INTRODUCTION

SpikeRL

FIND OUTMOREAT https://github.com/icl-utk-edu/spike-rl

In this modern era of Al revolution, there have been massive and rapid investments in large-scale Al systems. This proliferation

of Al brings new optimization challenges for sustainability without losing scalability and performance in real world applications. In
this work, a novel model called SpikeRL is introduced, which is a scalable and efficient framework for Deep Reinforcement Learning
(DeepRL) based Spiking Neural Networks (SNNs) for complex continuous control tasks.

SpikeRL ARCHITECTURE

The SpikeRL framework consists of three major components.

I. A DeepRL-based SNN model utilizing population encoding and decoding which
optimizes the representation capacity and computational efficiency of the network.

II.  Distributed training with both Message Passing Interface (MPI) and NVIDIA Collective
Communications Library (NCCL) backend, implemented through the PyTorch

Distributed package.

III. Mixed-precision training with BFLOAT16 for optimizing the parameter updates during

model training.
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EXPERIMENTAL RESULTS

The experiments were conducted on ICL's cluster using Guyot's 8 Nvidia A100 80GB
GPUs which are well suited for mixed precision and distributed training tasks in deep
learning. SpikeRL was tested in various challenging continuous control environments
from the MuJoCo physics simulator such as the Ant-v4, HalfCheetah-v4, Hopper-v4,
and Wallker2D-v4. Results presented here are for the HalfCheetah-v4 environment.
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HalfCheetah-v4: Mean and Std (5 runs)

Performance results comparison demonstrated that SpikeRL achieved 3.72% more
average rewards over the Population Coded Spiking Actor Network (PopSAN) and
45.47% more than the Deep Spiking Reinforcement Learning (DSRL) method.
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HalfCheetah-v4 GPS-UP Quadrant Graph

The GPS-UP quadrant graph shows the energy efficiency of SpikeRL over PopSAN
using the GreenUp metric which is measured as Greenup = Speedup / Powerup.
SpikeRL achieved on average 1.48x Speedup, 0.98x Powerup, and 1.52x Greenup over
PopSAN.
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HalfCheetah-v4 Carbon Footprint Analysis

The energy efficiency of SpikeRL shows a direct impact in the carbon footprint
analysis where SpikeRL reduces carbon emission by 34.8% compared to PopSAN
which is equivalent to 34.2% less weekly household emissions, 36.4% less miles
driven of a gasoline car, and 25% less tv hours watched. The distributed training along
with mixed-precision optimization makes SpikeRL more energy efficient than other
state-of-the-art SNN methods.
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