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The objective of the Software for Linear Algebra Targeting Exascale (SLATE) project is to provide
. Qies Targets Modern Hardware
fundamental dense linear algebra capabilities to the US Department of Energy and to the
high-performance computing (HPC) community at large. To this end, SLATE provides basic dense such as emerging exascale systems with
matrix operations (e.g., matrix multiplication, rank-k update, triangular solve), norms, linear hia"yweéght T?dles C:"ta'“'“lg multi-core
systems solvers, least square solvers, and singular value and eigenvalue solvers. The ultimate CPUs and multiple GPU accelerators.
objective of SLATE is to replace the venerable Scalable Linear Algebra PACKage (ScaLAPACK) library. »
Guarantees Portability
— — by relying on standard computational
I EXAALT ‘ | NWChemEx 1 |STRUMPACK H WarpX } | ‘ components (e.g,, vendor implementations of
BLAS and LAPACK) and standard parallel
programming technologies (e.g., MPI,
S LATE OpenMP) or portable runtime systems (e.g.,
PaRSEC).
MPJ | 0 enM BLAS++ /LAPACK++ . .
| P Provides Scalability
ESSL | cuBLAS |rocBLAS m by employing proven techniques of dense
linear algebra, such as the 2-D block cyclic
data distribution, as well as modern parallel
- l—l programming approaches, like dynamic
|A”““t'°"s‘ Standards m scheduling and communication overlapping.
Primarily, SLATE aims to extract the full performance potential and maximum scalability from Ensures Maintainability
modern, many-node HPC machines with large numbers of cores and multiple hardware accelerators by employing useful facilities of the C++
per node. For typical dense linear algebra workloads, this means getting close to the theoretical language, such as templates and overloading
peak performance and scaling to the full size of the machine (i.e., thousands to tens of thousands of of functions and operators, and focused on
d This i lished i bl b - MPI. OpenMP dc dard minimizing code bloat by relying on compact
nodes). This is accomplished in a portable manner by relying on , Ope , and C++ standards. representations.
BLAS++ AND LAPACK++ Designed as independent libraries to be used separately from SLATE, these form
a C++ interface and portability layer over both CPU Fortran BLAS and LAPACK,
and GPU BLAS and LAPACK functionality in cuBLAS/cuSolver,
rocBLAS/rocSolver, and oneMKL. The latest updates provide complete Level 1, 2,
and 3 BLAS coverage on the GPU. \ )
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PERFORMANCE

The SLATE GPU-accelerated version attains up to 100x speedup over the CPU.
Weak scaling, from 1to 2048 nodes, totaling 8 to 16384 AMD MI250X GPU GCDs. CPU-only runs were done
from 1to 64 nodes, totaling 56 to 3584 AMD EPYC CPU cores.

: AR

m U

: [

T

SLATE COVERAGE
BASIC LINEAR ALGEBRA (C = AB, ...)
ScaLAPACK SLATE

Level 1 PBLAS &
Level 2 PBLAS /1 W partial )
Level 3 PBLAS & &
Auxiliary routines (add, set, scale, ...) & &
Matrix norms < /1
Test matrix generation « /1

Weak scaling for matrix multiply (gemm)
on Frontier for a local problem size of 80,000 x 80,000 per node

¥ SLATE on GPUs achieves 94.7x to
LINEAR SYSTEMS (Ax = b) . ] sp ee dup P 107.2x speedup compared to the
ScalLAPACK SLATE 107 4 lineaf CPU. Performance is falling off the
—— k| linear speedup line for a larger
LU (partial pivoting) /1 (4 10% ] number of nodes.
CALU (tournament pivoting) D) SLATE on CPUs is 7.2% t0 10.5%
LU, band (pp) /A & £ 210" ] faster than ScaLAPACK; the lines
o g appear almost coincident at this
LU (non-pivoting) v = ] scale. This closeness is expected
10" since both are a significant fraction
LU Random Butterfly (RBT) & Em cP of the CPU peak. On 64 nodes,
LU BEAM solver (@ dovbranch ) 100 1 SLATE CPU gemm achieves 80.7%
— E of peak at 92,6 Tflop/s, and
Cholesky & (paneion Gpu) ] ScauPACK ScalAPACK achieves 75.2% of
Cholesky, band & (/1 5102 | ! : : : . peak at 86.2 Tflop/s.
Symmetric Indefinite (block Aasen) W cruony ) 1 4 16 64 256 1024 2048
Mixed precision (single-double) (/i cures r) number of nodes
Inverses (LU, Cholesky) (/1 /1
Condition estimate & <
LEAST SQUARES (Ax = b) _Weak scaling of_ChoIesky (potrf)
ST T on Frontier for a local problem size of 140,000 x 140,000 per node
ca
QR v (hanelon GPU) 07 ] - The SLATE GPU-accelerated
Cholesky QR & E edup - -7 version attains 60.8x speedup over
] linear SPECZ the CPU on 1 node (8 GPU GCDs),
LQ /1 /1 10° - - falling to 29.9x on 64 nodes (512
Least squares solver & (¥ an.cholar) E ) GPU GCDs).
- -
PAQR (pivoting avoiding) (¥ devbranch ) 2 2105 PRe
Q 3
s E SLATE CPU is 6.8% to 13.4% faster
= 1 = than ScalLAPACK. These are not as
= H — - — 14
SVD, EIG, PD (A = UXVH, Ax = Jx, A= UH) 10 3 cPU fast as gemm; on 64 nodes, SLATE
ScaLAPACK SLATE ] E!m CPU Cholesky achieves 81.6
N " 13 Tflop/s, 71% of peak, and
Singular value decomposition (SVD) & s oo 03 ScaLAPACK Scal APACK achieves 76.4 Tflop/s,
Hermitian eigenvalue /1 (Wfles & vectors) £ 10t 3 66.6% of peak.
Generalized Hermitian eigenvalue & (flues & vectors) 2 J ) T T | T 20' o
1 4 16 64 256 1024 204
Polar decomposition (QDWH) ( devbranch )
LOBPCG ) number of nodes
Non-symmetric eigenvalue
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