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Low Power Computing for Fleas, Mice, and 
Mammoth — Do They Speak the Same Language?
Introduction

The main theme of this issue of CTWatch Quarterly is the new trend within the high 
performance computing (HPC) toward lower power requirements. Low power computing 
itself is not new — it has had a long history in embedded systems, where battery life is at a 
premium. In fact, the applicability of low power has widened its scope in both directions on 
the power consumption scale. Lower power consumption in the microwatts arena — so-called 
“ultra low power” (ULP) — is necessary to enable applications such as wireless remote 
sensing, where a device may have to run on a single small battery for months and need to be 
networked to collect data. In a more familiar context, most PCs have recently become Energy 
Star1 compliant. In fact, a really dramatic shift in design emphasis occurred around 2003-2004, 
when the industry began to move from the pursuit of desktop performance alone to the 
pursuit of desktop performance/power in combination. Recent processors initially designed 
for energy efficient notebooks, such as Intel’s Pentium-M, have started to find their way into 
desktop units. In fact, there is strong speculation that future mainstream PC processors will be 
successors of the Pentium-M style, a power efficient design.

But why do we want to save power in the HPC arena since the goal has always been to go 
faster at almost any cost? Certainly it is fair to say that performance/power has always been an 
engineering concern in designing HPC machines. For example, NEC claims to have achieved 
five times better performance/power efficiency in their SX-6 model over their previous 
generation SX-5.2 Where HPC machines function as large servers in datacenters, reducing 
power would also result in substantial cost savings in their operations. And of course, there are 
important social and economic reasons for reducing the extremely high power consumption 
of many HPC installations.

However, the recent attention to low power in HPC systems is not merely driven by such 
“energy-conscious” requirements alone. There have been recent research results, especially 
spearheaded by those of the BlueGene/L3 group, that seem to indicate that being low power 
may be fundamental to future system scalability, including future petascale systems, person-
alized terascale systems, and beyond. The purpose of the articles in this issue is to reveal such 
new trends and discuss the future of HPC from the perspective of low power computing.

In the remainder of this article, we will show how low power designs in the traditional 
arena of embedded computing, plus the very interesting ultra low power systems that are now 
receiving considerable attention, relate to low power HPC. In particular, we will discuss how 
technologies developed for low power embedded systems might be applicable to low power 
HPC and what the future holds for further research and development in this area that aims for 
greater performance in next generation HPC.
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Tokyo Institute of Technology
 
 

1 The Energy Star Home Page,  
http://www.energystar.gov/

 
 

2 Computers Division “Design of Eco 
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57, No.1, 2004. 
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g04/n01/t040105.pdf (in Japanese)
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Is Saving Power Anything Special?

From an engineering point of view, it is obvious that one would want to save power to 
attain maximum efficiency in any largely-deployed infrastructure, as we mentioned earlier. But 
the metrics of tradeoffs in power vs. performance differ vastly depending on the application. 
In other technology areas, similar differences exist. For example, with automobiles, one metric 
is to shoot for maximum speed, as with a Formula One race car, where one gets only a little 
over one kilometer per liter in fuel efficiency. On the other hand, there are fuel-efficiency 
competitions where one attempts to maximize the distance that can be traveled with a liter of 
fuel; the current world record is 5134 km, which is nearly four orders of magnitude different 
than the race car example. Even though combustion technology is recognized as being fairly 
mature, we seldom observe the exponential growth that we see in the IT industry.

Still, the technological advancements in fuel efficiency improvement in the “standard” 
automotive industry is in the low percentage points, and even disruptive technologies such as 
fuel cell or battery-based EVs (Electrical Vehicles) will not improve the efficiency by an order 
of magnitude. With the IT industry, however, we all know that with Moore’s Law performance 
has been increasing exponentially since the 1960s and is expected to continue until at least 
2015. However, some of the problematic phenomena that drive up power consumption also 
follow this exponential curve. For example, static leakage current is directly related to the 
number of transistors, which gave rise to the exponential performance increase in the first 
place.

Pros and Cons of Low Power, Especially in HPC

While low power consumption may seem to be an obvious engineering ideal for computing 
systems, especially in HPC, achieving it requires designers to make various tradeoffs that have 
their own pros and cons. 

Pros:

Higher density — With lower thermal density, an HPC architecture can be more densely 
packed. This is very important. As Table 1 shows, the absolute space occupancy is 
starting to limit the machine size, not just in terms of the physical real estate needed, 
but also, for example, in terms of cable length. In fact, if we were to build a Petascale 
machine now using Earth Simulator technology, not only would it require a 100MW 
scale electrical power plant, but it would occupy over 30,000 square meters of floor 
space (approx 330,000 square feet, or the size of a small football stadium). The weight 
of its cabling, amounting to approximately 400,000 kilometers or about 250,000 miles, 
would be a whopping 15,000 tons (several times more than the steel reinforcements that 
would be used in such a stadium)!

Reduced Cooling Infrastructure — Cooling requirements of large machines may add 
anywhere from 25 to 50 % to the consumed power of the machine. Moreover, most 
machines are designed to operate at their maximum performance level at some point, 
resulting in maximum thermal heat dissipation. The cost of the initial infrastructure, 
which would include maximum cooling capacity, could be millions of dollars of 
equipment and construction, not to mention substantial space consumption.
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Improved error rate / MTBF — Higher cabinet temperatures will result in shorter mean 
time between failures (MTBF) for various parts of the machine, primarily disk storage, 
capacitors, and silicone. Some studies have shown that a ten degree increase in the 
operational temperature of a typical hard disk will reduce its lifetime to 1/10th of its 
typical rating.

All is not favorable, however. There are various drawbacks to low power designs, some of 
which are generic and some of which are more peculiar to HPC. Both types require substantial 
research and engineering.

Cons:

Increased system complexity — Low power design obviously adds complexity to the overall 
system both in hardware and software as well as overall management. We omit a more 
detailed discussion here for the sake of brevity.

Increased sporadic failures — In low power systems generally, the chance of sporadic 
failures may increase for several reasons, including reduced noise margins caused by 
lowering the supply voltage, timing issues, etc. Such failures will have to be compensated 
for by careful and somewhat conservative circuit design, sanity checking, redundancy, 
etc. Another possibility is to employ software checking and recovery more extensively, 
but such measures tend to be difficult to implement without some hardware support.

Increased failures as the number of components is scaled up — In some low power HPC 
architectures, the desire to exploit a “slow and parallel” strategy leads to designs with a 
higher number of nodes and thus a higher number of components in the system. For 
example, the largest BlueGene/L on the Top500 to date sports 65,536 CPU cores, an 
order of magnitude greater than any other machine on the Top 500. By comparison, the 
Earth Simulator has only 5120 cores. Certainly the number of cores is one particular 
metric and cannot account for overall machine stability. In fact, BlueGene/L has gone to 
great lengths to reduce the number of overall system components, and the results from 
early deployments have demonstrated that it is a quite reliable machine. Nonetheless, 
as we approach the petaflops range, the amount of component increase will be substan-
tially more demanding.

Reliance on Extremely High Parallel Efficiency to Extract Performance — Since the 
performance of each processor in such low power designs will be slow, achieving 
good performance will require a much higher degree of parallel efficiency compared 
to conventional high-performance, high-power CPUs. Thus, unless the application 
is able to exhibit considerable parallel efficiency, we will not be able to attain proper 
performance from the system. If the inefficiency is due to the software or the underlying 
hardware, solutions may be available to resolve it. However, if the cause is fundamental 
to the algorithm, with unavoidable serialization capping limits on parallelism, then we 
will have to resort to somehow discovering the fundamental application algorithm. This 
is sometimes very difficult, however, especially for very large, legacy applications.
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Advanced Vectors  
(Earth Simulator => SX-8)

High Density Cluster 
(Itanium Mondecito Blade + 

Infiniband 4x)

Low PowerCPU?  
Super Highly Density  

(Blue Gene/L)

GFLOPS/CPU 16 8 2.8

CPU CORE/Chip 1 2 2

CPU Chip/Cabinet 8 72 1024

TFLOPS/Cabinet 0.128 1.152 5.7344

Memory BW/Chip (GB/s) 64 10.672 6.4

Memory BW/Cabinet (GB/s) 512 768.384 6553.6

Network BW/Chip (MB/s) NA 625 1050

Network Bytes/s/Flop 0.125 0.0390625 0.1875

#Cabinets for 1PF (+30% Network) 10156 1128 174

Physical size relative to ES 13.22 1.47 0.23

Power/Cabinet (KW) 9 15 25

Total Power (30% cooling) (MW) 118.83 22.00 5.66

Power relative to ES (8MW) 14.85 2.75 0.71

Cost/Cabinet ($Million US) 1 1 1.5

Total Cost ($Billion US) 10.16 1.13 0.26

Cost relative to ES ($400 mil US) 25.39 2.82 0.65

Table 1. Modern HPC Machine Parameters 

So, Where Do We Obtain the Power Savings?

With mainstream information technology, such as standard office application suites, speed 
requirements may have “matured.” But the majority of application areas, in particular ones 
mentioned in this article, are still in need of significant (even exponential) improvements in 
both absolute performance and relative performance/power metrics over the next ten years, as 
we progress towards building a “true” cyberinfrastructure for science and engineering. Such is 
quite obviously the case for traditional HPC applications, where even a petaflop machine may 
not satisfy the needs of the most demanding applications. It is also evident in application areas 
that are taking a leap to next generation algorithms in order to increase scale, accuracy, etc. An 
example is large scale text processing/data mining where the proliferation of the web and the 
associated explosion of data call for more sophisticated search and mining algorithms to deal 
with “data deluge.” Another example is the push to develop humanoid robots, where one is 
said to require more than five to six orders of magnitude processing power while retaining the 
human form factor.

The question is, can we achieve these goals? If so, will the techniques/technologies 
employed in respective domains, as well as their respective requirements, be different? If there 
are such differences, will this cause one power range to be more likely than the others? Or are 
there some uncharted territories of disruptive technologies with even more possibilities?
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Major power saving techniques, in particular those being exploited by more traditional 
embedded systems, plus the recent breed of low power HPC systems could be categorized as 
follows:

• Fundamental decrease in transistor power consumption and wire capacitance reduction 
— Traditionally, one would save power “for free” with lower micron sizes, where the 
transistors become smaller and the wires become thinner. However, it is well known 
that this is becoming harder to exploit because of longer circuit delays, higher static 
leakage current, and other physical device characteristics that come into play. As 
an example, Intel’s move to the .09 micron with the new version of their Pentium 4 
processor (Prescott) resulted in higher power consumption than its previous generation 
(Northwood). Granted, there were substantial architectural changes. But the original 
idea seemed to have been that the move to .09 micron would more than compensate for 
the added power consumption due to increased logic complexity and higher transistor 
count. However, this proved not to be the case. 

• Voltage reduction (DVS: Dynamic Voltage Scaling) — Closely related to the previous 
strategy is the idea of reducing voltage with each reduction in processor size. However, 
this too is reaching its limits, as the state machines (i.e. flip-flops constituting the 
various state elements and memory cells in the architecture) cannot get significantly 
below one Volt or so due to physical device limitations. Since DVS  is one of the 
fundamental techniques that low power systems most frequently employ, especially for 
HPC applications, this is not good news. But there is still hope, as we will see later in the 
article. 

• Duty cycling / Power — Another classical methodology is turning off the power when 
the device is not being used. Many of the ULP devices rely on this technique because 
they have duty cycles in seconds or even minutes and are effectively turned off most of 
the remaining time. Dynamic Voltage scaling as well as other techniques are employed 
extensively along with duty cycling to reduce the idle power as much as possible.

• Architectural overhead elimination — There are numerous features in modern-day 
processors and other peripherals that attempt to obtain relatively small increases 
in performance at significant hardware and thus power cost. By simplifying the 
architecture, as is done for embedded processors, one may obtain substantial gains in 
performance/power ratio while incurring only a small penalty.

• Exploiting Parallelism (Slow and Parallel) — Because increases in processor frequency 
will also incur voltage increases, if we can attain perfect parallel speedup, then reducing 
the clockspeed in exchange for parallelism (slow and parallel) will generate greater 
power savings. This is the principle now being employed in various recent multi-core 
CPU designs; the technical details are covered in the BlueGene/L article (“Lilliputians of 
Supercomputing Have Arrived”) in this issue of CTWatch Quarterly.

• Algorithmic changes — On the software side, one may save power by fundamentally 
changing the algorithm to consume less computing steps and/or reducing reliance on 
power-hungry features of the processors and instead using more efficient portions. 
While the former is obvious and always exploitable, the latter may not be so obvious 
and not always exploitable, depending on the underlying hardware. For example, in the 
latter one may attempt to utilize the on-die temporary memory to reduce the off-chip 
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bus traffic as much as possible. But its effectiveness depends on whether the processor’s 
external bus driver power, relative to the power consumption of the internal processing, 
would be significant or not. 

• Other new techniques — there are other technologies in development, which we will not 
be able to cover here due to lack of space.

How do these techniques apply to different types of systems in order to optimize different 
kinds of metrics? To clarify the differences, we have divided the power ranges by three orders 
of magnitudes, namely in the Microwatts, Milliwatts, and Watts and beyond. The table below 
shows the resulting power ranges and their principal application domains, metrics, technical 
characteristics, example systems, etc. One can observe here that there is significant divergence 
in the respective properties of the systems. 

Average Power 
Consumption Microwatt - Milliwatt Milliwatt-Watt Over One Watt

Application Domain Ubiquitous Sensor Networks Standard Embedded Devices PCs/Workstations, Servers, HPC

Important Metrics Longivity: device powering months~years with a 
single battery, environmental harvesting of power

Long battery life of dedicated, real-time 
applications

Maintaining high performance, high thermal 
density

Technical Characteristics Programming of Long Duty Cycle applications in 
Tiny CPU/Storage Environment

Ultra Low Power Wireless

Autonomous Configuration amongst a group of 
nodes

Fault Tolerance via Massive Redundancy

Various “Classical” low power  
techniques

Adjusting CPU speed voltage in periodic  real time 
processings

Dynamic reconfiguration via Software/Hardware 
co-design

CPU power consumption dominant => “Slow and 
Parallel”

Fine-Grained software control significant 
– measurement, prediction, planning, (DVS) control

Need for low power high performance networking

High reliability and scalability

Example Systems Mote, TinyOS (UC Berkeley) Various Embedded OSes NotePC/Blade Server
BlueGene/L
Green Destiny

Table 2. Low Power System Power Range Categorizations and their Properties.

Examining this table, one might argue that systems in the Microwatt and the Milliwatt 
ranges do have some similarities, four of which are outlined below:

1. Devices in both categories are typically driven by batteries and/or some independent 
(solar or energy-harvesting) generators, without AC electrical wirings, and as such 
longevity of battery life is of utmost concern.

2. Their application space is dedicated, or at least fairly restricted per each device; they are 
not meant to be general-purpose computing devices to be used for every possible appli-
cation. Also the applications tend to be real-time in nature, primarily sensing, device 
control, and multimedia. These application characteristics have two consequences. 
First, when combined, these properties allow duty cycling to be performed extensively. 
For example, the Berkeley Mote envisions applications where a single battery will last 
for months, with sensing and networking duty cycling in phases of tens of seconds to 
minutes. Second, they will sometimes allow dedicated and/or reconfigurable hardware 
to be employed for the performance/energy demanding portion of the application, 
such as multimedia encoding/decoding. In some cases this will bring about orders of 
magnitude performance/power ratio improvement.
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3. Their physical locations tend to be spaced apart, as seen in mobile devices. Coupled 
with being very low power, thermal density is not the primary concern (although in 
some modern embedded multimedia devices it may be, but it is not the primary or 
driving motivation for achieving low power).

4. Although in modern applications they are often networked, these devices do not work 
together in a tightly-coupled fashion to execute a single application, and as a result 
network bytes/flop is not as demanding as is with HPC systems.

In the HPC arena, by contrast, the important point to note is that low power is now being 
considered the essential means to achieve the traditional goals of high performance. This may 
at first seem oxymoronic, since lower power usually means lower performance in embedded 
devices and ULP devices, and great efforts are made to “recover” lost performance as much as 
possible. However, BlueGene/L and other low power, HPC machines that utilize low power 
technologies have demonstrated that, by exploiting the “slow and parallel” characteristics, we 
may achieve higher performance. 

Still, their properties produce a different opportunity space for low power than embedded 
or ULP devices confront:

• HPC machines are typically powered by AC; so the motivation is not only lower 
energy utilization, which is what is needed to extend battery life, but also peak power 
requirements, as these requirements will mostly determine the necessary capacity of the 
electrical infrastructure as well as maximum cooling capacity. 

• HPC machines are more general purpose, and as such the application space is rather 
broad. Such applications usually demand continuous computing or are I/O intensive, or 
both. Also these applications are not necessarily real time, but will usually be optimized 
to minimize their execution time. This will restrict the use of duty cycling, as any idle 
compute time will be subject to elimination via some optimization.

• The generality of the application space will make dedicated, hardwired hardware 
acceleration effective in only a limited set of applications. There are some instances of 
successful HPC accelerators such as the GRAPE system, but its effectiveness is restricted 
to a handful of (albeit important) applications.

• Density is one of the driving factors for achieving low power, since some of the large 
machines are at the limit of practical deployability with respect to their physical size. 
Simply reducing their volume, however, will result in significant thermal complications, 
primarily critical “hot spots.” Thus, power control that will guarantee that such hot spots 
will not occur is an absolute must for stable operation of the entire system.

• Many HPC applications are tightly coupled and make extensive use of networking 
capabilities. Network bytes/flop is an important metric, and the difficulty is to meet the 
low power requirements in high-bandwidth networking. 



�CTWatch Quarterly August 2005

Are the Low-power HPC Systems Too Divergent to Traditional, Embedded Low Power 
Systems?

Given the observations above, could we go as far to say that low power HPC systems are so 
divergent from traditional embedded systems that there are no research results or engineering 
techniques they can share? As a matter of a fact, there are commonalities that permit such 
sharing, and we are starting to see some “convergence” between the low power realization 
techniques in HPC and those with other power ranges. Here are some of the examples:

• Although it is difficult to duty cycle HPC applications, there are still opportunities to 
fine tune the usage and exploit the potentially “idle” occasions in the overall processing. 
One example of this approach, dubbed power aware computing, would be to adjust the 
processor DVS features in a fine-grained fashion so that one can achieve minimum 
energy consumption for a particular phase in a computation. Another possibility is 
to exploit the load imbalance in irregular parallel applications, where one may slow 
down processors so they all synchronize at the same time. Details of the techniques 
are covered in Dr. Feng’s article, “The Importance of Being Low Power in High-
Performance Computing,” in this CTWatch Quarterly issue. 

• There are direct uses of low power embedded processors, augmented with HPC features 
such as vector processing, low power high performance networking, etc. Examples are 
BlueGene/L, Green Destiny,4 and MegaProto.5 Fundamental power savings are realized 
with lower voltage, smaller number of transistors, intricate DVS features, etc. In fact, 
BlueGene/L has demonstrated that the use of low power processors is one of the most 
promising methodologies. There are still issues, however, since the power/performance 
ratio of embedded processors applied to HPC are not overwhelmingly advantageous, 
especially with the development of the power efficient processors that will be arriving 
in 2006-2007, where similar implementation techniques are being used. Moreover, 
although one Petaflop would be quite feasible with today’s technologies, to reach the 
next plateau of performance, i.e. ten Petaflops and beyond, we will need a ten-fold 
increase in power/performance efficiency. In light of the limits in voltage reduction 
and other constraints, the question of where to harvest such efficiency is a significant 
research issue.

• Dedicated vector co-processing accelerators have always been used in some MPPs; 
in the form of GPUs, they are already in use in PCs and will be more aggressively 
employed in next generation gaming machines such as Microsoft’s Xbox 360 and 
Sony’s PlayStation 3. Such co-processing accelerators offer much more general purpose 
programming opportunities than previous generations of GPUs have had, aiding to 
considerably boost the Flops/power ratio. For example, the Xenon GPU in the Xbox 
360 has 48 parallel units of 4-way parallel SIMD vector processors + scalar processors, 
achieving 216 Gflops at several tens of watts, or about four to seven Gflops/Watt. Also, 
some embedded processors are starting to employ reconfigurable FPGA devices to 
dynamically configure hardware per each application. One example is Sony’s new flash-
based “Network Walkman” NW-E507, where MP3 decode circuitry is programmed 
on-the-fly in its internal FPGA to achieve 50 hours of playback in a device as small as 
47 grams. The use of reconfigurable devices and modern-day, massively-parallel vector 
co-processors is still not at the stage of massive use within the HPC arena due to cost 
and technical immaturity but it will be a promising approach for the future.

4 W. Feng, “Making a Case for Efficient 
Supercomputing,” ACM Queue, 1(7):54-
64, October 2003.
5 Hiroshi Nakashima, Hiroshi 
Nakamura, Mitsuhisa Sato, Taisuke 
Boku, Satoshi Matsuoka, et. al. (2 more 
authors) “MegaProto: 1 TFlops/10 
kW Rack Is Feasible Even with Only 
Commodity Technology”, Proc. 
IEEE/ACM Supercomputing 2005, the IEEE 
Computer Society Press, Nov. 2005 (to 
appear).
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The Future of Low Power HPC is “Overdesign” and “Portability”

We have examined the relationships between the various areas of low power computing, 
focusing especially on the similarities and differences. Overall, the attention given to low 
power in HPC is still not well recognized by the community, despite the success of BlueGene/
L. In particular, controlling power requires a sophisticated application of self-system control. 
This type of control is being practiced as a norm in other disciplines but is quite crude in 
computers, especially large HPC machines.

For example, modern fighter aircraft are deliberately made to be somewhat aerodynami-
cally unstable in order to improve their maneuverability; in order to recover and maintain 
operational stability, they use massive, dynamic, computer-assisted real-time control. Modern 
automobiles embed massive amounts of self-control for engines and handling without which 
the car would easily break down or at least suffer from poorer performance. Compared to 
these technology domains, power/performance controls in modern-day HPC machines are 
meager at best. They may contain some simple feedback loops that, for example, upturn 
the cooling fans when the internal chassis temperature climbs higher, or that apply some 
crude, spontaneous automated control of voltage/frequency without concern for application 
characteristics. There are other promising avenues of research, as the other articles in this issue 
show, but further investigation is required to identify the limits of such control methodologies, 
as well as discover better ways to conserve power.

One promising conceptual design principle that this author envisions is to “overdesign” 
the system, i.e. engineer it so that, without software self-control, the the system will break 
down (say thermally), hit other power limits, or become very power/performance inefficient. 
Most of the machines we design now follow quite conservative engineering disciplines so 
that no matter how much we hammer them they will not break. Altenatively, we may design 
for maximum efficiency out of the theoretical peak achievable. Now that we are quickly 
approaching the one billion transistor mark in our CPUs (and quickly going onto ten billion) 
there are many transistors to consume power if exploited directly or used for alternative 
purposes. Moreover, we will have better understanding of how we may monitor and control 
power, depending on the system/application states (including multiple applications within 
the system). With multiple failovers in place, we could “overdesign” the system so that it will 
operate at maximum performance/power ratio (which may be somewhat below the maximum 
computational efficiency), but driving the efficiency above this will “break” the system. In 
order to achieve such a subtle balance, there will be various hardware and software sensors 
to monitor performance/power metrics and perform regulatory feedback into the system, 
enabling dynamic fine tuning of both software (such as scheduling) and hardware (such as 
DVS). 

Such a design principle may allow substantial improvement in the various metrics that 
motivate the pursuit of low power in HPC in the first place. For example, one may put an 
extensive set of thermal sensors in a machine that is densely packed to intricately control the 
power/performance so as to maintain thermal consistency throughout the system. In such a 
machine, it would be impossible to achieve theoretical maximum performance, since doing 
so would break the system and, as a result, some failover mechanism would have to kick in to 
throttle the system. Overall, its performance per volume may be substantially greater than a 
conservative machine for various reasons, including that the machine would be running more 
units in parallel at the best performance/energy tradeoff point.
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Many technical challenges would have to be conquered for such a system to become a 
reality, however. For example, most current motherboards, including sever-grade, high-end 
versions, lack the sensors required to perform such intricate monitoring of thermal and 
power consumptions. In many cases, the only available sensors may be a few thermistors, 
with no power sensors present except voltage meters on power lines. Although the state of 
the art in analysis of performance/power tradeoffs are advancing (as seen in Dr. Feng’s article 
mentioned previously), most of the results are still early, with no real broad-based community 
efforts, such as standardization, to enable, facilitate, or promote usage of the technology. In 
fact, because of the significant effect such low power systems will have on the software infra-
structure, including the compilers, run-time systems, libraries, performance monitors, etc., 
it is currently impractical to expect any portability across different types of machines. Here, 
theoretical modeling of such machines, leading to eventual standardization, will be necessary 
for realistic deployment to occur.
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Introduction

Why should the high-performance computing community even care about (low) power 
consumption? The reasons are at least two-fold:  (1) efficiency, particularly with respect to 
cost, and (2) reliability.

For decades, we have focused on performance, performance, and occasionally, price/per-
formance, as evidenced by the Top500 Supercomputer List1 as well as the Gordon Bell Awards 
for Performance and Price/Performance at SC.2 So, to achieve better performance per compute 
node, microprocessor vendors have not only doubled the number of transistors (and speed) 
every 18-24 months, but they have also doubled the power densities, as shown in Figure 1. 
Consequently, keeping a large-scale high-performance computing (HPC) system functioning 
properly requires continual cooling in a large machine room, or even a new building, thus 
resulting in substantial operational costs. For instance, given that the cooling bill alone at 
Lawrence Livermore National Laboratory (LLNL) is $6M/year and given that for every watt 
(W) of power consumed by an HPC system at LLNL, 0.7 W of cooling is needed to dissipate 
the power; the annual cost to both power and cool HPC systems at LLNL amounts to a 
total of $14.6M per year, and this does not even include the costs of acquisition, integration, 
upgrading, and maintenance.3 Furthermore, when nodes consume and dissipate more power, 
they must be spaced out and aggressively cooled; otherwise, such power causes the tem-
perature of a system to increase rapidly enough that for every 10° C increase in temperature, 
the failure rate doubles, as per Arrhenius’ equation as applied to microelectronics.4

Our own informal empirical data from late 2000 to early 2002 indirectly supports 
Arrenhius’ equation. In the winter, when the temperature inside our warehouse-based work 
environment at Los Alomas National Laboratory (LANL) hovered around 21-23° C, our 128-
CPU Beowulf cluster — Little Blue Penguin (LBP) — failed approximately once per week. In 
contrast, the LBP cluster failed roughly twice per week in the summer when the temperature 
in the warehouse reached 30-32° C. Such failures led to expensive operational and mainte-
nance costs relative to technical staff working to fix the failures and the cost of replacement 
parts. Furthermore, there is the lost productivity of technical staff due to the failures.

The Importance of Being Low Power
in High-Performance Computing

Wu-chun Feng
Los Alamos National Laboratory
 
 

1 http://www.top500.org/ 

2 http://www.sc-conference.org

 

3 M. Seager, “What Are The Future Trends 
in High-Performance Interconnects 
for Parallel Computers?” IEEE Symp. on 
High-Performance Interconnects Panel, 
August 2004.

4 W. Feng, “Making a Case for Efficient 
Supercomputing,” ACM Queue, 1(7):54-64, 
October 2003.

Figure 1. Moore’s Law for Power Consumption
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Perhaps more disconcerting is how our warehouse environment affected the results of the 
Linpack benchmark when running on a dense Beowulf cluster back in 2002:  The cluster pro-
duced an answer outside the residual (i.e., a silent error) after only ten minutes of execution. 
Yet when the same cluster was placed in an 18-19° C machine-cooled room, it produced the 
correct answer. This experience loosely corroborated a prediction made by Graham, et al 
— “In the near future, soft errors will occur not just in memory but also in logic circuits.”5

Power (and its affect on reliability) is even more of an issue for larger-scale HPC systems, 
such as those shown in Table 1. Despite having exotic cooling facilities in place, the reliability 
of these large-scale HPC systems is measured in hours,6 and in all cases, the leading source 
of outage is hardware, with the cause often being attributed to excessive heat. Consequently, 
as noted by Eric Schmidt, CEO of Google, what matters most to Google “is not speed but 
power — low power, because data centers can consume as much electricity as a city.”7 That is, 
though speed is important, power consumption (and hence, reliability) is more so. By analogy, 
what Google, and arguably application scientists in HPC, desires is the fuel-efficient, highly 
reliable, low-maintenance Toyota Camry of supercomputing, not the Formula One race car 
of supercomputing with its energy inefficiency, unreliability, and exorbitant operational and 
maintenance costs. In addition, extrapolating today’s failure rates to an HPC system with 
100,000 processors suggests that such a system would “spend most of its time checkpointing 
and restarting. Worse yet, since many failures are heat related, the [failure] rates are likely to 
increase as processors consume more power.”5

System CPUs Reliability

ASCI Q 8,192 MTBI:  6.5 hours.
Leading outage sources:  storage, CPU, memory.

ASCI White 8,192 MTBF:  5.0 hours (‘01) and 40 hours (‘03).
Leading outage sources:  storage, CPU, 3rd-party HW.

PSC Lemieux 3,016 MTBI:  9.7 hours.

MTBI:  mean time between interrupts = wall clock hours / # downtime periods

MTBF:  mean time between failures (measured)

Table 1. Reliability of Leading-Edge HPC Systems 

Low-Power HPC:  The Past

Based on the above evidence, I would argue that although performance and price/per-
formance are important, we need to focus more attention on efficiency and reliability in 
the coming decades. And as contended above, this translates into a substantial reduction in 
the power consumption of HPC systems via low-power (or power-aware) approaches. Our 
Green Destiny cluster was arguably one of the first such systems,4 8 9 designed in late 2001 and 
debuting in early 2002 as the first major instantiation of the Supercomputing in Small Spaces 
project.10 

Green Destiny, as shown in Figure 2a, was a 240-CPU Linux-based cluster with a footprint 
of only five square feet and a power appetite of as little as 3.2 kW (i.e., two hairdryers). 
Performance-wise, it produced 101 Gflops on the Linpack benchmark, which was as fast as a 
256-CPU SGI Origin 2000 at the time.11 Despite its competitive performance then,12 many still 
felt that Green Destiny sacrificed too much performance to achieve low power consumption, 
and consequently, high efficiency and unprecedented reliability, i.e., no unscheduled downtime 

5 S. Graham, M. Snir, and C. Patterson, 
eds., Getting Up to Speed:  The Future 
of Supercomputing, National Research 
Council, Committee on the Future of 
Supercomputing, National Academies 
Press, 2005.
6 D. Reed, “High-End Computing:  
The Challenge of Scale,” Director’s 
Colloquium, Los Alamos National 
Laboratory, May 2004.
7 J. Markoff and S. Lohr, “Intel’s Huge 
Bet Turns Iffy,” The New York Times, 
September 29, 2002.

8 W. Feng, M. Warren, and E. Weigle, 
“The Bladed Beowulf:  A Cost-Effective 
Alternative to Traditional Beowulfs,” 4th 
IEEE International Conference on Cluster 
Computing (IEEE Cluster), Chicago, IL, 
September 2002.
9 G. Johnson, “At Los Alamos, Two 
Visions of Supercomputing,” The New 
York Times, June 25, 2002.
10 http://sss.lanl.gov; At SC2001 
in November, we demonstrated a 
small-scale 24-node prototype dubbed 
MetaBlade, running a simulation of a 
10-million-body galaxy formation.
11 http://www.top500.org/list/2001/11
12 The original performance of Green 
Destiny on the Linpack benchmark 
was indeed “low performance” at 
about 68 Gflops. However, given that 
the Transmeta CPU was a hardware-
software hybrid, we were able to 
optimize its floating-point performance 
(in system software) by 50%, resulting in 
a Linpack rating of 101 Gflops.
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in its 24-month lifetime while running at 7,400 feet above sea level in a dusty 85° F warehouse 
without any cooling, air filtration, or air humidification.

The above tradeoff is captured (in part) in Table 2, where we present the raw configuration 
and execution numbers of four HPC systems as well their efficiency numbers with respect to 
memory density, storage density, and computational efficiency relative to space and power 
consumption.13 As one would expect from a Formula One race car for supercomputing, the 
ASCI White supercomputer leads all the raw performance categories (shown in red). On 
the other hand, given that Green Destiny was specifically designed with low power and high 
efficiency in mind, it handily “wins” all the efficiency categories:  Memory density, storage 
density, and computational efficiency relative to space and power are all two orders of mag-
nitude better (or nearly so) than the other HPC systems, as shown in red in Table 2. 

Metric / HPC System Avalon 
Beowulf ASCI Red ASCI White Green Destiny

Year 1996 1996 2000 2002

# CPUs 140 9298 8192 240

Performance (Gflops) 18 600 2500 58

Space (ft2) 120 1600 9920 5

Power (kW) 18 1200 2000 5

DRAM (GB) 36 585 6200 150 (270 max)

Disk (TB) 0.4 2.0 160.0 4.8 (38.4 max)

DRAM Density (MB/ft2) 300 366 625 30000 (54000 max)

Disk Density (GB/ft2) 3.3 1.3 16.1 960.0 (7680 max)

Perf/Space (Mflops/ft2) 150 375 252 11600

Perf/Power (Mflops/W) 1.0 0.5 1.3 11.6

Table 2. Comparison of HPC Systems on an n-body Astrophysics Code for Galaxy Formation

Low-Power HPC (and Power-Aware HPC):  The Present

The preceding work has now bifurcated into two different directions but both are still 
oriented towards reducing power consumption:  (1) a low-power, architectural approach and 
(2) a power-aware, software-based approach. 

Low-Power, Architectural Approach

In the arena of low-power architectures for HPC, there exist three related but distinct 
approaches. The first, and most natural, evolution of Green Destiny is the MegaScale 
Computing project  whose goals are more ambitious than Green Destiny’s were. The 
MegaScale Computing project14 is a multi-institutional project that is looking towards 
building future computing systems with over a million processing elements in total. Like the 
Supercomputing in Small Spaces project, the MegaScale Computing project aims to simultane-
ously achieve high performance and low power consumption via high-density packaging and 
adopting low-power CPUs, but with the loftier design goals of one Tflop/rack, 10 kW/rack, 
and 100 Mflops/W. Similar to Green Destiny, their first prototype of an ultra low-power 

13 We note up-front that the comparison 
is an “apples-to-oranges” one given 
that the HPC systems are from different 
eras and have different architectures. 
The choice of HPC systems was 
motivated by the fact that we had 
complete configuration information 
of the systems and complete and 
unencumbered access to the systems to 
tune our n-body code.

14 http://www.para.tutics.tut.
ac.jp/megascale/r_mproto.html
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MegaScale system, called MegaProto, also leverages Transmeta CPUs, which deliver very 
low power but reasonable HPC performance, resulting in extraordinary performance-power 
ratios.15 A picture of their MegaProto prototype that was demonstrated at SC2004 is shown 
in Figure 2b; it is a 16-CPU low-power cluster with dual Gigabit Ethernet for data com-
munication and Fast Ethernet for management and control — all in a compact 1U chassis 
that consumes only 330 W. (As a point of reference, a traditional dual-CPU compute node 
consumes 250 W of power. Thus, for 16 CPUs, the aggregate power consumption would run 
on the order of 2000 W and would then need an additional 1400 W of power to cool the 
system for a total of 3400 W, or over ten times more power consumption.)

The second and more modest architectural approach to low power is a commercial 
evolution of Green Destiny, as embodied by Orion Multisystems.16 The company has two 
offerings: the DT-12 (i.e., DeskTop-12 nodes) and DS-96 (i.e., DeskSide-96 nodes), as shown 
in Figure 2c. Their offerings are intended to fill the widening performance gap between 
PCs and supercomputers, as shown in Figure 3, whereas the ultimate goal of the MegaScale 
Computing project is to create the capability of constructing a supercomputer with one-
million processing elements.

Orion Multisystems identified three technology trends that make their offerings ideally 
positioned as the cluster workstation of the future:  (1) the rise of cluster-based high-perfor-
mance computers, (2) the maturity of open-source cluster software, and (3) the rapid decline 
of the traditional workstation. By placing a cluster workstation at the hands of an applications 
scientist, it can be more naturally used as a dedicated personal resource — application 
debugging with scalability at the desktop, redundancy possibilities whenever the datacenter 
HPC resource is down and unavailable, and no more scheduling conflicts or long queues for 
access to a datacenter HPC resource. And perhaps most importantly, by leveraging low-power 
components, both the DT-12 and DS-96 can be plugged into a standard electrical wall outlet 

Figure 2a. Green Destiny
Figure 2b. MegaProto:  An Ultra Low-Power Prototype of the 
Megascale Computing Project
Figure 2c. Orion Multisystems DT-12 and DS-96

Figure 3. The Widening Performance Gap Between PCs and 
Supercomputers

15 H. Nakashima, H. Nakamura, M. Sato, 
T. Boku, S. Matsuoka, D. Takahashi, and 
Y. Hotta, “MegaProto:  A Low-Power and 
Compact Cluster for High-Performance 
Computing,” IEEE Workshop on High-
Performance, Power-Aware Computing 
(in conjunction with the IEEE Parallel 
& Distributed Processing Symposium), 
Denver, CO, April 2005.

16 http://www.orionmulti.com



1�CTWatch Quarterly August 2005

in any office, as the former only consumes as much power as an overhead light with two 75-W 
light bulbs and the latter consumes as much as a typical hairdryer, i.e., 1.5 kW.

Finally, the most prominent architectural approach to low-power supercomputing is IBM 
BlueGene/L, which debuted nine months ago on the Top500 Supercomputer List1 as the fastest 
supercomputer in the world, relative to the Linpack benchmark. For an overview of the IBM 
BlueGene/L architecture and system software, see respective notes.17 18 Initial performance 
evaluations of IBM BlueGene/L can also be found in notes.19 20 21  In short, IBM Blue Gene/L 
is a very large-scale, low-power (for its size) supercomputer. Its 65,536 CPUs, which are 
PowerPC 440s, are organized into 64 racks of 1024 CPUs per rack, where each rack of 1024 
CPUs consumes only 28.14 kW, resulting in an aggregate power consumption of 1.8 MW.

Given that the only program that has been run across the aforementioned systems is the 
Linpack benchmark, Table 3 presents the same evaluation metrics as in Table 2 but for the 
Linpack benchmark.22 And as in Table 2, Table 3 highlights the leader for a given metric in 
red.23 One of the most striking aspects of this table is that IBM Blue Gene/L does not use 
the most amount of space or power despite having the most number of CPUs. Its resulting 
performance-space and performance-power ratios are consequently astounding, at least 
relative to Linpack. As an additional reference point, the Japanese Earth Simulator, which has 
been argued to be the most powerful supercomputer in the world relative to executing real 
applications, reaches 35,860 Gflops for Linpack while occupying 17,222 ft2 and consuming 
7,000 kW. This translates to performance-space and performance-power ratios of 2,082 
Mflops/ft2 and 5.13 Mflops/W, respectively.

Metric \ HPC System ASCI Red ASCI 
White

Green 
Destiny MegaProto Orion 

DS-96
IBM Blue 
Gene/L

Year 1996 2000 2002 2004 2005 2005

Performance (Gflops) 2379 7226 101 5.62 110 136800

Space (ft2) 1600 9920 5 3.52 2.95 2500

Power (kW) 1200 2000 5 0.33 1.58 1800

DRAM (GB) 585 6200 150 4 96 32768

Disk (TB) 2.0 160.0 4.8 n/a 7.68 n/a

DRAM Density (MB/ft2) 366 625 30000 1136 32542 13107

Disk Density (GB/ft2) 1 16 960 n/a 2603 n/a

Perf/Space (Mflops/ft2) 1487 728 20202 1597 37228 54720

Perf/Power (Mflops/W) 2 4 20 17 70 76

Table 3. Comparison of HPC Systems on the LINPACK Benchmark

Despite the performance of HPC systems such as Green Destiny, MegaProto, Orion 
Multisystems DT-12 and DS-96, and IBM Blue Gene/L, many HPC researchers gripe about 
the raw performance per compute node, which then requires additional compute nodes to 
compensate for the lower per-node performance. This, of course, is in contrast to using fewer 
but more powerful and more power-hungry server processors, e.g., Power5 in ASC Purple, 
which is slated to require 7.5 MW to power and cool its 12,000+ CPU system. The full system 
is expected to generate more than 16,000,000 BTU/h in heat, thus requiring new air-handling 

17 IBM and Lawrence Livermore National 
Laboratory, “An Overview of the 
BlueGene/L Supercomputer,” IEEE/ACM 
SC2002: High-Performance Networking & 
Computing Conference, Baltimore, MD, 
November 2002.
18 G. Almasi, R. Bellofatto, J. Brunheroto, 
C. Cascaval, J. G. Castanos, L. Ceze, 
P. Crumley, C. C. Erway, J. Gagliano, 
D. Lieber, X. Martorell, J. Moreira, A. 
Sanomiya, and K. Strauss, “An Overview 
of the Blue Gene/L System Software 
Organization,” Euro-Par 2003 Conference, 
Klagenfurt, Austria, August 2003.
19 V. Bulatov, W. Cai, J. Fier, M. Hiratani, 
G. Hommes, T. Pierce, M. Tang, M. 
Rhee, K. Yates, and T. Arsenlis, “Scalable 
Line Dynamics in ParaDiS,” IEEE/ACM 
SC2004: High-Performance Computing, 
Networking, and Storage Conference, 
Pittsburgh, PA, November 2004.
20 K. Davis, A. Hoisie, G. Johnson, 
D. Kerbyson, M. Lang, S. Pakin, 
and F. Petrini, “A Performance and 
Scalability Analysis of the BlueGene/L 
Architecture,” IEEE/ACM SC2004: High-
Performance Computing, Networking, 
and Storage Conference, Pittsburgh, PA, 
November 2004.
21 G. Almasi, S. Chatterjee, A. Gara, 
J. Gunnels, M. Gupta, A. Henning, J. 
Moreira, and B. Walkup, “ Unlocking 
the Performance of the BlueGene/L 
Supercomputer,” IEEE/ACM SC2004: High-
Performance Computing, Networking, 
and Storage Conference, Pittsburgh, PA, 
November 2004.
22 We note that in addition to the 
differences in machine architectures 
and eras (which makes direct 
comparisons difficult) that power 
and space consumption do not scale 
linearly. So, the presented data should 
only be taken as ballpark figures.
23 None of the power numbers include 
the wattage needed for cooling. This 
means that for ASCI Red, ASCI White, 
and IBM Blue Gene/L that the power 
numbers would increase by a factor of 
1.7 to 2.0 times. Furthermore, none of 
the space numbers include the extra 
floor(s) needed to cool the HPC systems.
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designs and specifications. Furthermore, all the above solutions do not rely entirely on com-
modity technologies, and hence, may not be cost-effective. For instance, Blue Gene/L is a 
stripped-down version of the 700-MHz PowerPC 400 embedded CPU while Green Destiny 
relies on a customized high-performance version of Transmeta’s code-morphing software 
(CMS)24 that improves floating-point performance between 50% and 100%, e.g., 12.6 Gflops 
on 24 CPUs. In contrast, the 16-processor MegaProto cluster is a custom hardware solution 
that uses the same processor that Green Destiny did but without the high-performance 
code-morphing software (HP-CMS). Consequently, its 16 CPUs only achieve 5.62 Gflops on 
Linpack. To address the criticisms with respect to non-commodity parts and low performance, 
the next section proposes an alternative approach for reducing power consumption, one that is 
largely architecture-independent and based on high-end commodity hardware. 

Power-Aware, Software-Based Approach

Because many systems researchers argue that the low-power architectural approach 
sacrifices too much performance for low power consumption and high reliability, an alter-
native approach in HPC has recently emerged — one that is more architecture-independent 
than the low-power, architectural approach and one that takes the “middle ground” relative 
to the tradeoff between performance and low power consumption. This alternative approach 
is a power-aware, software-based one, as described in the cited feasibility studies25 26 27 28 29 and 
autonomic systems.30 31 32 33 The basic idea is to start with a high-performance, high-power 
CPU that supports a mechanism called dynamic voltage and frequency scaling (e.g., an AMD 
Opteron with support for PowerNow!) and then to create a power-aware algorithm (i.e., 
policy) that conserves power by scaling down the CPU supply voltage and frequency at 
appropriate times, as power draw is directly proportional to the CPU frequency and the square 
of the CPU supply voltage.

Ideally, the appropriate time to scale down the CPU voltage and frequency is whenever 
there is an off-chip access that the CPU is blocking-on, e.g., memory access, as the CPU has 
no reason to “sit and spin its wheels” at the maximum voltage and frequency while waiting 
for the off-chip accesses to complete. In practice, however, knowing when to scale the voltage 
and frequency and what to scale them to are difficult tasksfor the following reasons. First, 
off-chip memory accesses are done in hardware, thus power-aware software would have no 
way of knowing that the CPU is waiting on a memory access. Second, changing the voltage 
and frequency settings must be done judiciously, because at the system level, it currently takes 
on the order of milliseconds (i.e., millions of clock cycles) for the voltage and frequency to 
transition and stabilize at their new settings.

The current and most ubiquitous approach for power-awareness is based primarily on CPU 
utilization and is meant to extend the battery life in a laptop computer. When the CPU utili-
zation drops below some threshold, the CPU voltage and frequency are lowered to conserve 
energy; when the CPU utilization exceeds some threshold, the CPU voltage and frequency 
are raised to improve performance. While this simple approach is both application and input 
independent as well as transparent to the end user, it is only effective for interactive use, e.g., 
laptop usage of Microsoft Office, and depends critically upon the choice of the threshold 
values.34 For scientific applications, the approach is ineffective as such applications do not have 
an abundance of CPU idle time that can be taken advantage of.32 Therefore, there exists a need 
for a power-aware algorithm that works effectively on scientific applications.

24 Each Transmeta processor has a 
software layer, called code-morphing 
software, that dynamically morphs x86 
instructions into VLIW instructions. 
This provides x86 software with the 
impression that it is being run on native 
x86 hardware.
25 X. Feng, R. Ge, and K. Cameron, 
“Power and Energy Profiling of 
Scientific Applications on Distributed 
Systems,” 19th IEEE International Parallel 
& Distributed Processing Symposium, 
Denver, CO, April 2005.
26 V. Freeh, D. Lowenthal, F. Pan, and N. 
Kappiah, “Using Multiple Energy Gears 
in MPI Programs on a Power-Scalable 
Cluster,” ACM Symposium on Principles 
and Practices of Parallel Programming 
(PPoPP’05), June 2005.
27 V. Freeh, D. Lowenthal, R. Springer, 
F. Pan, and N. Kappiah, “Exploring the 
Energy-Time Tradeoff in MPI Programs 
on a Power-Scalable Cluster,” 19th IEEE 
International Parallel & Distributed 
Processing Symposium, Denver, CO, April 
2005.
28 R. Ge, X. Feng, and K. Cameron, 
“Improvement of Power-Performance 
Efficiency for High-End Computing,” 1st 
IEEE Workshop on High-Performance, 
Power-Aware Computing (in conjunction 
with the 19th IEEE International Parallel 
& Distributed Processing Symposium), 
Denver, CO, April 2005.
29 C. Hsu and U. Kremer, “The Design, 
Implementation, and Evaluation of a 
Compiler Algorithm for CPU Energy 
Reduction,” ACM Conference on 
Programming Languages Design and 
Implementation (PLDI’03), June 2003.
30 W. Feng and C. Hsu, “The Origin and 
Evolution of Green Destiny,” IEEE Cool 
Chips VII: An International Symposium 
on Low-Power and High-Speed Chips, 
Yokohama, Japan, April 2004.
31 W. Feng and C. Hsu, “Green Destiny 
and Its Evolving Parts,” Innovative 
Supercomputer Architecture Award, 19th 
International Supercomputer Conference, 
Heidelberg, Germany, June 2004.
32 C. Hsu and W. Feng, “Effective 
Dynamic Voltage Scaling Through 
CPU-Boundedness Detection,” 4th ACM 
Workshop on Power-Aware Computer 
Systems, Portland, OR, December 2004.
33 C. Hsu and W. Feng, “A Power-Aware 
Run-Time System for High-Performance 
Computing,” ACM/IEEE SC2005: The 
International Conference on High-
Performance Computing, Networking, 
and Storage, Seattle, WA, November 
2005.
34 D. Grunwald, P. Levis, K. Farkas, 
C. Morrey, and M. Neufeld, “Policies 
for Dynamic Clock Scheduling,” 4th 
Symposium on Operating System Design 
and Implementation (OSDI’00), Oct. 2000.
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We propose such a power-aware algorithm called β-adaptation, which works on any 
commodity platform that supports dynamic voltage and frequency scaling (DVFS), 33 e.g., 
AMD Opteron with PowerNow!  Implementing the algorithm in the run-time system results 
in a power-aware runtime system that transparently and automatically adapts CPU voltage 
and frequency in order to reduce power and energy consumption while minimizing impact 
on performance. For example, Figure 4 shows that our power-aware run-time system running 
NAS-MPI Class C on a four-node, 16-CPU Opteron-based cluster saves nearly an average of 
20% CPU energy while impacting performance by only 3% on average. (Note:  For the MG 
benchmark, our β-adaptation algorithm not only reduces energy consumption by 14% but it 
also improves performance slightly.)

Figure 4. NAS-MPI benchmarks for Class C Workload on a Four-Node, 
16-CPU Opteron-based Cluster — http://www.nas.nasa.gov/Software/MPB

Low-Power HPC (and Power-Aware HPC):  The Future

Implicit in the preceding discussion is the distinction between capability and capacity 
computing. According to Graham et al,5 capability computing applies maximum processing 
power to solve a large problem in a short period of time — with the main figure of merit being 
“time to solution.”  Another important facet to capability computing is the ability to solve 
problems of a magnitude that have never been solved before. Examples of such systems are 
the DOE ASCI-class supercomputers such as ASCI White and the recently demonstrated ASC 
Purple supercomputer — the Formula One race cars of supercomputing. 

In contrast, capacity systems are typically cheaper and less performance-capable than 
capability systems on a per-node basis as well as relative to the entire system. Capacity systems 
allow scientists to explore design alternatives that are often needed to prepare for larger-scale 
runs on capability systems. In addition, capacity systems typically solve a multitude of smaller 
problems simultaneously. Systems such as Green Destiny, MegaProto, Orion Multisystems 
DS-96, and arguably Blue Gene/L fit into this category.

Because low-power HPC generally sacrifices a measurable amount of performance (e.g., 
3.6-GHz Intel Xeon CPU versus 1.4-GHz Transmeta Efficeon CPU) to achieve substantially 
lower power consumption per node (e.g., 151 W versus 7 W), and hence, better efficiency and 
reliability, low-power HPC will be confined to capacity computing for the foreseeable future. 
See citations35 36 for the latest results in low-power HPC.

35 C. Hsu, W. Feng, and J. Archuleta, 
“Towards Efficient Supercomputing: 
A Quest for the Right Metric,” 1st IEEE 
Workshop on High-Performance, 
Power-Aware Computing (in conjunction 
with the 19th International Parallel & 
Distributed Processing Symposium), 
Denver, CO, April 2005.
36 H. Nakashima, M. Sato, T. Boku, S. 
Matuoka, D. Takahashi, and Y. Hotta, 
“MegaProto:  1 Tflops/ 10kW Rack Is 
Feasible Even with Only Commodity 
Technology,” ACM/IEEE SC2005: The 
International Conference on High-
Performance Computing, Networking, 
and Storage, Seattle, WA, November 
2005.
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But what about capability computing? HPC vendors now realize that in building capability 
systems, power consumption is becoming a primary design constraint because of the exor-
bitant operational costs associated with such systems due to their inefficiency and because of 
its effect of reliability, as noted in Table 1. Excessive power consumption is becoming such a 
dominant issue that ASC Purple requires new air-handling designs and specifications because 
of the 7.5-MW required to power the system and the cooling equipment. This 7.5-MW 
appetite equates to powering 7,500 typical homes. 

With low-power HPC unable to support the requirements of capability computing and too 
much power being consumed by traditional capability systems, what the HPC community should 
expect to see over the next decade is the emergence of power-aware solutions for capability 
computing. These solutions will ultimately reduce operational costs and improve reliability and 
availability, particularly in capacity systems, while minimizing impact on overall performance. 
We are already seeing indications of this trend at SC2005 where the following three technical 
papers will be presented on power-aware HPC: 

1. R. Ge, X. Feng, and K. Cameron, “Performance-Constrained, Distributed DVS 
Scheduling for Scientific Applications on Power-Aware Clusters.” Describes a software 
framework for implementing and evaluating dynamic voltage and frequency scaling, where 
performance-directed scheduling is of particular interest.

2. C. Hsu and W. Feng, “A Power-Aware Run-Time System for High-Performance 
Computing.” Presents a power-aware run-time system on a high-end commodity cluster 
that automatically and transparently adapts its voltage and frequency settings to achieve 
about 20% energy savings on average with minimal impact on performance.

3. N. Kappiah, V. Freeh, and D. Lowenthal, “Just-in-Time Dynamic Voltage Scaling:  
Explointing Inter-Node Slack to Save Energy in MPI Programs.” Saves energy by taking 
advantage of the slack time that exists when the computational load is not perfectly 
balanced across a HPC system.

As noted earlier, a power-aware approach makes use of commodity processors (e.g., AMD 
Opteron33) with dynamic voltage and frequency scaling (e.g., PowerNow!33) to ensure high-end 
capability performance while reducing power consumption. For the capability supercomputer 
called ASC Purple, using our power-aware run-time system would reduce the power envelope 
by 1.3 MW on average, thus reducing its electrical bill by $1.37M/year, when assuming a rate 
of $0.12/kWh. Furthermore, such a dramatic reduction in power consumption would lengthen 
the life of system components in the supercomputer, and hence, improve overall reliability of 
the supercomputer as well as those presented in Table 1.

Conclusion

Power consumption has become an increasingly important issue in HPC. Ignoring power 
consumption as a design constraint results in a HPC system with high operational costs and 
diminished reliability, which translates into lost productivity. Examples of such (capability) 
systems include ASCI White, ASC Q, and the recently unveiled ASC Purple. 

Specifically, due to the exorbitant power consumption of ASC Purple, the facility that 
houses ASC Purple requires new air-handling designs and specifications to deal with ASC 
Purple’s gargantuan 7.5-MW appetite. With an average utility rate of $0.12/kWh, the electrical 
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bill alone for this system would run nearly $8M/year. If we scale this architecture up to a 
petaflop machine, it would need approximately 75 MW to power up and cool down the 
machine. The power bill for such a system would then be on the order of $80M/year, assuming 
energy costs stay at $0.12/kWh. In addition, the expected mean time between failures for 
systems of this size is forecasted to be on the order of hours rather than days; further scaling of 
such capability supercomputers would result in HPC systems that would have several failures 
per hour by 2010.5  

For the above reasons, this article presented a case for low-
power (and power-aware) HPC in order to significantly improve 
reliability and efficiency, particularly with respect to operational 
costs. However, the main issue with low-power HPC is that it 
sacrifices too much raw performance in order to achieve its goals. 
Perhaps what the HPC community needs is an EnergyGuide 
sticker for HPC systems, like the one shown in Figure 5 for Green 
Destiny. Or more seriously, perhaps we should remember that 
our attitude towards energy contributed to the massive rolling 
blackouts in the summers of 2000, 2001, and 2003 and cost the 
U.S. billions of dollars and disrupted millions of lives, as noted 
this month by President George W. Bush when signing the 
10-year, $12.3-billion Energy Policy Act of 2005.

As a compromise, there exists an emerging body of research 
in power-aware HPC. The basic idea is to start with a high-
performance, high-power CPU that supports a mechanism called 
dynamic voltage and frequency scaling and then to create a 
power-aware algorithm that conserves power by scaling down the 
CPU supply voltage and frequency at appropriate times, as power 
draw is directly proportional to the CPU frequency and the 
square of the CPU supply voltage. Because the CPU consumes 
the largest percentage of power in a HPC node, this technique has 
been shown to be highly effective in reducing the overall power 
and energy consumption in an HPC system.

In the longer term, e.g., by 2020 when the failure rate is expected to reach several failures 
per minute,5 we will need the continued proactive approach towards power consumption 
espoused here in order to stave off the aforementioned forecast as well as reactive fault 
detection and fault handling in order to give the user the illusion of a fault-free machine.

 

This work was supported by the DOE LDRD Exploratory Research Program through Los Alamos National Laboratory contract W-7405-
ENG-36.

Figure 5. EnergyGuide Sticker for Green Destiny
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Introduction

In Gulliver’s Travels (1726) by Jonathan Swift, Lemuel Gulliver traveled to various nations. 
One nation he traveled to, called Lilliput, was a country that consisted of weak pygmies. 
Another nation, called Brobdingnag, was that of mighty giants. When we build a supercom-
puter with thousands to more than  hundreds of thousands of chips, is it better to choose a few 
mighty and powerful Brobdingnagian processors, or is it better to start from many Lilliputian 
processors to achieve the same computational capability? To answer this question, let us trace 
the evolution of computers.

   The first general purpose computer, ENIAC (Electronic Numerical Integrator And 
Calculator), was publicly disclosed in 1946. It took 200 microseconds to perform a single 
addition and it  was built with 19,000 vacuum tubes. The machine was enormous, 30 m long, 
2.4 m high and 0.9 m wide. Vacuum tubes had a limited lifetime and had to be replaced often. 
The system consumed 200 kW. ENIAC cost the US Ordnance Department $486,804.22. 

 
In December 1947, John Bardeen, Walter Brattain, and William Shockley at Bell 

Laboratories invented a new switching technology called the transistor. This device consumed 
less power, occupied less space, and was made more reliable than those of vacuum tubes. 
Impressed by these attributes, IBM built its first transistor based computer called Model 604 
in 1953. By early 1960, transistor technology became ubiquitous. Further drive towards lower 
power, less space, higher reliability, and lower cost resulted in the invention of integrated 
circuits in 1959 by Jack Kilby of Texas Instruments. Kilby made his first integrated circuit 
in germanium. Robert Noyce at Fairchild used a planar process to make connections of 
components within a silicon integrated circuit in early 1959, which became the foundation of 
all subsequent generations of computers. In 1966, IBM shipped the System/360 all-purpose 
mainframe computer made of integrated circuits.

Within the transistor circuit families, the most powerful transistor technology was the 
bipolar junction transistor (BJT)  rather than the CMOS (Complementary Metal Oxide 
Semiconductor) transistor. However, compared to CMOS transistors, the bipolar ones, 
using the fastest ECL (emitter coupled logic) circuit, cost more to build, had a lower level of 
integration, and consumed more power. As a result, the semiconductor industry moved en 
masse to CMOS in early 1990s. From then on, the CMOS technology became the entrenched 
technology, and supercomputers were built with the fastest CMOS circuits. This picture lasted 
until about 2002 where CMOS power and power density rose dramatically to the point that 
they exceeded those of the corresponding bipolar numbers in the 1990’s. Unfortunately, there 
was no lower power technology lying in wait to diffuse the crisis. Thus, we find ourselves again 
at a crossroad to build the next generation supercomputer. According to the “traditional” view, 
the way to build the fastest and largest supercomputer is to use the fastest microprocessor 
chips as the building block. The fastest microprocessor is in turn built upon the fastest CMOS 
switching technology that is available to the architect at the time the chip is designed. This 
line of thought is sound provided that there are no other constraints to build supercomputers. 
However, in the real world there are many constraints (heat, component size, etc.) that make 
this  reasoning unsound.

Lilliputians of Supercomputing Have Arrived!

Jose Castanos
George Chiu
Paul Coteus
Alan Gara
Manish Gupta
Jose Moreira
IBM T.J. Watson Research Center
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In the mean time, portable devices such as PDAs, cellphones, and laptop computers, 
developed since the 1990’s, all require low power CMOS technology to maximize the battery 
recharge interval. In 1999, IBM foresaw the looming power crisis and asked the question 
whether we could architect supercomputers using low power, low frequency, and inexpensive 
(Lilliputian) embedded processors to achieve a better collective performance than using high 
power, high frequency (Brobdingnagian) processors. While this approach has been success-
fully utilized for special purpose machines such as the QCDOC supercomputer, this counter-
intuitive proposal was a significant departure from the traditional approach to supercomputer 
designs. However, the drive toward lower power and lower cost remained a constant theme 
throughout.

We chose an embedded processor optimized for low power and low frequency design, 
rather than performance. Such a processor has a performance/power advantage compared to a 
high performance and high power processor. A simple relation is 

 
performance/rack  =  performance/watt  x watt/rack.

The last term in this expression, watt/rack, is determined by thermal cooling capabilities 
of a given rack volume. Therefore, it imposes the same limit (of the order of 25 kilowatts) for 
using either high-frequency, high-power chips or using low-frequency, low-power chips. To 
maximize performance/rack, it is the performance/watt term that must be compared among 
different CMOS technologies. This clearly illustrates one of the areas in which electrical 
power is critical to achieving rack density. We have found that in terms of performance/watt, 
the low frequency, lower power embedded IBM PowerPC 440 core consistently outperforms 
high frequency, high power microprocessors by a factor of about ten regardless of the 
manufacturers of the systems. This is one of the main reasons we chose the low power design 
point for our Blue Gene/L supercomputer. Figure 1 illustrates the power efficiency of some 
recent supercomputers. The data is based on total peak Gflops (giga floating-point operations 
per second) divided by total system power in watts, when that data is available. If the data is 
not available, we approximate it using Gflops/chip power (an overestimate of the true system 
Gflops/power number). 

Figure 1. Power efficiencies of recent supercomputers.  
(Blue = IBM Machines, black = other U.S. machines, red = Japanese machine)
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This chart presents empirical evidence of the fact that in the presence of a common power 
envelope, the collective peak performance per unit volume is superior with low- power CMOS 
technology. We now explain the theoretical basis of the superior collective performance of low 
power systems. Any performance metric such as flops , MIPS (millions instructions per sec), 
or SPEC benchmarks is linearly proportional to the chip clock frequency. On the other hand, 
the power consumption of the ith transistor is given by the expression:

Pi =  switching power of transistor i + leakage power of transistor i  
 = ½ CLi V

2 fi + leakage power of transistor i,

where CLi is the load capacitance of the ith transistor, V = VDD is the supply voltage, and 
fi is the switching frequency of the ith transistor. Note that not every transistor participates 
in switching on every clock cycle f. Although the leakage power is increasingly important 
for 90nm, 65nm and 45nm technologies, we ignore the leakage power of the Blue Gene/L 
chips which, built in 130 nm technology, contributes less than 2% of the system power. The 
switching power consumed in a chip is the sum of the power of all switching nodes. It can be 
expressed as:

Pchip =  Σ switching power of transistor i  =  ½ Csw V2 f,

where the average switching chip capacitance is given by 

 Csw  = (Σ CLi fi)/f.

It is difficult to predict Csw accurately because we seldom know the switching frequencies fi 
of every transistor in every cycle, and furthermore fi is different for each application. To sim-
plify the discussion, we use an averaged value of Csw obtained either from direct measurement 
or from power modeling tools. For high power, high frequency CMOS chips, the clock 
frequency f is roughly proportional to the supply voltage V, thus the power consumed per chip 
Pchip  is proportional to V2 f or f3. Therefore, in the cubed-frequency regime, the power grows 
by a factor of eight, if the frequency is doubled. If we use eight moderate frequency chips, each 
of them half the frequency of the original high frequency chip, we burn the same amount of 
power, yet we have a fourfold increase in flops/watt. This then is the basis of our Blue Gene/L 
design philosophy. One might ask if we can do this indefinitely. If 100,000 processors at some 
frequency is good, are not 800,000 processors at ½ the frequency even better? The answer 
is complex, because we must consider also the mechanical component sizes, power to com-
municate between processors, the failure rate of those processors, the cost of packaging those 
processors, etc. Blue Gene/L is a complex balance of these factors and many more. Moreover, 
as we lower the frequency, the power consumed per chip drops from cubic frequency 
dependence to quadratic dependence and finally to linear dependence. In the linear regime, 
both power and performance are proportional to frequency; there is no advantage of reducing 
frequency at that point.

Blue Gene/L Architecture

The Blue Gene/L supercomputer project is aimed to push the envelope of high performance 
computing (HPC) to unprecedented levels of scale and performance. Blue Gene/L is the first 
supercomputer in the Blue Gene family. It consists of 65,536 high-performance compute nodes 
(131,072 processors), each of which is an embedded 32-bit PowerPC dual processor, and 
has 33 Terabytes of main memory. Furthermore, it has 1024 I/O nodes, using the same chip 
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that is used for compute nodes. A three-dimensional torus network and a sparse combining 
network are used to interconnect all nodes. The Blue Gene/L networks were designed with 
extreme scaling in mind. Therefore, we chose networks that scale efficiently in terms of both 
performance and packaging. The networks support very small messages (as small as 32 bytes) 
and include hardware support for collective operations (broadcast, reduction, scan, etc.), 
which will dominate some applications at the scaling limit. The compute nodes are designed to 
achieve a 183.5 Teraflops/s peak performance in the co-processor mode, and 367 Teraflops/s 
in the virtual node mode.1   

    The system on chip approach used in the Blue Gene/L project integrates two processors, 
cache (Level 2 and Level 3), internode networks (torus, tree, and global barrier networks), 
JTAG and Gigabit Ethernet links on the same die. By using the embedded DRAM, we have 
enlarged the on-chip Level 3 cache to four MB, four to eight times larger than competitive 
cache’s made of SRAM and greatly enhancing the amount of realized performance of the 
processor. By integrating the inter-node networks, we can take advantage of the same gen-
eration technology, i.e., these networks scale with chip frequency. Furthermore, the off-chip 
drivers and receivers can be optimized to consume less power than those of industry standard 
networks. Figure 2 is a photograph of multi-rows of the Blue Gene/L system. The first two 
rows have their black covers on, whereas the remaining rows are uncovered.

 
Figure 2. The Blue Gene/L system installed at the Lawrence Livermore National Laboratory. 

One of the key objectives in the Blue Gene/L design was to achieve cost/performance on 
a par with the COTS (Commodity Off The Shelf) approach, while at the same time incorpo-
rating a processor and network design so powerful that it can revolutionize supercomputer 
systems. 

Using many low power, power-efficient chips to replace fewer, more powerful ones suc-
ceeds only if the application users can realize more performance by scaling up to a higher 
number of processors. This indeed is one of the most challenging aspects of the Blue Gene/L 
system design and must be addressed through scalable networks along with software that will 
efficiently leverage these networks. 

 

 

 

 

1 IBM Journal of Research and 
Development, special double issue on 
Blue Gene, Vol.49, No.2/3, March/May, 
2005.
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System Software

The system software for Blue Gene/L was designed with two key goals, familiarity and scal-
ability. We wanted to make sure that high performance computing users could migrate their 
parallel application codes with relative ease to the Blue Gene/L platform. Secondly, we wanted 
the operating environment to allow parallel applications to scale to the unprecedented levels 
of 64K nodes (128K processors). It is important to note that this requires scaling not only in 
terms of performance but also in reliability. A simple mean-time-between-failure calculation 
shows that if the software on a compute node fails about once a month, under the assumption 
that failures over all nodes are independent, a node failure would be expected once every 40 
seconds! Clearly, this shows the need for compute node software to be highly reliable.

 
We have developed a programming environment based on familiar programming 

languages (Fortran, C, and C++) and the single program multiple data (SPMD) programming 
model, with message passing supported via the message passing interface (MPI) library. This 
has allowed the porting of several large scientific applications to Blue Gene/L with a modest 
effort (often within a day).

We have relied on simplicity and a hierarchical organization to achieve scalability of 
software in terms of both performance and reliability. Two major design simplifications that 
we have imposed are:

• Strictly space sharing: only one parallel job can run at a time on a Blue Gene/L partition; 
we go one step further and support only one thread of execution per processor. This 
allows us to use efficient, user-space communication without protection problems 
(the Blue Gene/L partitions are electrically isolated). Furthermore, having a dedicated 
processor behind every application-level thread leads to more deterministic execution 
and higher scalability.

• No demand paging support: the virtual memory available on a node is limited to the 
physical memory size. This restriction, besides simplifying the compute node kernel, 
leads to a performance benefit that there are no page faults or translation lookaside 
buffer misses during program execution, leading to higher and more deterministic 
performance.

The software for Blue Gene/L is organized in the form of a three-tier hierarchy. A light-
weight kernel, together with the runtime library for supporting user applications, constitutes 
the programming environment on the compute node. Each I/O node, which  can be viewed 
as a parent of a set of compute nodes (referred to as a processing set or pset), runs Linux and 
supports a more complete range of operating system services, including file I/O and sockets, 
to the applications via offloading from the compute nodes. The Linux kernel on I/O nodes also 
provides support for job launch. Finally, the control system services run on a service node, 
which is connected to the Blue Gene/L computational core via a control network.
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Results

In October 2004, an 8-rack Blue Gene/L system, which occupied less than 200 square feet 
of floorspace, and consumed about 200 KW in power, passed the Earth Simulator (which 
occupies an area of about 70,000 square feet and consumes about seven MW of power) in 
LINPACK performance. In the recent, June 2005 TOP500 list,2 a 32 rack Blue Gene/L system,  
which has been delivered to Lawrence Livermore National Laboratory, occupies the #1 spot 
with a LINPACK performance of 136.8 Teraflop/s. Blue Gene/L systems account for five of the 
top ten entries in the June 2005 TOP500 list. 

More importantly, several scientific applications have been successfully ported and scaled 
on the Blue Gene/L system. The applications reported in our studies3 4  have achieved, on Blue 
Gene/L, their highest ever performance. Those results also represent the first proof point that 
MPI applications can effectively scale to over ten thousand processors. 

Conclusions

In this paper, we described the main thrust of the Blue Gene/L supercomputer made of 
Lillputian low power, low frequency processors. By exploiting the superior performance/watt 
metric, we can package ten times more processors in a rack, thus it became the number one 
rated supercomputer since November 2004. In June 2005, five of the top ten supercomputers 
in the 25th TOP500 list were based on Blue Gene/L architecture. Blue Gene/L is currently 
producing unprecedented simulation in classical and quantum molecular dynamics, climate, 
quantum chromodynamics, and the list is growing. The future is likely to be even more power 
constrained due to the slowing of the power-performance scaling of the underlying transistor 
technologies. This will likely drive systems to aggressively search for opportunities to build 
even more power efficient systems, likely driving to more Blue Gene/L-like parallelism. In the 
future, the Lilliputians are likely to be active in nearly every area of computing.

 

Acknowledgement

The Blue Gene/L project has been supported and partially funded by the Lawrence Livermore National Laboratory on behalf of the 
United States Department of Energy under Lawrence Livermore National Laboratory Subcontract No. B517522.

 

 

 

 

2 TOP500 Supercomputer Sites, 
http://www.top500.org/
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1 http://www.sdsc.edu/sbe/

At first blush, the technical issues involved with designing, implementing, and deploying 
Cyberinfrastructure seem to present the greatest challenges. Integrating diverse resources to 
deliver aggregate performance, engineering the system to provide both usability and reliability, 
developing and building adequate user environments to monitor and debug complex applica-
tions enabled by Cyberinfrastructure, ensuring the security of Cyberinfrastructure resources, 
etc. are all immensely difficult technical challenges and all are more or less still works-in-
progress. 

After ten years of experience since the I-Way Grid experiment at SC’95, and many more 
years of experience with team-oriented distributed projects and experiences such as the Grand 
Challenge program from the 1980s, NSF’s large-scale ITR projects, TeraGrid, etc. it is clear 
that some of the most challenging problems in designing, developing, deploying, and using 
Cyberinfrastructure arise from the social dynamics of making large-scale, coordinated projects 
and infrastructure work. From an increasingly substantive experience base with such projects, 
it is clear that the cultural, organizational, and policy dynamics, as well as the social impact of 
Cyberinfrastructure will be critical to its success. 

The expansion of the focus on social scientists as end users of Cyberinfrastructure to 
critical designers and process builders of Cyberinfrastructure motivated the organization 
of the NSF SBE-CISE Workshop on Cyberinfrastructure and the Social Sciences1 in March 
at Airlie House in Warrenton, Virginia. Targeted to a broad spectrum of decision makers 
and innovative thinkers in the Social Sciences and Computer Sciences, and organized by a 
multi-disciplinary team of SBE and CISE researchers including a Political Scientist (Henry 
Brady, UC Berkeley), an Economist (John Haltiwanger, University of Maryland), and two 
Computer Scientists (Ruzena Bajcsy from UC Berkeley and Fran Berman from SDSC and UC 
San Diego), the workshop strived to provide substantive, useful and usable feedback to NSF on 
programs and activities for which the SBE and CISE communities could partner together to 
build, deploy, and use Cyberinfrastructure. The Airlie workshop focused on two goals:

1. To develop a Final Report that lays out a forward path of Cyberinfrastructure research, 
experimentation, and infrastructure for the SBE and CISE community and provide a 
framework for projects and efforts in this integrated area. 

2. To provide a venue for community building within the SBE and CISE communities, and 
in particular, a venue for a multi-disciplinary synergistic community that leverages the 
perspectives and research of both SBE and CISE constituencies. 

Workshop Framework

The Workshop combined distinguished plenary talks from Dr. Arden Bement, Director 
of the NSF, Dr. Dan Atkins, Chair of the Blue Ribbon Panel on Cyberinfrastructure, and 
Dr. Nikolaos Kastrinos, Office of Directorate General Research of the European Union 
Commission, as well as a set of intensive break-outs and report-outs. The group interac-
tions were designed to focus discussions so that the participants could start developing a 
roadmap for how both social scientists and computer scientists can better impact the design, 
organization, processes, policies, and impacts of Cyberinfrastructure, as well as how they can 

conference report
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improve the relevancy and usefulness of Cyberinfrastructure for the social, behavioral, and 
economic sciences. Breakout sections focused on the following areas:

Cyberinfrastructure-mediated Interaction 
co-chaired by Computer Scientist Ruzena Bajcsy and Psychologist Philip Rubin   

How is Cyberinfrastructure-enabled interaction changing relationships? This session 
focused on the issues involved in developing Cyberinfrastructure-enabled communi-
cation mechanisms and their effect on the conduct of science, interpersonal relation-
ships and social networks, and the mediation of cultural and national boundaries.

Cyberinfrastructure Tools for the Social Sciences 
co-chaired by Political Scientist Henry Brady and Computer Scientist Allan Snavely   

What tools are needed to facilitate social science? This session focused on developing 
a set of needs and requirements for social scientists as well as a focus on the character-
istics and distribution of effective tools.

The Economics of Cyberinfrastructure 
co-chaired by Economist Jeff Mackie-Mason and Computer Scientist Rich Wolski  

The session focused on two framing questions: What can economics contribute to CS 
research about efficiently building and operating Cyberinfrastructure?; and How can 
computer science help identify ways in which to effectively use Cyberinfrastructure to 
answer economic questions?

The Organization of Cyberinfrastructure and Cyberinfrastructure-enabled 
Organizations 

co-chaired by Computer Scientist Fran Berman and Public Policy Professor Jane Fountain  
How will Cyberinfrastructure transform organizations and how can effective organiza-
tional approaches transform Cyberinfrastructure? The session focused on the models, 
frameworks, incentive structures and other mechanisms for advancing the organiza-
tional use and structure of Cyberinfrastructure.

Malevolent Uses of Cyberinfrastructure 
co-chaired by Statistician Stephen Fienberg and Engineer Shankar Sastry  

How can we protect Cyberinfrastructure from intended or unintended malevolent use? 
This session examined the broad spectrum of security, policy, privacy, confidentiality 
and other issues critical to ensuring the safe and secure use and development of 
Cyberinfrastructure.

The Impact of Cyberinfrastructure on Jobs and Income 
co-chaired by Economist John Haltiwanger and Computer Scientist Stephen Wright  

How has and will Cyberinfrastructure change the workplace? This session focused 
on the impact of Cyberinfrastructure in the workplace and the implication for firms, 
markets, and competitiveness.

The almost 100 participants (including roughly 20 participants from the National 
Science Foundation) felt that the Airlie Workshop constituted the beginning for a critical 
and important community of Cyberinfrastructure designers, builders and users. The 
workshop Final Report  provides a comprehensive summary of the issues and discussions 
at the workshop. Arden Bement commented  “This SBE-CISE workshop broke new ground 
by enabling these communities to explore key issues and opportunities for collaboration 
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in designing, developing and delivering better information infrastructure. The final 
report leverages the immense expertise of NSF communities to develop useful and usable 
Cyberinfrastructure to support breakthrough science and engineering research and education 
for the 21st century.” 

 The report is expected to become a key document in the development of NSF’s 
Cyberinfrastructure plan and serves to outline a broad agenda of participatory research, infra-
structure, and educational opportunities for both Social Scientists and Computer Scientists. 

Workshop Findings 

Participants in the workshop explored the concepts of Social Science-enabled 
Cyberinfrastructure and Cyberinfrastructure-enabled Social Science. Participants also 
identified key challenges in the social impacts and implications of Cyberinfrastructure. The 
Final Report2 Executive Summary describes the following conclusions drawn from workshop 
discussions: 

1. “Cyberinfrastructure can make it possible for the SBE sciences to make a giant step-
forward — Cyberinfrastructure can help the social and behavioral sciences by enabling the 
development of more realistic models of complex social phenomena, the production and 
analysis of larger datasets (such as surveys, censuses, textual corpora, videotapes, cognitive 
neuroimaging records, and administrative data) that more completely record human behavior, 
the integration and coordination of disparate datasets to enable deeper investigation, and the 
collection of better data through experiments and simulations on the Internet. 

… Cyberinfrastructure provides the ability to do these things at unprecedented scale and 
intensity … just at a time when social and behavioral scientists face the possibility of becoming 
overwhelmed by the massive amount of data available and the challenges of comprehending 
and safeguarding it. 

2. “SBE scientists can help CISE researchers design a functional and effective 
Cyberinfrastructure which achieves its full potential — Cyberinfrastructure requires 
unprecedented organization, coordination, and integration and will have immense impact on 
the social dynamics, technological resources, and communication and interaction paradigms 
for both science and society. … SBE leaders are needed to help guide the design, development, 
and deployment of a functional Cyberinfrastructure …

3. “Together, SBE and CISE researchers can assess the impacts of Cyberinfrastructure on 
society and find ways to maximize the benefits of Cyberinfrastructure … It is already an 
accepted part of the mission of the SBE sciences to assess societal impact, but it is particularly 
important to assess the impacts of Cyberinfrastructure for engineering and the sciences. Social 
and behavioral scientists can be especially helpful in understanding changes in social interac-
tions, changes in jobs and income, the impact of policy, and new conceptions of privacy and 
trust in the networked world. …”

The Final Report Executive Summary continues

“… true collaborative research is needed between SBE and CISE researchers. In order to 
achieve this, both intellectual and material interfaces must be shared. For example, it is not 
sufficient for SBE researchers to be told about Cyberinfrastructure possibilities if they do not 

2 http://vis.sdsc.edu/sbe/reports/SBE-
CISE-FINAL.pdf
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possess the technical expertise to understand their ramifications. Many SBE researchers lack 
the technical know-how to participate without significant support from Cyberinfrastructure 
experts. Similarly, CISE researchers often lack sufficient domain-specific knowledge to appre-
ciate the complexity of the technical problems that truly need to be solved by SBE researchers. 
The level of knowledge required by both sides will require true collaboration between the two 
research communities to make a joint research initiative successful. SBE researchers must 
become familiar with emerging Cyberinfrastructure technologies and CISE researchers must 
learn about the social sciences.”  

One of the concrete outcomes of a successful integrative workshop is the number of 
collaborations generated out of issues exposed within workshop discussions and collabora-
tions begun at the workshop. Based on this criteria, the NSF SBE-CISE Workshop on 
Cyberinfrastructure and the Social Sciences was a resounding success. More information on 
the workshop can be found at http://www.sdsc.edu/sbe/ .
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1 http://www.top500.org/

Recent articles in community publications have focused on the critical need for capable 
high performance computing (HPC) resources for the open academic community. Compelling 
reports from the National Research Council, PITAC, the National Science Board, and others 
point to our current diminished ability to provide adequate computational and data man-
agement support for U.S. researchers, and the impact of insufficient technology capacity and 
capability on the loss of U.S. competitiveness and leadership. 

As stated compellingly and increasingly, adequate capability and capacity in HPC is nec-
essary, but it is not sufficient for leadership and competitiveness in science and engineering. 
Beyond the gear, concrete and strategic goals are critical to achieve competitiveness in science 
and engineering.

What do we want to accomplish as a nation in science and engineering? Competitiveness 
for many is reduced to an HPC “arms race” — who has the top spots on the Top500 list? For 
others, competitiveness amounts to U.S. dominance in the science and engineering world, 
represented by the number of awards, prizes, and other recognitions for U.S. researchers. 
For still others, competitiveness is represented by what researchers and educators see as the 
diversion of a looming “perfect storm” — decreasing funding for science and engineering 
in the U.S., increasing outsourcing of people and ideas to Europe, Asia and elsewhere, and 
decreasing students graduating in the sciences and engineering.

For any definition of competitiveness, the means to the end is a serious application of the 
Gretzky Rule: “Skate to where the puck will be.”  It is clear that we need concrete goals and a 
plan, timetable, and resources to achieve them. But what should our goals be? Which goals 
should have priority over others? How should we accomplish our goals? More funding is an 
easy answer, and indeed, nothing substantive can be done without resources. But leadership, 
concrete goals, and a strategic plan for achieving these goals ranks just as highly to ensure that 
funding is well spent and our efforts are successful. 

So how can we apply the Gretzky rule to the going definitions of competitiveness?

The Gretzky Rule and Competitiveness in the HPC “Arms Race”

These days, competitiveness in high performance computing is commonly measured 
by ranking on the Top500 list.1  This approach is inadequate to really measure architectural 
innovation, robustness, or even performance on applications that do not resemble the Linpack 
benchmarks; however, it is an easy measure and it has been effective in making the case for 
competitiveness beyond the scientific community. The current top spot on the list is occupied 
by Livermore’s Blue Gene, however the emergence several years ago of the Japanese Earth 
Simulator (now at spot 4) provided a “wake up call” (Dongarra called it “computenik” in the 
New York Times) to the U.S.

The Earth Simulator provides a textbook application of the Gretzky Rule:  Japan committed 
roughly 5 years and 500 million dollars to planning and executing the Earth Simulator, which 
stayed at the top spot on the Top500 list between June 2002 and June 2004 inclusive. Careful 

opinion editorial
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planning, investment, and commitment enabled the Earth Simulator to create an impact 
which is still being felt in the U.S. and Europe.

So what did we learn about competitiveness from the Earth Simulator? A concrete goal 
achieved by strategic planning, commitment, and resources over an appropriate timeframe 
made this a reality.

The Gretzky Rule and Competitiveness in Science and Engineering Research

For most academics, competitiveness is measured by quality of results and track record 
through publications, and the most highly valued research and researchers are candidates for 
community prizes — the Fields Medal (mathematics), the Turing Award (computer science), 
the Pulitzer Prize (literature), and of course, the Nobel Prize (various disciplines). The ultimate 
goal of competitiveness is leadership, and to achieve the kind of leadership recognized by com-
munity prizes, researchers must devote many years in an environment that supports creativity, 
innovation, deep thinking, and does not penalize the many false starts, wrong turns, and other 
building blocks that lead to our best and most important results.

To create an environment in which U.S. scientists and engineers are competitive involves 
developing an environment where the best, the brightest, and the most creative can work, and 
over the long periods of time that are required for fundamental advances. For many of today’s 
scientists and engineers, infrastructure and professional support is decreasing in the university 
environment, and there is increasing difficulty in getting funded by federal agencies (currently 
the “hit rate” for computer science and engineering proposals at the NSF is 20% or less, i.e. 
only one in every five proposals is funded). In addition, increasing risk aversion in the funding 
environment penalizes against bold, long-term, or unusual approaches.

Optimizing for competitiveness in science and engineering research mandates a different 
approach than the HPC “arms race” to the provision of high performance computational and 
data management infrastructure as well. Rather than optimizing for Top500 ranking, enabling 
HPC platforms for the researchers who need them must optimize for the support of real 
science and engineering applications. Data-intensive HPC applications, latency tolerant grid-
friendly applications, latency-intolerant “traditional HPC” applications, etc. require a diverse 
set of capable and high-capacity HPC architectures to best support the diverse needs of the 
broad academic community. One size (architecture or site) does not fit all here. At the same 
time, we can’t currently afford 100’s or perhaps even 10’s of these facilities — economies of 
scale must be applied to optimize for adequate capacities and capabilities, as well as the costs 
of support, maintenance, and user service and training required to best leverage national-scale 
HPC resources for the broad community.

So how can we become more competitive in U.S. science and engineering research? Our 
research and education portfolio would benefit from the same approach we use to balance our 
personal investments. We should be investing in a strategic balance of short-term, long-term, 
high-risk, and low-risk endeavors. We should acknowledge that infrastructure enables new 
discovery but also incurs cost. If the “puck” is leadership through a greater U.S. percentage 
of top prizes and high-impact results, we need to focus our resources on developing an 
environment where this can happen, and begin skating in that direction.
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Competitiveness in Sustaining a Science and Engineering Workforce — A Perfect 
Storm Looming

The outsourcing of research, education, service, and innovation is an increasing focus for 
discussion in the public and private sector. According to Science Resource Statistics2, as of 
2003, 22% of professional scientists and engineers did not have a B.A. or B.S. and only 9% held 
Ph.D.s and professional degrees. The number of doctorates awarded have been decreasing in 
science and engineering since 1998,3 and despite the fact that our kids are increasingly tech-
nology-savvy, as a society, our understanding of science and engineering is seriously limited. 
The National Science Board’s 2004 Science and Engineering Indicators report states “Many 
people do not seem to have a firm understanding of basic scientific facts and concepts.”4

For many of us in academia, the increasing competitiveness of our colleagues in Europe 
and Asia through committed funding programs and resources, the drop in support in the U.S. 
for research, education, and information infrastructure, and the increased outsourcing of tech-
nology innovation and service outside of the U.S. are creating a “perfect storm” that will batter 
U.S. leadership and competitiveness not just now, but over the next generation. Investment 
in maintaining and sustaining a competitive U.S. workforce in science, engineering, and 
technology is a long-term investment. It will require planning, commitment, and resources for 
our educational system, expansion of our training environments, and evolution of our cultural 
perceptions to recognize the critical role science and engineering play in driving key societal 
challenges such as better health, improved safety, a sustainable environment, etc.

If we have a concrete idea of where we want the puck to be, it’s much easier to skate there. 
Setting strategic priorities and concrete goals, commitment to providing the leadership, 
perseverance, and resources to meet those goals, and responsibly estimating the costs and 
the timeframes required to reach them are key to competitiveness and leadership. This is 
not rocket science, but without a more thoughtful and strategic approach, advances and new 
discoveries in rocket science and other disciplines will be much more difficult to achieve.
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