
PROCESS

THREAD 2

THREAD 0

THREAD 3

THREAD 1

VDP

VDP

VDP

VDP VDP

VDP VDP

VDP VDP VDP

VDP

MPI

MPI

PROXY

QUEUE 1

QUEUE 0

QUEUE 2

QUEUE 3

PULSAR (Parallel Ultra Light Systolic Array Runtime) 
offers a simple programming model for large-scale 
distributed-memory machines with multicore 
processors and hardware accelerators. PULSAR 
automates multithreading, message-passing, and 
multi-stream multi-GPU programming.

This programming model is accessible to the user through a very small and 
simple Application Programming Interface (API). All the complexity of 
executing the workload on a large-scale system is hidden in the runtime 
implementation. While the user invokes simple push and pull channel 
operations, the runtime takes appropriate actions, depending on the 
boundaries crossed by the channel, i.e., uses shared memory for VDPs 
residing in the same node, uses message-passing for VDPs residing in 
different nodes, uses Direct Memory Access (DMA) transfers between CPU 
VDPs and GPU VDPs.

PROGRAMMING MODEL

FIND OUT MORE AT https://bitbucket.org/icl/pulsar

RUNTIME SYSTEM

BENEFITS OF PULSAR

PACKETS

VDP

PERSISTENT
LOCAL STORE

CODE

GLOBAL
PARAMS

READ/WRITE READ ONLY

PACKETS

Simple Programming Model 

Lightweight Runtime System 

Multithreading & Message-passing

Multi-stream Multi-GPU execution

Minimum Overhead / Maximum Scalability

SPONSORED BY

National Science Foundation

PROCESS

HOST MEMORY

PROXY

DEVICE MEMORY

GPU 0

VDP VDP VDP

DEVICE MEMORY

GPU 1

VDP VDP VDP

CPU 0 CPU 1

VDP VDP

VDP

VDP

VDP

VDP

MPI MULTICORE

MPI MULTICORE
ACCELERATORS

MPI MPI

0 200 400 600 800 1000
0

50

100

150

200

TF
LO

PS

NUMBER OF NODES = NUMBER OF CPU SOCKETS = NUMBER OF GPUS

GPU SCALING 
IDEAL

GPU SCALING 
ACTUAL

CPU SCALING 
IDEAL

CPU SCALING 
ACTUAL

WEAK SCALING OF THE CANNON'S ALGORITHM USING 8KX8K 
(A, B AND C) MATRICES PER NODE
Titan@ORNL, CPUs: 16-core AMD Interlagos, GPUs: NVIDIA Tesla K20X.

PULSAR offers a simple programming model, where the user defines the 
computation in the form of a Virtual Systolic Array (VSA), which is a set of Virtual 
Data Processors (VDPs), connected with data channels. The VDP is assigned a 
function, which defines its operation. Within that function, the VDP has access to 
a set of global parameters, its private, persistent local storage, and its channels. 
The runtime invokes that function when there are packets in all of the VDP’s input 
channels. This is called firing. When the VDP fires, it can fetch packets from its 
input channels, call computational kernels, and push packets to its output 
channels.


