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3D Data Grid mapped onto 
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FIND OUT MORE AT http://icl.cs.utk.edu/hpcg

IN COLLABORATION WITH SPONSORED BY

PRECONDITIONED CONJUGATE 
GRADIENT SOLVER

The HPC Conjugate Gradient (HPCG) 
benchmark uses a Preconditioned 
Conjugate Gradient (PCG) algorithm 
to measure the performance of HPC 
platforms with respect to frequently 
observed, and yet challenging, 
patterns of execution, memory 
access, and global communication. 

The PCG implementation uses a regular 
27-point stencil discretization in 3 dimensions 
of an elliptic Partial Differential Equation (PDE). 
The 3D domain is scaled to fill a 3D virtual 
process grid of all available MPI process 
ranks. The CG iteration includes a local and 
symmetric Gauss-Seidel preconditioner, which 
computes a forward and a back solve with a 
triangular matrix. All of these features 
combined allow HPCG to deliver a more 
accurate performance metric for modern HPC 
hardware architectures.
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A New Yardstick for Supercomputers
The High Performance Conjugate Gradients (HPCG) benchmark 
implements the preconditioned Conjugate Gradient method with a 
local symmetric Gauss-Seidel preconditioner and a three-level 
multigrid and is quickly becoming the new HPC metric of choice.

In doing so, HPCG is designed to measure performance that is 
representative of many important scientific codes, or computational 
patterns, with low compute-to-data-access ratios. To simulate these 
patterns, commonly found in real applications, HPCG exhibits the 
same irregular accesses to memory as well as fine-grain recursive 
computations that dominate many important HPC workloads.

In contrast to the new HPCG metric, HPL factors and solves a large 
dense system of linear equations using Gaussian elimination with 
partial pivoting. Thus, the dominant calculations in the HPL 
implementation are dense matrix-matrix multiplication and related 
kernels. With proper organization of the computation, data access is 
predominantly unit-stride and is mostly hidden by concurrently 
performing computations on previously retrieved data. This kind of 
algorithm strongly favors computers with very high floating-point 
performance and only adequate streaming memory systems. 

In general, a well-rounded computer system should be designed to 
execute both computational patterns efficiently, as this combination 
allows the system to run a broad mix of applications and run them 
well. For a metric to test the true capabilities of a general-purpose 
computer, it should stress both patterns. However, HPL only stresses 
the floating-point oriented patterns, and, as a metric, is incapable of 
measuring the irregular data access patterns. 

Another issue with the existing performance metrics stems from the 
emergence of accelerators, which are extremely effective (relative to 
multicore CPUs) with compute-intensive patterns, but much less so 
with the irregular patterns. For many users, HPL results show a 
skewed picture relative only to compute-bound application 
performance. This is especially true on machines that are heavily 
biased toward irregular codes, and not so on machines that use 
accelerators for the majority of the computational power.

HPCG Algorithmic Design
The HPCG Benchmark alleviates many of the problems described 
above with help of the following design principles:

Provide coverage of the major communication and computational 
patterns: The major communication (global and neighborhood 
collectives) and computational patterns (vector updates, dot products, 
sparse matrix-vector multiplications, and local triangular solves) from 
our production differential equation codes, both implicit and explicit, 
are present in this benchmark. Emerging asynchronous collectives 
and other latency-hiding techniques can be explored in the context of 
HPCG and aid in their adoption and optimization on future systems.

Represents a minimal collection of the major patterns: HPCG is the 
smallest benchmark code containing these major patterns, while at 
the same time representing a real mathematical computation, which 
aids in Validation and Verification efforts.

Rewards investment in high-performance of collectives: 
Neighborhood and all-reduce collectives represent essential 
performance bottlenecks for our applications that can benefit from 
high-quality system design. Improving the performance of HPCG will 
improve the performance of these production codes.

Rewards investment in local memory system performance: The local 
processor performance of HPCG is largely determined by the effective 
use of the local memory system. Improvements in the implementation 
of HPCG data structures, compilation of HPCG code, and the 
performance of the underlying system will improve HPCG benchmark 
results and real application performance, and will inform application 

developers on new approaches to optimization of their own 
implementations.

Detects and measures variance values for bitwise identical 
computations: It is widely believed that future computer systems will 
not be able to provide deterministic execution paths for floating-point 
computations. Because floating-point addition is not associative, this 
means we will generally not have bitwise reproducible results, even 
when running the same exact computation twice on the same number 
of processors of the same system. This is in contrast with many of our 
MPI-only applications today, and presents a big challenge to 
applications that must certify their computational results and debug in 
the presence of bitwise variability. HPCG will make the deviation from 
bitwise reproducibility apparent. The reference code will be 
implemented in C++ (a commonly implemented subset of the C++11 
standards and mostly compatible with C++98).

HPCG Overview
The HPCG code base performs the following steps:

Problem setup: Generates a synthetic symmetric positive definite 
(SPD) matrix A using the compressed sparse row format, and a 
corresponding right-hand-side vector b, and initial guess for x.

Preconditioner setup: Initializes the data structures for the local 
symmetric Gauss-Seidel preconditioner. The reference version uses a 
simple compressed sparse row representation for the lower and 
upper triangular matrices, each one as a separate matrix.

Verification and validation setup: Computes pre-conditions, 
post-conditions, and invariants that will aid in the detection of 
anomalies during the iteration phases due to, e.g., optimization errors.

Iteration: Performs m iterations, n times, using the same initial guess 
each time, where m and n are sufficiently large to test system uptime. 
By doing this, we can compare the numerical results for 
“correctness” at the end of each m-th iteration phase.

Post-processing and reporting: Reports a single timing result and 
other metrics. The HPCG benchmark generates a synthetic discretized 
three-dimensional partial differential equation model problem, and 
computes preconditioned conjugate gradient iterations for the 
resulting sparse linear system. The model problem can be interpreted 
as a single degree of freedom heat diffusion model with zero Dirichlet 
boundary conditions. The global domain dimensions are nx x Px x ny x 
Py x nz x Pz  where nx x ny x nz are the local sub-grid dimensions in the 
x, y, and z dimensions, respectively, assigned to each MPI process. 
These values are read from the data file hpcg.dat, or are passed in as 
command line arguments. The dimensions Px x Py x Pz, are a factoring 
of the MPI process space that is computed automatically in the HPCG 
setup phase. We impose ratio restrictions on both the local and global 
x, y, and z dimensions, which are enforced in the setup phase of 
HPCG. 

The validation includes a symmetry test for the sparse matrix multiply 
with discretization matrix A: |xtAy - ytAx|, and for the symmetric 
Gauss-Seidel preconditioner M: |xtMy - ytMx|. Also included is a test 
for fast convergence of the CG algorithm on a modified matrix A that 
is close to being diagonal.

Future Work Directions
Two major undertakings are currently being considered for short-term 
inclusion in the code base. The first is an optimized version of the 
symmetric Gauss-Seidel preconditioner based on a generic 
multicoloring algorithm. The second, further down the line, is support 
for unassembled matrix data in order to aid in better mapping to 
performance characteristics of science applications.


