
SAMPLE RESULTS

Au = f

27-point discretization
of a regular 3D grid

L[u] ∇2u = f

Halo Exch
ange

 v
ia

 M
P

I

3D Data Grid mapped onto
a 3D Process Grid of MPI

FIND OUT MORE AT http://icl.cs.utk.edu/hpcg

IN COLLABORATION WITH SPONSORED BY

PRECONDITIONED CONJUGATE
GRADIENT SOLVER

The HPC Conjugate Gradient (HPCG)
benchmark uses a Preconditioned
Conjugate Gradient (PCG) algorithm
to measure the performance of HPC
platforms with respect to frequently
observed, and yet challenging,
patterns of execution, memory
access, and global communication.

The PCG implementation uses a regular
27-point stencil discretization in 3 dimensions
of an elliptic Partial Differential Equation (PDE).
The 3D domain is scaled to fill a 3D virtual
process grid of all available MPI process
ranks. The CG iteration includes a local and
symmetric Gauss-Seidel preconditioner, which
computes a forward and a back solve with a
triangular matrix. All of these features
combined allow HPCG to deliver a more
accurate performance metric for modern HPC
hardware architectures.

PEAK

HPCG

1000

100

10

1

.10

.01

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

T O P 5 0 0 R A N K

T
F

L
O

P
/S

MULTIGRID

A New Yardstick for Supercomputers
The High Performance Conjugate Gradients (HPCG) benchmark
implements the preconditioned Conjugate Gradient method with a
local symmetric Gauss-Seidel preconditioner and a three-level
multigrid and is quickly becoming the new HPC metric of choice.

In doing so, HPCG is designed to measure performance that is
representative of many important scientific codes, or computational
patterns, with low compute-to-data-access ratios. To simulate these
patterns, commonly found in real applications, HPCG exhibits the
same irregular accesses to memory as well as fine-grain recursive
computations that dominate many important HPC workloads.

In contrast to the new HPCG metric, HPL factors and solves a large
dense system of linear equations using Gaussian elimination with
partial pivoting. Thus, the dominant calculations in the HPL
implementation are dense matrix-matrix multiplication and related
kernels. With proper organization of the computation, data access is
predominantly unit-stride and is mostly hidden by concurrently
performing computations on previously retrieved data. This kind of
algorithm strongly favors computers with very high floating-point
performance and only adequate streaming memory systems.

In general, a well-rounded computer system should be designed to
execute both computational patterns efficiently, as this combination
allows the system to run a broad mix of applications and run them
well. For a metric to test the true capabilities of a general-purpose
computer, it should stress both patterns. However, HPL only stresses
the floating-point oriented patterns, and, as a metric, is incapable of
measuring the irregular data access patterns.

Another issue with the existing performance metrics stems from the
emergence of accelerators, which are extremely effective (relative to
multicore CPUs) with compute-intensive patterns, but much less so
with the irregular patterns. For many users, HPL results show a
skewed picture relative only to compute-bound application
performance. This is especially true on machines that are heavily
biased toward irregular codes, and not so on machines that use
accelerators for the majority of the computational power.

HPCG Algorithmic Design
The HPCG Benchmark alleviates many of the problems described
above with help of the following design principles:

Provide coverage of the major communication and computational
patterns: The major communication (global and neighborhood
collectives) and computational patterns (vector updates, dot products,
sparse matrix-vector multiplications, and local triangular solves) from
our production differential equation codes, both implicit and explicit,
are present in this benchmark. Emerging asynchronous collectives
and other latency-hiding techniques can be explored in the context of
HPCG and aid in their adoption and optimization on future systems.

Represents a minimal collection of the major patterns: HPCG is the
smallest benchmark code containing these major patterns, while at
the same time representing a real mathematical computation, which
aids in Validation and Verification efforts.

Rewards investment in high-performance of collectives:
Neighborhood and all-reduce collectives represent essential
performance bottlenecks for our applications that can benefit from
high-quality system design. Improving the performance of HPCG will
improve the performance of these production codes.

Rewards investment in local memory system performance: The local
processor performance of HPCG is largely determined by the effective
use of the local memory system. Improvements in the implementation
of HPCG data structures, compilation of HPCG code, and the
performance of the underlying system will improve HPCG benchmark
results and real application performance, and will inform application

developers on new approaches to optimization of their own
implementations.

Detects and measures variance values for bitwise identical
computations: It is widely believed that future computer systems will
not be able to provide deterministic execution paths for floating-point
computations. Because floating-point addition is not associative, this
means we will generally not have bitwise reproducible results, even
when running the same exact computation twice on the same number
of processors of the same system. This is in contrast with many of our
MPI-only applications today, and presents a big challenge to
applications that must certify their computational results and debug in
the presence of bitwise variability. HPCG will make the deviation from
bitwise reproducibility apparent. The reference code will be
implemented in C++ (a commonly implemented subset of the C++11
standards and mostly compatible with C++98).

HPCG Overview
The HPCG code base performs the following steps:

Problem setup: Generates a synthetic symmetric positive definite
(SPD) matrix A using the compressed sparse row format, and a
corresponding right-hand-side vector b, and initial guess for x.

Preconditioner setup: Initializes the data structures for the local
symmetric Gauss-Seidel preconditioner. The reference version uses a
simple compressed sparse row representation for the lower and
upper triangular matrices, each one as a separate matrix.

Verification and validation setup: Computes pre-conditions,
post-conditions, and invariants that will aid in the detection of
anomalies during the iteration phases due to, e.g., optimization errors.

Iteration: Performs m iterations, n times, using the same initial guess
each time, where m and n are sufficiently large to test system uptime.
By doing this, we can compare the numerical results for
“correctness” at the end of each m-th iteration phase.

Post-processing and reporting: Reports a single timing result and
other metrics. The HPCG benchmark generates a synthetic discretized
three-dimensional partial differential equation model problem, and
computes preconditioned conjugate gradient iterations for the
resulting sparse linear system. The model problem can be interpreted
as a single degree of freedom heat diffusion model with zero Dirichlet
boundary conditions. The global domain dimensions are nx x Px x ny x
Py x nz x Pz where nx x ny x nz are the local sub-grid dimensions in the
x, y, and z dimensions, respectively, assigned to each MPI process.
These values are read from the data file hpcg.dat, or are passed in as
command line arguments. The dimensions Px x Py x Pz, are a factoring
of the MPI process space that is computed automatically in the HPCG
setup phase. We impose ratio restrictions on both the local and global
x, y, and z dimensions, which are enforced in the setup phase of
HPCG.

The validation includes a symmetry test for the sparse matrix multiply
with discretization matrix A: |xtAy - ytAx|, and for the symmetric
Gauss-Seidel preconditioner M: |xtMy - ytMx|. Also included is a test
for fast convergence of the CG algorithm on a modified matrix A that
is close to being diagonal.

Future Work Directions
Two major undertakings are currently being considered for short-term
inclusion in the code base. The first is an optimized version of the
symmetric Gauss-Seidel preconditioner based on a generic
multicoloring algorithm. The second, further down the line, is support
for unassembled matrix data in order to aid in better mapping to
performance characteristics of science applications.

