TT G 7EMPLATE TASK GRAPHS

TEMPLATE TASK GRAPHS

FIND 0UT MORE AT https://github.com/TESSEorg/ttg

The Templated Task Graph API / DSL has been developed to enable a straightforward expression of the parallelism for algorithms that work on
irregular and unbalanced data sets. Combining our experience with MADNESS, TiledArray and PaRSEC, the DSL employs C++ templates to build an

internal representation of the Distributed DAG of Tasks.

OVERALL OBJECTIVE

- Provide an intermediate-level expression of data-dependent
irregular algorithms while leveraging a powerful micro-task
runtime to manage dependencies, scheduling, and data motion
within the data flow.

- Encourage programs that avoid non-essential barriers and
intermediates, express available concurrency without drowning

the developer in detail, and reap most benefits of fusion within a

more general framework

- An extensible, robust and scalable directed acyclic graph (DAG)

execution model supported by an intelligent and dynamic runtime

that can adapt to changing requirements presented by the
evolving numerical theories and HPC platforms.

PERFORMANCE

Dense Linear Algebra:
Cholesky Factorization (strong scaling)

—%~ DPLASMA (8 GPUs per process) i
600 - %~ DPLASMA (2 GPUs per process)
—%- DPLASMA (1 GPUs per process)
—&— TTG (8 GPUs per process)
500 + &~ TTG (2 GPUs per process)
~& TTG (1 GPUs per process)

Performance [TF/s]
w
(=]
o

B e

T T T T T T T
0 10 20 30 40 50 60
Number of Nodes

Irregular, Data-Dependent Operation:
Multi-Resolution Analysis (strong scaling)

407X, =X~ TTG (MADNESS)
-¥- TTG (PaRSEC)

35 -¥- MADNESS (NATIVE)
Bt
2
8251 x_
v
€ N
£20
<
s
315
g
£
&

10

5

41160 8/320 16/640 32/1280

£
Number of Nodes / Number of Cores

TTG KEY CONCEPTS

EE =

Parameterize each task that will execute the operation by a key or
index (e.g. a loop index making a separate task for each iteration;
the label of each node in a tree being traversed; a pair of indices
labelling a matrix sub-block).

Avoid describing / observing the entire task graph at once (avoid
memory clogging).

Fully parallelized distributed task graph discovery at scale.
Data labeled by a key to match with consuming task.

Through each output, a task can send data to a specific successor
(identified by its key), or broadcast to multiple successors (keys).

Dense Stencil-Like operation:
Floyd-Warshall (strong scaling)

10°

@ MPI+OpenMP[128] ey Rl el o
—}- MPI+OpenMP [256]
-¥- MPI+OpenMP [64]
~@-- TTG (MADNESS) [128]
—}- TTG (MADNESS) [256]
%~ TTG (MADNESS) [64]
~-@- TTG (PaRSEC) [128]
—}- TTG (PaRSEC) [256]
-¥- TTG (PaRSEC) [64]

Execution Time (seconds)

1128 4/512 16/2048 64/8192 256/32768
Number of Nodes / Number of Cores

TUTORIAL

Template Task Graphs:
An Introduction

Watch on YouTube:
https://youtu.be/BOavGaSviqQ

THE UNIVERSITY OF

ICL INNOVATIVE COMPUTING LABORATORY TENNESSEE

KNOXVILLE

TTG TeMPLATE TASKGRAPHS 55

FIND 0UT MORE AT https://github.com/TESSEorg/ttg

: :Edge< . > to_B;
Edge< s > B_to_Co;
: :Edge< s > B_to_C1; tA()

Abstract Task Graphs
ta = ttg::make_tt< >(ouT double a e.g. TS;nng:’tg Janﬂ((;Grram:s,ﬁ :?e':'SrEB% PTG, .

Of{
ttg::send<0>(0, 0.0); to B
ttg::send<0>(1, 1.0); -

}J
ttg::edges(), ttg::edges(to_B), IN constdouble a
"EATY 3

TASK BASED
PROGRAMMING
PARADIGMS

tB(k)
auto tb = ttg::make_tt(
[=1¢ o € our doubleod double o1
if(0 == k) ttg::sendk<0>(a);
if(1 == k) ttg::sendk<1>(a); B_to_CO l l B_to_C1
}J
ttg::edges(to_B), const const TT(
ttg::edges(B_to_C0, B_to_C1), N double i0 double il T TG
"EB"); p— AN ABSTRACT TASK GRAPHS PARADIGM
auto tc = ttg::make_tt<void>(« Abstract Task Graphs rely on a
¢ &io, representation of the folded graph of
&i1) { .
ttg: :print(task classes which allows a fully
"This is task CO)", tA() distributed and scalable discovery of the
" it received values ", 0.0 1.0 DAG of tasks at runtime
i@," and ", i1);)
3, \ » Continuations require to manage a
ttg::edges(B_to_C@, B_to_C1), collection of futures whose size is linear
ttg::edges(), in the number of edges in the entire
ey ; t8(0) 5D DAG of tasks.
ttg: :make_graph_executable(ta); - Insert Task builds the DAG of tasks
if(ta->get_world().rank() ==) { 00\4 ‘/10 transparently by deducing it from the
ta->invoke(); apparent order of data access in a
¥ tc() sequential discovery of tasks, linear in
ttg::execute(); .
ttg::fence(tb->get_world()); the problem Size.
HIGHLIGHT 10°4
Modular Programming in TTG: fine-grain
task composition =
[Y)
Inverse Cholesky Factorization: the POTRI operation can be seen as the @ 104 4
composition of two parallel operations: TRTRI and LAUUM. Both operations e
are expressed in a task-based algorithm, over two Task-Based programming g
paradigms: Chameleon/StarPU uses the Insert Task paradigm, and all tasks G pean . <o T e DT
of TRTRI need to be discovered before the first task of LAUUM can be * f,,x =¥ TTG (POTRI) [tile size 128]
dlscovgred and performed. The Abst.ract Task (.-i!'aph approach of TG gllows 100 X¢ - ﬂ;’:‘:(')eT"r:‘l’)-"[tt:'eP‘SJIZ‘:"zessge 2551
to provide the same level of fine-grain composition, while removing this ~¥- Chameleon/StarPU tile size 512]
limitation, as both graphs of (template) tasks are entirely expressed at the . = TIGIROTRI) [HIESIze512]
beginning, in a problem-size independent way. 0 20 40 60 80 100 120
Number of Nodes
IN COLLABORATION WITH SPONSORED BY
\ S National
Q\\\\ Stqny B?OOk Q’ z; ﬁrSF Science
University VIRGINIA TECH /" Foundation

THE UNIVERSITY OF

ICL INNOVATIVE COMPUTING LABORATORY TENNESSEE

KNOXVILLE

