrices, which may be stored inmany di�erent ways; but in this chapter we focus on dense and banded matri-



470 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleyces, the mathematical types addressed by LINPACK, EISPACK, LAPACKand ScaLAPACK.3. Automatic Generation of Tuned Numerical KernelsThis section describes an approach for the automatic generation and opti-mization of numerical software for processors with deep memory hierarchiesand pipelined functional units. The production of such software for machinesranging from desktop workstations to embedded processors can be a tediousand time consuming customization process. The research e�orts presentedbelow aim at automating much of this process. Very encouraging resultsgenerating great interest among the scienti�c computing community havealready been demonstrated. In this section, we focus on the ongoing Auto-matically Tuned Linear Algebra Software (ATLAS) [WD97] project devel-oped at the University of Tennessee (see http://www.netlib.org/atlas/).The ATLAS initiative adequately illustrates current and modern researchprojects on automatic generation and optimization of numerical softwaresuch as PHiPAC [BAC+97]. After having developed the motivation for thisresearch, the ATLAS methodology is outlined within the context of a partic-ular BLAS function, namely the general matrix-multiply operation. Much ofthe technology and approach presented below applies to other BLAS and onbasic linear algebra computations in general, and may be extended to otherimportant kernel operations. Finally, performance results on a large collectionof computers are presented and discussed.3.1 MotivationStraightforward implementation in Fortan or C of computations based onsimple loops rarely achieve the peak execution rates of today's microproces-sors. To realize such high performance for even the simplest of operationsoften requires tedious, hand-coded, programming e�orts. It would be idealif compilers where capable of performing the optimization needed automat-ically. However, compiler technology is far from mature enough to performthese optimizations automatically. This is true even for numerical kernelssuch as the BLAS on widely marketed machines which can justify the greatexpense of compiler development. Adequate compilers for less widely mar-keted machines are almost certain not to be developed.Producing hand-optimized implementations of even a reduced set of well-designed software components for a wide range of architectures is an expen-sive proposition. For any given architecture, customizing a numerical kernel'ssource code to optimize performance requires a comprehensive understand-ing of the exploitable hardware resources of that architecture. This primarilyincludes the memory hierarchy and how it can be utilized to provide data



X. Parallel and Distributed Scienti�c Computing 471in an optimum fashion, as well as the functional units and registers andhow these hardware components can be programmed to generate the correctoperands at the correct time. Using the compiler optimization at its best,optimizing the operations to account for many parameters such as blockingfactors, loop unrolling depths, software pipelining strategies, loop ordering,register allocations, and instruction scheduling are crucial machine-speci�cfactors a�ecting performance. Clearly, the size of the various cache levels,the latency of oating point instructions, the number of oating point unitsand other hardware constants are essential parameters that must be takeninto consideration as well. Since this time-consuming customization processmust be repeated whenever a slightly di�erent target architecture is available,or even when a new version of the compiler is released, the relentless paceof hardware innovation makes the tuning of numerical libraries a constantburden.The di�cult search for fast and accurate numerical methods for solv-ing numerical linear algebra problems is compounded by the complexities ofporting and tuning numerical libraries to run on the best hardware avail-able to di�erent parts of the scienti�c and engineering community. Giventhe fact that the performance of common computing platforms has increasedexponentially in the past few years, scientists and engineers have acquired le-gitimate expectations about being able to immediately exploit these availableresources at their highest capabilities. Fast, accurate, and robust numericalmethods have to be encoded in software libraries that are highly portableand optimizable across a wide range of systems in order to be exploited totheir fullest potential.For illustrative purpose, we consider the Basic Linear Algebra Subpro-grams (BLAS) described in Section 2.2.1. As shown in Section 2., the BLAShave proven to be very e�ective in assisting portable, e�cient software for se-quential, vector, shared-memory and distributed-memory high-performancecomputers. However, the BLAS are just a set of speci�cations for some ele-mentary linear algebra operations. A reference implementation in Fortran 77is publically available, but it is not expected to be e�cient on any particulararchitecture, so that many hardware or software vendors provide an \opti-mized" implementation of the BLAS for speci�c computers. Hand-optimizedBLAS are expensive and tedious to produce for any particular architecture,and in general will only be created when there is a large enough market,which is not true for all platforms. The process of generating an optimizedset of BLAS for a new architecture or a slightly di�erent machine version canbe a time consuming and expensive process. Many vendors have thus investedconsiderable resources in producing optimized BLAS for their architectures.In many cases near optimum performance can be achieved for some opera-tions. However, the coverage and the level of performance achieved is oftennot uniform across all platforms.



472 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaley3.2 The ATLAS MethodologyIn order to illustrate the ATLAS methodology, we consider the followingmatrix-multiply operation C  �AB + �C, where � and � are scalars, andA, B and C are matrices, with A an M -by-K matrix, B a K-by-N matrixand C an M -by-N matrix. In general, the arrays A, B, and C containingrespectively the matrices A, B and C will be too large to �t into cache. Itis however possible to arrange the computations so that the operations areperformed with data for the most part in cache by dividing the matricesinto blocks [DMR91]. ATLAS isolates the machine-speci�c features of theoperation to several routines, all of which deal with performing an optimized\on-chip" matrix multiply, that is, assuming that all matrix operands �tin Level 1 (L1) cache. This section of code is automatically created by acode generator which uses timings to determine the correct blocking andloop unrolling factors to perform optimally. The user may directly supplythe code generator with as much detail as desired, i.e. size of the L1 cachesize, blocking factor(s) to try, etc; if such details are not provided, the codegenerator will determine appropriate settings via timings. The rest of the codeproduced by ATLAS does not change across architectures; it is presented inSection 3.2.1. It handles the looping and blocking necessary to build thecomplete matrix-matrix multiply from the on-chip multiply. The generationof the on-chip multiply routine is discussed in Section 3.2.2. It is obvious thatwith this many interacting e�ects, it would be di�cult, if not impossible topredict a priori the best blocking factor, loop unrolling, etc. ATLAS providesa code generator coupled with a timer routine which takes in some initialinformation, and then tries di�erent strategies for loop unrolling and latencyhiding and chooses the case which demonstrated the best performance.3.2.1 Building the general matrix multiply from the on-chip multi-ply. In this section, the routines necessary to build a general matrix-matrixmultiply using a �xed-size on-chip multiply are described. Section 3.2.2 de-tails the on-chip multiply and its code generator. For this section, it is enoughto assume the availability of an e�cient on-chip matrix-matrix multiply ofthe form C  ATB. This multiply is of �xed size, i.e. with all dimensionsset to a system-speci�c value, NB (M = N = K = NB). Also available areseveral \cleanup" codes, which handle the cases caused by dimensions whichare not multiples of the blocking factor.The �rst decision to be taken by the general matrix multiply is whetherthe problem is large enough to bene�t from our special techniques. The AT-LAS algorithm requires copying of the operand matrices; if the problem issmall enough, this O(N2) cost, along with miscellaneous overheads such asfunction calls and multiple layers of looping, can actually make the \opti-mized" general matrix multiply slower than the traditional three do loops.The size required for the O(N3) costs to dominate these lower order termsvaries across machines, and so this switch point is automatically determinedat installation time. For these very small problems, a standard three-loop



X. Parallel and Distributed Scienti�c Computing 473multiply with some simple loop unrolling is called. This code will also becalled if the algorithm is unable to dynamically allocate enough space to dothe blocking (see below for further details).Assuming the matrices are large enough, ATLAS presently features twoalgorithms for performing the general, o�-chip multiply. The two algorithmscorrespond to di�erent orderings of the main loops. In the �rst algorithm, theouter loop is overM , i.e., the rows ofA and the second loop is over N , i.e., thecolumns of B. In the second algorithm, this order is reversed. The commondimension of A and B (i.e., the K loop) is currently always the innermostloop. Let us de�ne the input matrix looped over by the outer loop as theouter or outermost matrix; the other input matrix will therefore be the inneror innermost matrix. In the �rst algorithm, A is thus the outer matrix andB is the inner matrix. Both algorithms have the option of writing the resultof the on-chip multiply directly to the matrix, or to an output temporary Ĉ.The advantages to writing to Ĉ rather than C are:1. address alignment may be controlled (i.e., one can ensure during thedynamic memory allocation that one begins on a cache-line boundary),2. Data is contiguous, eliminatingpossibility of unnecessary cache-thrashingdue to ill-chosen leading dimension (assuming the cache is non-write-through).The disadvantage of using Ĉ is that an additional write to C is requiredafter the on-chip operations have completed. This cost is minimal if manycalls to the on-chip multiply are made (each of which writes to either C orĈ), but can add signi�cantly to the overhead when this is not the case. Inparticular, an important application of matrix multiply is the rank-K update,where the write to the output array C can be a signi�cant portion of the costof the algorithm. Writing to Ĉ essentially doubles the write cost, which isunacceptable. The routines therefore employ a heuristic to determine if thenumber of times the on-chip multiply will be called in the K loop is largeenough to justify using Ĉ, otherwise the answer is written directly to C.Regardless of which matrix is outermost, the algorithms try to dynami-cally allocate enough space to store the NB � NB output temporary, Ĉ (ifneeded), one panel of the outermost matrix, and the entire inner matrix. Ifthis fails, the algorithms attempt to allocate enough space to hold Ĉ, andone panel from both A and B. The minimum workspace required by theseroutines is therefore 2KNB , if writing directly to C, and NB2+2KNB if not.If this amount of workspace cannot be allocated, the previously mentionedsmall case code is called instead. If there is enough space to copy the entireinnermost matrix, we see several bene�ts to doing so:{ Each matrix is copied only one time,{ If all of the workspaces �t into L2 cache, we get complete L2 reuse on theinnermost matrix,



474 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaley{ Data copying is limited to the outermost loop, protecting the inner loopsfrom unneeded cache thrashing.Of course, even if the allocation succeeds, using too much memory mightresult in unneeded swapping. Therefore, the user can set a maximal amountof workspace that ATLAS is allowed to have, and ATLAS will not try to copythe innermost matrix if this maximum workspace requirement is exceeded.If enough space for a copy of the entire innermost matrix is not allocated,the innermost matrix will be entirely copied for each panel of the outermostmatrix, i.e. if A is the outermost matrix, the matrixB will be copied dM=NBetimes. Further, the usable size of the Level 2 (L2) cache is reduced (the copyof a panel of the innermost matrix will take up twice the panel's size in L2cache; the same is true of the outermost panel copy, but that will only beseen the �rst time through the secondary loop). Regardless of which loopingstructure or allocation procedure used, the inner loop is always along K.Therefore, the operation done in the inner loop by both routines is the same,and it is shown in Fig. 3.1.C3;2 A3;1 A3;2M NC  M KA N K� BB1;2B2;2B3;2Fig. 3.1. One step of the general matrix-matrix multiply.When a call to the matrix multiply is made, the routine must decidewhich loop structure to call (i.e., which matrix to put as outermost). If thematrices are of di�erent size, L2 cache reuse can be encouraged by decidingthe looping structure based on the following criteria:{ If either matrix will �t completely into L2 cache, put it as the innermostmatrix (we get L2 cache reuse on the entire inner matrix),{ If neither matrix �ts completely into L2 cache, put the one with the largestpanel that will �t into L2 cache as the outermost matrix (we get L2 cachereuse on the panel of the outer matrix).By default, the code generated by ATLAS does no explicit L2 blocking(the size of the L2 cache is not known anywhere in the code), and so thesecriteria are not presently used for this selection. Rather, if one matrix mustbe accessed by row-panels during the copy, that matrix will be put where itcan be copied most e�ciently. This means that if one has enough workspace



X. Parallel and Distributed Scienti�c Computing 475to copy it up front, the matrix will be accessed column-wise by putting it asthe innermost loop and copying the entire matrix; otherwise it will be placedas the outermost loop, where the cost of copying the row-panel is a lowerorder term. If both matrices have the same access patterns, B will be madethe outermost matrix, so that C is accessed by columns.3.2.2 Generation of the on-chipmultiply. As previously mentioned, theATLAS on-chip matrix-matrix multiply is the only code which must changedepending on the platform. Since the input matrices are copied into blockedform, only one transpose case is required, which has been chosen as C  ATB +C. This case was chosen (as opposed to, for instance C  AB +C),because it generates the largest (ops)/(cache misses) ratio possible whenthe loops are written with no unrolling. Machines with hardware allowing asmaller ratio can be addressed using loop unrolling on the M and N loops(this could also be addressed by permuting the order of the K loop, but thistechnique is not presently used in ATLAS.In a multiply designed for L1 cache reuse, one of the input matrices isbrought completely into the L1 cache, and is then reused in looping over therows or columns of the other input matrix. The present ATLAS code bringsin the array A, and loops over the columns of B; this was an arbitrary choice,and there is no theoretical reason it would be superior to bringing in B andlooping over the rows of A. There is a common misconception that cachereuse is optimized when both input matrices, or all three matrices, �t intoL1 cache. In fact, the only win in �tting all three matrices into L1 cache isthat it is possible, assuming the cache is not write-through, to save the cost ofpushing previously used sections of C back to higher levels of memory. Often,however, the L1 cache is write-through, while higher levels are not. If thisis the case, there is no way to minimize the write cost, so keeping all threematrices in L1 does not result in greater cache reuse. Therefore, ignoring thewrite cost, maximal cache reuse for our case is achieved when all of A �tsinto cache, with room for at least two columns of B and one cache line of C.Only one column of B is actually accessed at a time in this scenario; havingenough storage for two columns assures that the old column will be the leastrecently used data when the cache overows, thus making certain that all ofA is kept in place (this obviously assumes the cache replacement policy isleast recently used). While cache reuse can account for a great amount of theoverall performance win, it is obviously not the only factor. For the on-chipmatrix multiplication, other relevant factors are outlined below.Instruction cache overow: Instructions are cached, and it is thereforeimportant to �t the on-chip multiply's instructions into the L1 cache. Thismeans that it won't be possible to completely unroll all three loops, for in-stance.Floating point instruction ordering: When we discuss oating pointinstruction ordering in this section, it will usually be in reference to latencyhiding. Most modern architectures possess pipelined oating point units. This



476 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleymeans that the results of an operation will not be available for use until scycles later, where s is the number of stages in the oating point pipe (typ-ically 3 or 5). Remember that the on-chip matrix multiply is of the formC  ATB + C; individual statements would then naturally be some vari-ant of C[i] += A[j] * B[k]. If the architecture does not possess a fusedmultiply/add unit, this can cause an unnecessary execution stall. The op-eration register = A[j] * B[k] is issued to the oating point unit, andthe add cannot be started until the result of this computation is available, scycles later. Since the add operation is not started until the multiply �nishes,the oating point pipe is not utilized. The solution is to remove this depen-dence by separating the multiply and add, and issuing unrelated instructionsbetween them. This reordering of operations can be done in hardware (out-of-order execution) or by the compiler, but this will sometimes generate codethat is not quite as e�cient as doing it explicitly. More importantly, not allplatforms have this capability, and in this case the performance win can belarge.Reducing loop overhead: The primary method of reducing loop overheadis through loop unrolling. If it is desirable to reduce loop overhead withoutchanging the order of instructions, one must unroll the loop over the dimen-sion common to A and B (i.e., unroll the K loop). Unrolling along the otherdimensions (the M and N loops) changes the order of instructions, and thusthe resulting memory access patterns.Exposing parallelism: Many modern architectures have multiple oatingpoint units. There are two barriers to achieving perfect parallel speedup withoating point computations in such a case. The �rst is a hardware limitation,and therefore out of our hands: All of the oating point units will need toaccess memory, and thus, for perfect parallel speedup, the memory fetch willusually also need to operate in parallel. The second prerequisite is that thecompiler recognizes opportunities for parallelization, and this is amenableto software control. The �x for this is the classical one employed in suchcases, namely unrolling the M and/or N loops, and choosing the correctregister allocation so that parallel operations are not constrained by falsedependencies.Finding the correct number of cache misses: Any operand that is notalready in a register must be fetched from memory. If that operand is notin the L1 cache, it must be fetched from further down the memory hier-archy, possibly resulting in large delays in execution. The number of cachemisses which can be issued simultaneously without blocking execution variesbetween architectures. To minimize memory costs, the maximal number ofcache misses should be issued each cycle, until all memory is in cache or used.In theory, one can permute the matrix multiply to ensure that this is true. Inpractice, this �ne a level of control would be di�cult to ensure (there would beproblems with overowing the instruction cache, and the generation of such



X. Parallel and Distributed Scienti�c Computing 477precision instruction sequence, for instance). So the method used to controlthe cache-hit ratio is the more classical one of M and N loop unrolling.3.3 ATLAS Performance ResultsIn this section we present double precision (64-bit oating point arithmetic)timings across various platforms. The timings presented here are di�erentthan many BLAS timings in that the cache is ushed before each call, andthe leading dimensions of the arrays are set to greater than the number ofrows of the matrix. This means that the performance numbers shown below,even when timing the same routine (for instance the vendor-supplied gen-eral matrix multiply routine) are lower than those reported in other papers.However, these numbers are in general a much better estimate of the perfor-mance a user will see in his application. More complete performance resultsand analysis can be found in [WD97].Fig. 3.2 shows the performance of ATLAS versus the vendor-suppliedmatrix multiply (where available) for a 500� 500 matrix multiply.
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478 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleytran 77 BLAS. These results demonstrate that the automatically generatedATLAS routine provide good performance in practice.
0

100

200

300

400

500

600

700

DCG LX
 21

16
4a

-5
33

DEC A
lph

at 
21

16
4-

43
3

DEC A
lph

a 2
12

64
-5

00

HP P
A80

00

IB
M P

ow
er

3-
20

0

Int
el 

PII-
26

6

SGI R
10

00
0-

19
5

Sun
 U

ltra
Spa

rc2
20

0

M
FL

O
PS

Vendor LU LAPACK LU w/vendor BLAS

ATLAS LU LU w/Reference BLAS

Fig. 3.3. 500x500 LU factorization performance across multiple architectures.4. Network-Enabled SolversThanks to advances in hardware, networking infrastructure and algorithms,computing intensive problems in many areas can now be successfully at-tacked using networked, scienti�c computing. In the networked computingparadigm, vital pieces of software and information used by a computing pro-cess are spread across the network, and are identi�ed and linked togetheronly at run time. This is in contrast to the current software usage modelwhere one acquires a copy (or copies) of task-speci�c software package foruse on local hosts. In this section, as a case study, we focus on the ongo-ing NetSolve project developed at the University of Tennessee and at theOak Ridge National Laboratory (see http://www.cs.utk.edu/netsolve).This project adequately illustrates the current and modern research initia-tives on network-enabled solvers. We �rst present an overview of the NetSolveproject and examine some extensions being developed for NetSolve: an inter-face to the Condor system [LLM88], an interface to the ScaLAPACK parallellibrary [BCC+97], a bridge with the Ninf System [SSN+96], and an integra-tion of NetSolve and ImageVision [ENB96].



X. Parallel and Distributed Scienti�c Computing 4794.1 The NetSolve SystemThe NetSolve system uses the remote computing paradigm: the program re-sides on the server; the user's data is sent to the server, where the appropriateprograms or numerical libraries operate on it; the result is then sent back tothe user's machine.
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480 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleydi�erent servers and allow access from any client to any server if desirable.NetSolve can be used either via the Internet or on an intranet, such as insidea research department or a university, without participating in any Internetbased computation. Another important aspect of NetSolve is that the con-�guration of the system is entirely exible: any server/agent can be stoppedand (re-)started at any time without jeopardizing the integrity of the system.4.1.1 The computational resources. When building the NetSolve sys-tem, one of the challenges was to design a suitable model for the compu-tational servers. The NetSolve servers are con�gurable so that they can beeasily upgraded to encompass ever-increasing sets of numerical functionali-ties. The NetSolve servers are also pre-installed, meaning that the end-userdoes not have to install any numerical software. Finally, the NetSolve serversprovide uniform access to the numerical software, in the sense that the end-user has the illusion that he or she is accessing numerical subroutines from asingle, coherent numerical library.To make the implementation of such a computational server model pos-sible, a general, machine-independent way of describing a numerical com-putation as well as a set of tools to generate new computational modules aseasily as possible have been designed. The main component of this frameworkis a descriptive language which is used to describe each separate numericalfunctionality of a computational server. The description �les written in thislanguage can be compiled by NetSolve into actual computational modulesexecutable on any UNIX or NT platform. These �les can then be exchangedby any institution wanting to set up servers: each time a new description �leis created, the capabilities of the entire NetSolve system are increased.A number of description �les have been generated for a variety of numer-ical libraries: ARPACK, FitPack, ItPack, MinPack, FFTPACK, LAPACK,BLAS, QMR, Minpack and ScaLAPACK. These numerical libraries coverseveral �elds of computational science; Linear Algebra, Optimization, FastFourier Transforms, etc.4.1.2 The client interfaces. A major concern in designing NetSolve wasto provide several interfaces for a wide range of users. NetSolve can be in-voked through C, Fortran, Java, Matlab [Mat92] and Mathematica [Wol96].In addition, there is a Web-enabled Java GUI. Another concern was keepingthe interfaces as simple as possible. For example, there are only two callsin the MATLAB interface, and they are su�cient to allow users to submitproblems to the NetSolve system. Each interface provides asynchronous callsto NetSolve in addition to traditional synchronous or blocking calls. Whenseveral asynchronous requests are sent to a NetSolve agent, they are dis-patched among the available computational resources according to the load-balancing schemes implemented by the agent. Hence, the user|with virtuallyno e�ort|can achieve coarse-grained parallelism from either a C or Fortranprogram, or from interaction with a high-level interface. All the interfaces aredescribed in detail in the \NetSolve's Client User's Guide" [CD95].



X. Parallel and Distributed Scienti�c Computing 4814.1.3 The NetSolve agent. Keeping track of what software resources areavailable and on which servers they are located is perhaps the most funda-mental task of the NetSolve agent. Since the computational servers use thesame framework to contribute software to the system (see Section 4.1.1), itis possible for the agent to maintain a database of di�erent numerical func-tionalities available to the users.Each time a new server is started, it sends an application request to aninstance of the NetSolve agent. This request contains general informationabout the server and the list of numerical functions it intends to contributeto the system. The agent examines this list and detects possible discrepancieswith the other existing servers in the system. Based on the agent's verdict,the server can be integrated into the system and available for clients.The goal of the NetSolve agent is to choose the best-suited computationalserver for each incoming request to the system. For each user request, theagent determines the set of servers that can handle the computation andmakes a choice between all the possible resources. To do so, the agent usescomputation-speci�c and resource-speci�c information. Computation-speci�cinformation is mostly included in the user request whereas resource-speci�cinformation is partly static (server's host processor speed, memory available,etc.) and partly dynamic (processor workload). Rationale and further detailon these issues can be found in [BCD96], as well as a description of howNetSolve ensures fault-tolerance among the servers.Agent-based computing seems to be a promising strategy. NetSolve isevolving into a more elaborate system and a major part of this evolution isto take place within the agent. Such issues as user accounting, security, dataencryption for instance are only partially addressed in the current imple-mentation of NetSolve and already is the object of much work. As the typesof hardware resources and the types of numerical software available on thecomputational servers become more and more diverse, the resource brokerembedded in the agent need to become increasingly sophisticated. There aremany di�culties in providing a uniform performance metric that encompassesany type of algorithmic and hardware considerations in a metacomputing set-ting, especially when di�erent numerical resources, or even entire frameworksare integrated into NetSolve. Such integrations are described in the followingsections.4.2 Integration of Computational Resources into NetSolveIn this section, we present how various computational resources can be in-tegrated into NetSolve. As explained in Section 4.1.1, traditional softwarelibraries are easy to integrate into the NetSolve system. We present howeverhow four very di�erent and more complex computational resources have beenintegrated. We selected a workstation manager environment, a parallel nu-merical library, a global-wide computing infrastructure similar to NetSolveitself, and �nally a general purpose image processing application.



482 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaley4.2.1 Interface to the Condor system. Condor [LLM88], developed atthe University of Wisconsin, Madison, is an environment that can managevery large collections of distributively owned workstations. Its developmenthas been motivated by the ever increasing need for scientists and engineersto exploit the capacity of such collections, mainly by taking advantage ofotherwise unused CPU cycles. Interfacing NetSolve and Condor is a very nat-ural idea. NetSolve provides remote easy access to computational resourcesthrough multiple, attractive user interfaces. Condor allows users to harnessthe power of a pool of machines while using otherwise wasted CPU cycles.The users at the consoles of those machines are not penalized by the schedul-ing of Condor jobs. If the pool of machines is reasonably large, it is usuallythe case that Condor jobs can be scheduled almost immediately. This couldprove to be very interesting for a project like NetSolve. Indeed, NetSolveservers may be started so that they grant local resource access to outsideusers. Interfacing NetSolve and Condor could then give priority to local usersand provide underutilized only CPU cycles to outside users.A Condor pool consists of any number of machines, that are connected bya network. Condor daemons constantly monitor the status of the individualcomputers in the cluster. Two daemons run on each machine, the startd andthe schedd. The startd monitors information about the machine itself (load,mouse/keyboard activity, etc.) and decides if it is available to run a Condorjob. The schedd keeps track of all the Condor jobs that have been submittedto the machine. One of the machine, the Central Manager, keeps track of allthe resources and jobs in the pool. When a job is submitted to Condor, thescheduler on the central manager matches a machine in the Condor pool tothat job. Once the job has been started, it is periodically checkpointed, can beinterrupted and migrated to a machine whose architecture is the same as theone of the machine on which the execution was initiated. This organizationis partly depicted in Fig. 4.2. More details on the Condor system and thesoftware layers can be found in [LLM88].Fig. 4.2 shows how an entire Condor pool can be seen as a single NetSolvecomputational resource. The Central Manager runs two daemons in additionto the usual startd and schedd: the negotiator and the collector. A machinealso runs a customized version of the NetSolve server. When this server re-ceives a request from a client, instead of creating a local child process runninga computational module, it uses the Condor tools to submit that module tothe Condor pool. The negotiator on the Central Manager then chooses atarget machine for the computational module. Due to uctuations in thestate of the pool, the computational module can then be migrated amongthe machines in the pool. When the results of the numerical computation areobtained, the NetSolve server transmits that result back to the client.The actual implementation of the NetSolve/Condor interface was madeeasy by the Condor tools provided to the Condor user. However, the restric-tions that apply to a Condor job concerning system calls were di�cult to
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Fig. 4.2. NetSolve and Condor.satisfy and required quite a few changes to obtain a Condor-enabled Net-Solve server. A major issue however still needs to be addressed; how doesthe NetSolve agent perceive a Condor pool as a resource? Finding the ap-propriate performance prediction technique is at the focus of the currentNetSolve/Condor collaboration.4.2.2 Integrating parallel numerical libraries. Integrating software li-braries designed for distributed-memory concurrent computers into NetSolveallows a workstation's user to access massively parallel processors to performlarge computations. This access can be made extremely simple via NetSolveand the user may not even be aware that he or she is using a parallel li-brary on such a computer. As an example, we describe in this section, howthe ScaLAPACK library [BCC+97] has been integrated into the NetSolvesystem.As briey described in Section 2.1.3, the Scalable Linear Algebra Package(ScaLAPACK) is a library of high-performance linear algebra routines fordistributed-memory message-passing MIMD computers as well as networksor clusters of workstations supporting PVM [GBD+94] or MPI [SOH+96]. It



484 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleyis a continuation of the LAPACK [ABB+95] project, and contains routinesfor solving systems of linear equations, least squares problems, and eigen-value problems. ScaLAPACK views the underlying multi-processor systemas a rectangular process grid. Global data is mapped to the local memoriesof the processes in that grid assuming speci�c data-distributions. For per-formance and load balance reasons, ScaLAPACK uses the two-dimensionalblock cyclic distribution scheme for dense matrix computations. Inter-processcommunication within ScaLAPACK is done via the Basic Linear AlgebraCommunication Subprograms (BLACS) [WD95].
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Fig. 4.3. The ScaLAPACK NetSolve Server Paradigm.Fig. 4.3 is a very simple description of how the NetSolve server has beencustomized to use the ScaLAPACK library. The customized server receivesdata input from the client in the traditional way. The NetSolve server usesBLACS calls to set up the ScaLAPACK process grid. ScaLAPACK requiresthat the data already be distributed among the processors prior to any li-brary call. This is the reason why each user input is �rst distributed on theprocess grid according to the block cyclic decomposition when necessary. Theserver can then initiate the call to ScaLAPACK and wait until completion ofthe computation. When the ScaLAPACK call returns, the result of the com-putation is distributed on the two-dimensional process grid. The server thengathers that result and sends it back to the client in the expected format.This process is completely transparent to the user who does not even realizethat a parallel execution has been taking place.



X. Parallel and Distributed Scienti�c Computing 485This approach is very promising. A client can use MATLAB on a PC andissue a simple call like [x] = netsolve('eig',a) and have an MPP systemuse a high-performance library to perform a large eigenvalue computation.A prototype of the customized server running on top of PVM [GBD+94] orMPI [SOH+96] has been designed. There are many research issues arisingwith integrating parallel libraries in NetSolve, including performance predic-tion, choice of processor-grid size, choice of numerical algorithm, processoravailability, accounting, etc.4.2.3 NetSolve and Ninf. Ninf [SSN+96], developed at the Electrotechni-cal Laboratory, Tsukuba, is a global network-wide computing infrastructureproject which allows users to access computational resources including hard-ware, software, and scienti�c data distributed across a wide area network withan easy-to-use interface. Computational resources are shared as Ninf remotelibraries and are executable at remote Ninf servers. Users can build an appli-cation by calling the libraries with the Ninf Remote Procedure Call, which isdesigned to provide a programming interface similar to conventional functioncalls in existing languages, and is tailored for scienti�c computation. In or-der to facilitate location transparency and network-wide parallelism, the NinfMetaServer maintains global resource information regarding computationalserver and databases. It can therefore allocate and schedule coarse-grainedcomputations to achieve good global load balancing. Ninf also interfaces withexisting network service such as the WWW for easy accessibility. Clearly, Net-Solve and Ninf bear strong similarities both in motivation and general design.Allowing the two systems to coexist and collaborate should lead to promisingdevelopments.Some design issues prevent an immediate seamless integration of the twosoftwares (conceptual di�erences between the NetSolve agent and the NinfMetaserver, problem speci�cations, user interfaces, data transfer protocols,etc.). In order to overcome these issues, the Ninf team started developing twoadapters: a NetSolve-Ninf adapter and a Ninf NetSolve-adapter. Thanks tothose adapters, Ninf clients can use computational resources administratedby a NetSolve system and vice-versa.
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486 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. WhaleyFig. 4.4(i) shows the Ninf-NetSolve adapter allowing access to Ninf re-source from a NetSolve client. The adapter is just seen by the NetSolve agentas any other NetSolve server. When a NetSolve client sends a request to theagent, it can then be told to use the NetSolve adapter. The adapter per-forms protocol translation, interface translation, and data transfer, asks aNinf server to perform the required computation and returns the result tothe user.In Fig. 4.4(ii), the NetSolve-Ninf adapter can be seen by the NinfMetaServer as a Ninf server, but in fact plays the role of a NetSolve client.This is a little di�erent from the Ninf-NetSolve adapter because the NetSolveagent is a resource broker whereas the Ninf MetaServer is a proxy server. Oncethe adapter receives the result of the computation from some NetSolve server,it transfers that result back to the Ninf client.There are several advantages of using such adapters. Updating theadapters to reects the evolutions of NetSolve or Ninf seems to be an easytask. Some early implementation evaluations tend to show that using eithersystem via an adapter causes acceptable overheads, mainly due to additionaldata transfers. Those �rst experiments appear encouraging and will de�nitelybe extended to e�ectively enable an integration of NetSolve and Ninf.4.2.4 Extending ImageVision by the use of NetSolve. In this sec-tion, we describe how NetSolve can be used as a building block for a generalpurpose framework for basic image processing, based on the commercial Im-ageVision library [ENB96]. This project is under development at the ICGinstitute at Graz University of Technology, Austria. The scope of the projectis to make basic image processing functions available for remote executionover a network. The goals of the project include two objectives that can beleveraged by NetSolve. First, the resulting software should prevent the userfrom having to install complicated image processing libraries. Second, thefunctionalities should be available via Java-based applications. The ImageVi-sion Library (IL) [ENB96] is an object-oriented library written in C++ bySilicon Graphics, Inc. (SGI) and shipped with newer workstations. It con-tains typical image processing routines to e�ciently access, manipulate, dis-play, and store image data. ImageVision has been judged quite complete andmature by the research team at ICG and seems therefore a good choice asan \engine" for building a remote access image processing framework. Sucha framework will make IL accessible from any platform (and not only fromSGI workstations) and is described in [Obe97].The reasons why NetSolve has been a �rst choice for such a project arediverse. First, NetSolve is easy to understand, use, and extend. Second, Net-Solve is freely available. Third, NetSolve provides language binding to For-tran, C, and Java. And �nally, NetSolve's agent-based design allows loadmonitoring and balancing among the available servers. New NetSolve com-putational modules corresponding to the desired image processing function-



X. Parallel and Distributed Scienti�c Computing 487alities will be created and integrated into the NetSolve servers. A big part ofthe project at ICG is to build a Java GUI to IL.
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Fig. 4.5. ImageVision and NetSolve.Fig. 4.5 shows a simple example of how ImageVision can be accessed viaNetSolve. A Java GUI can be built on top of the NetSolve Java API. As shownon the �gure, this GUI o�ers visualization capabilities. For computations, ituses an embedded NetSolve client and contacts SGI servers that have accessto IL. The user of the Java GUI does not realize that NetSolve is the back endof the system, or that he or she uses a SGI library without running the GUIon a SGI machine! The protocol depicted in the �gure is of course simplistic.In order to obtain acceptable levels of performance, the network tra�c needsto be minimized. There are several ways of attacking this problem: keepinga \state" in the server, combine requests, reference images with URLs forinstance, etc.5. ConclusionsThis chapter presented some of the recent developments in linear algebrasoftware designed to exploit advanced-architecture computers. We focused onthree essential components out of which current and modern problem solv-ing environments are constructed: well-designed numerical software libraries,



488 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaleyautomatic generators of optimized numerical kernels and exible, easy-to-access software systems enabling the hardware and software computationalresources. Each of these components was concretely illustrated with existingand/or ongoing research projects. We summarize below the most importantfeatures of these components. We hope the insight we gained from our workwill inuence future developers of hardware, compilers and systems softwareso that they provide tools to facilitate development of high quality portablescienti�c problem solving environments.5.1 Well-Designed Numerical Software LibrariesPortability of programs has always been an important consideration. Porta-bility was easy to achieve when there was a single architectural paradigm (theserial von Neumann machine) and a single programming language for scien-ti�c programming (Fortran) embodying that commonmodel of computation.Architectural and linguistic diversity have made portability much more dif-�cult, but no less important, to attain. Users simply do not wish to investsigni�cant amounts of time to create large-scale application codes for eachnew machine. Our answer is to develop portable software libraries that hidemachine-speci�c details.In order to be truly portable, parallel software libraries must be standard-ized. In a parallel computing environment in which the higher-level routinesand/or abstractions are built upon lower-level computation and message-passing routines, the bene�ts of standardization are particularly apparent.Furthermore, the de�nition of computational and message-passing standardsprovides vendors with a clearly de�ned base set of routines that they canimplement e�ciently.From the user's point of view, portability means that, as new machinesare developed, they are simply added to the network, supplying cycles wherethey are most appropriate.From the mathematical software developer's point of view, portabilitymay require signi�cant e�ort. Economy in development and maintenance ofmathematical software demands that such development e�ort be leveragedover as many di�erent computer systems as possible. Given the great diversityof parallel architectures, this type of portability is attainable to only a limiteddegree, but machine dependences can at least be isolated.Like portability, scalability demands that a program be reasonably e�ec-tive over a wide range of number of processors. The scalability of parallelalgorithms, and software libraries based on them, over a wide range of ar-chitectural designs and numbers of processors will likely require that thefundamental granularity of computation be adjustable to suit the particularcircumstances in which the software may happen to execute. The ScaLA-PACK approach to this problem is block algorithms with adjustable blocksize.



X. Parallel and Distributed Scienti�c Computing 489Scalable parallel architectures of the present and the future are likely to bebased on a distributed-memory architectural paradigm. In the longer term,progress in hardware development, operating systems, languages, compilers,and networks maymake it possible for users to view such distributed architec-tures (without signi�cant loss of e�ciency) as having a shared-memory witha global address space. Today, however, the distributed nature of the under-lying hardware continues to be visible at the programming level; therefore,e�cient procedures for explicit communication will continue to be necessary.Given this fact, standards for basic message passing (send/receive), as well ashigher-level communication constructs (global summation, broadcast, etc.),have become essential to the development of scalable libraries that have anydegree of portability. In addition to standardizing general communicationprimitives, it may also be advantageous to establish standards for problem-speci�c constructs in commonly occurring areas such as linear algebra.Traditionally, large, general-purpose mathematical software libraries haverequired users to write their own programs that call library routines to solvespeci�c subproblems that arise during a computation. Adapted to a shared-memory parallel environment, this conventional interface still o�ers some po-tential for hiding underlying complexity. For example, the LAPACK projectincorporates parallelism in the Level 3 BLAS, where it is not directly visibleto the user.When going from shared-memory systems to the more readily scalabledistributed-memory systems, the complexity of the distributed data struc-tures required is more di�cult to hide from the user. One of the majordesign goal of High Performance Fortran (HPF) [KLS+94] was to achieve(almost) a transparent program portability to the user, from shared-memorymultiprocessors up to distributed-memory parallel computers and networksof workstations. But writing e�cient numerical kernels with HPF is not aneasy task. First of all, there is the need to recast linear algebra kernels interms of block operations (otherwise, as already mentioned, the performancewill be limited by that of Level 1 BLAS routines). Second, the user is requiredto explicitly state how the data is partitioned amongst the processors. Third,not only must the problem decomposition and data layout be speci�ed, butdi�erent phases of the user's problem may require transformations betweendi�erent distributed data structures. Hence, the HPF programmer may wellchoose to call ScaLAPACK routines just as he called LAPACK routines onsequential processors with a memory hierarchy. To facilitate this task, an in-terface has been developed [BDP+98]. The design of this interface has beenmade possible because ScaLAPACK is using the same block-cyclic distribu-tion primitives as those speci�ed in the HPF standards. Of course, HPF canstill prove a useful tool at a higher level, that of parallelizing a whole scien-ti�c operation, because the user will be relieved from the low level details ofgenerating the code for communications.



490 A. Petitet, H. Casanova, J. Dongarra; , Y. Robert and R. C. Whaley5.2 Automatic Generation and Optimization of NumericalKernels on Various Processor ArchitecturesThe ATLAS package presently available on netlib is organized around thematrix-matrix multiplication. This operation is the essential building blockof all of the Level 3 BLAS. Initial research using publicly available matrix-multiply-based BLAS implementations [KLV93, DDP94] suggests that thisprovides a perfectly acceptable Level 3 BLAS. As time allows, we can avoidsome of the O(N2) costs associated with using the matrix-multiply-basedBLAS by supporting the Level 3 BLAS directly in ATLAS. We also plan onproviding the software for complex data types.We have preliminary results for the most important Level 2 BLAS routine(matrix-vector multiply) as well. This is of particular importance, becausematrix vector operations, which have O(N2) operations and O(N2) data, de-mand a signi�cantly di�erent code generation approach than that required formatrix-matrix operations, where the data is O(N2), but the operation countis O(N3). Initial results suggest that ATLAS will achieve comparable successwith optimizing the Level 2 BLAS as has been achieved for Level 3 (thismeans that the ATLAS timings compared to the vendor will be comparable;obviously, unless the target architecture supports many pipes to memory, aLevel 2 BLAS operation will not be as e�cient as the corresponding Level 3BLAS operation).Another avenue of ongoing research involves sparse algorithms. The fun-damental building block of iterative methods is the sparse matrix-vector mul-tiply. This work leverages the present research (in particular, make use of thedense matrix-vector multiply). The present work uses compile-time adapta-tion of software. Since matrix-vector multiply may be called literally thou-sands of times during the course of an iterative method, run-time adaptationis also investigated. These run-time adaptations may include matrix depen-dent transformations [Tol97], as well as speci�c code generation.ATLAS has demonstrated the ability to produce highly optimized matrixmultiply for a wide range of architectures based on a code generator thatprobes and searches the system for an optimal set of parameters. This avoidsthe tedious task of generating by hand routines optimized for a speci�c archi-tecture. We believe these ideas can be expanded to cover not only the Level 3BLAS, but Level 2 BLAS as well. In addition there is scope for additionaloperations beyond the BLAS, such as sparse matrix-vector operations, andFFTs.5.3 The NetSolve Problem Solving EnvironmentWe have discussed throughout this chapter how NetSolve can be customized,extended, and used for a variety of purposes. We �rst described in Sec-tions 4.2.1 and 4.2.2 how NetSolve can encompass new types of computingresources, resulting in a more powerful and exible environment and raising



X. Parallel and Distributed Scienti�c Computing 491new research issues. We next discussed in Section 4.2.3 how NetSolve andNinf can be merged into a single metacomputing environment. Finally, inSection 4.2.4, we gave an example of an entire application that uses NetSolveas an operating environment to build general image processing framework.Allthese developments take place at di�erent levels in the NetSolve project andhave had and will continue to have an impact on the project itself, causingit to improve and expand.The scienti�c community has long used the Internet for communication ofemail, software, and documentation. Until recently there has been little use ofthe network for actual computations. This situation is changing rapidly andwill have an enormous impact on the future. Novel user interfaces that hidethe complexity of scalable parallelism require new concepts and mechanismsfor representing scienti�c computational problems and for specifying howthose problems relate to each other. Very high level languages and systems,perhaps graphically based, not only would facilitate the use of mathematicalsoftware from the user's point of view, but also help to automate the deter-mination of e�ective partitioning, mapping, granularity, data structures, etc.However, new concepts in problem speci�cation and representation may alsorequire new mathematical research on the analytic, algebraic, and topologicalproperties of problems (e.g., existence and uniqueness).Software and Documentation AvailabilityMost of the software mentioned in this document and the correspondingdocumentations are in the public domain, and are available from netlib(http://www.netlib.org/) [DG87]. For instance, the EISPACK, LINPACK,LAPACK, BLACS, ScaLAPACK, and ATLAS software packages are in thepublic domain, and are available from netlib. Moreover, these publically avail-able software packages can also be retrieved by e-mail. For example, toobtain more information on LAPACK, one should send the following one-line email message to netlib@ornl.gov: send index from lapack. Infor-mation for other packages can be similarly obtained. Real-time informa-tion on the NetSolve project can be found at the following web addresshttp://www.cs.utk.edu/netsolve.References[ABB+95] Anderson E., Bai Z., Bischof C., Demmel J., Dongarra J., Du CrozJ., Greenbaum A., Hammarling S., McKenney A., Ostrouchov S. andSorensen D., LAPACK User's Guide (second edition), SIAM, Philadel-phia PA, 1995.
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