
Fastest and most used math library for Intel®-based systems1

1 Data from Evans Data Software Developer surveys, 2011-2018

Speaker: Alexander Kalinkin

Contributing authors: Peter Caday,
Kazushige Goto, Louise Huot, Sarah
Knepper, Mesut Meterelliyoz, Arthur
Araujo Mitrano, Shane Story

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
2

Outline

• Intel MKL Solutions for Small, Medium, and Skewed Sizes

• Just-in-time (JIT) run-time compilation for matrix multiplication

• Packed GEMM APIs

• Integer GEMMs

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
3

Classification of Matrix Sizes and Performance Challenges
Small Sizes
• M, N, K < ~20
• Challenges: High function call overheads, low vectorization, low parallelization

Medium Sizes
• ~20 < M, N, K < ~500
• Challenges: Low parallelization, high copy overheads

Skewed Sizes
• M < ~500 and large N
• N < ~500 and large M
• Challenge: High copy overheads

Large Sizes
• M, N, K > ~5000
• Performance close to machine’s theoretical peak

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
4

Intel MKL Solutions for Small, Medium, and Skewed Sizes
Direct call (since Intel MKL 2017)
• Reduces function call overheads, skips error checking, some compile-time optimizations
• Use preprocessor macros
• Enabled for: GEMM, GEMM3M, SYRK, TRSM, AXPY, DOT, POTRF, GETRF, GETRS, GETRI, GEQRF

Just-in-time (JIT) run-time compilation (since Intel MKL 2019)
• Decreases library, loop, and corner case handling overheads
• Use new preprocessor macros or new JIT APIs
• Enabled for: DGEMM, SGEMM; in an upcoming release: ZGEMM, CGEMM

Compact APIs (since Intel MKL 2018)
• Enables vectorization over very small matrix dimensions by reformatting the data in a compact layout
• Enabled for: GEMM, TRSM, GETRINP, GETRFNP, POTRF, GEQRF

Batch APIs (since Intel MKL 11.3)
• Groups several independent function calls together to improve core usage
• Enabled for: GEMM, GEMM3M, TRSM

Packed APIs (since Intel MKL 2017)
• Allows amortizing copy overheads over several GEMM calls with same input matrix
• Enabled for: DGEMM, SGEMM, GEMM_S8U8S32, GEMM_S16S16S32

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
5

JIT Capability in Intel MKL
With preprocessor macro MKL_DIRECT_CALL_JIT or MKL_DIRECT_CALL_SEQ_JIT

• No changes to user code

• Intel MKL may JIT a specific kernel

• Kernels are stored in an internal hash table to amortize cost of generation

With new JIT APIs

• User responsible for managing kernels

• Further eliminates overheads for even better performance

Utilizes Xbyak JIT compiler underneath (https://github.com/herumi/xbyak)

https://github.com/herumi/xbyak

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
6

Packed APIs Overview
• GEMM may copy (pack) the input matrices into internal buffers for efficient computation

• Copy operation is costly for medium or skewed sizes (M or N < ~500)

• Amortize the copy operation over multiple GEMM calls with the same input matrix

• Copy the data once and reuse it in many GEMM calls

• Improves the performance when there is input matrix reuse

C1 = alpha . op(A1) . op(B1) + beta . C1

C2 = alpha . op(A1) . op(B2) + beta . C2

C3 = alpha . op(A1) . op(B3) + beta . C3

Input matrix A1 is shared between three
GEMM calls

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
7

Intel MKL Reduced Precision Support

Integer matrix-matrix multiplication routines that work with quantized matrices (since
Intel MKL 2018)

• GEMM_S8U8S32, GEMM_S16S16S32

• S - signed, U - unsigned; # bits

• User quantizes each matrix

• C := alpha*(op(A) + A_offset)*(op(B) + B_offset) + beta*C + C_offset

• {A,B}_offset are matrices with every element equal to a given value

• C_offset is a matrix with every element, row, or column equal to given value(s)

Packed APIs available since Intel MKL 2019 Update 1

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel MKL Resources

8

Intel MKL Website https://software.intel.com/en-us/intel-mkl

Intel MKL Forum https://software.intel.com/en-us/forums/intel-math-kernel-library

Intel MKL
Benchmarks

https://software.intel.com/en-us/intel-mkl/benchmarks#

Intel MKL Link Line
Advisor

http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

https://software.intel.com/en-us/intel-mkl
https://software.intel.com/en-us/forums/intel-math-kernel-library
https://software.intel.com/en-us/intel-mkl/benchmarks
http://software.intel.com/en-us/articles/intel-mkl-link-line-advisor/

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Legal Disclaimer & Optimization Notice

INFORMATION IN THIS DOCUMENT IS PROVIDED “AS IS”. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY
INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO THIS INFORMATION INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests,
such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any change
to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully
evaluating your contemplated purchases, including the performance of that product when combined with other products.

Copyright © 2018, Intel Corporation. All rights reserved. Intel, Pentium, Xeon, Xeon Phi, Core, VTune, Cilk, and the Intel logo are trademarks of
Intel Corporation in the U.S. and other countries.

Optimization Notice

Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors.
These optimizations include SSE2, SSE3, and SSSE3 instruction sets and other optimizations. Intel does not guarantee the availability, functionality, or
effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended for
use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the
applicable product User and Reference Guides for more information regarding the specific instruction sets covered by this notice.

Notice revision #20110804

9

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
11

JIT APIs Workflow

Create a handle and generate GEMM kernel:

mkl_jit_status_t status = mkl_jit_create_sgemm(&jit_handle,
layout, transa, transb, m, n, k, alpha, lda, ldb, beta, ldc);

Get kernel associated with handle:

sgemm_jit_kernel_t kernel = mkl_jit_get_sgemm_ptr(jit_handle);

Repeatedly execute the GEMM kernel:

kernel(jit_handle, a, b, c);

Destroy the created handle/GEMM kernel:

mkl_jit_destroy(jit_handle);

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
12

Packed APIs Workflow
Get size needed for buffer

size = cblas_sgemm_pack_get_size(identifier, m, n, k);

Allocate buffer

Ap = mkl_malloc(size, 64);

Perform packing

cblas_sgemm_pack(layout, identifier, trans, m, n, k, alpha, A, lda, Ap);

Repeatedly compute GEMM with the packed matrix

cblas_sgemm_compute(layout, transa, transb, m, n, k, Ap, lda,
B1, ldb1, beta, C1, ldc1);

Free allocated buffer

mkl_free(Ap);

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
13

Example Usage of New JIT APIs (slide 1 of 2)

MKL_LAYOUT layout;
MKL_TRANSPOSE transA, transB;
MKL_INT m, n, k, lda, ldb, ldc;
float alpha, beta, *a, *b, *c;
void* jitter;
// Initialize user data (not shown)

// Create jitter handle and generate GEMM kernel
mkl_jit_status_t status = mkl_jit_create_sgemm(

&jitter, layout, transA, transB, m, n, k, alpha, lda, ldb, beta, ldc);

// Check that creation was successful
if (MKL_JIT_ERROR == status) {

printf("Error: cannot create jitter\n");
return 1;

}

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
14

Example Usage of New JIT APIs (slide 2 of 2)

// Get kernel associated with jitter handle
sgemm_jit_kernel_t kernel = mkl_jit_get_sgemm_ptr(jitter);

// Repeatedly execute GEMM kernel
kernel(jitter, a, b, c);

// Destroy the created kernel
mkl_jit_destroy(jitter);

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
15

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Faster, Scalable Code with Intel® Math Kernel Library

16

• Speeds computations for scientific, engineering, financial and
machine learning applications by providing highly optimized,
threaded, and vectorized math functions

• Provides key functionality for dense and sparse linear algebra
(BLAS, LAPACK, PARDISO), FFTs, vector math, summary statistics,
deep learning, splines and more

• Dispatches optimized code for each processor automatically
without the need to branch code

• Optimized for single core vectorization and cache utilization

• Automatic parallelism for multi-core and many-core

• Scales from core to clusters

• Available at no cost and royalty free

• Great performance with minimal effort!

Operating System: Windows*, Linux*, MacOS1*

Available as standalone or as a part of Intel® Parallel Studio XE and Intel® System Studio

1 Available only in Intel® Parallel Studio Composer Edition.

Dense and SPARSE Linear Algebra

Fast Fourier Transforms

Vector Math

Vector RNGs

Fast Poisson Solver

And More!

Intel® Architecture Platforms

Intel® MKL Offers…

https://software.intel.com/en-us/intel-parallel-studio-xe
https://software.intel.com/en-us/system-studio

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
17

What’s Inside Intel® MKL

Linear
Algebra

BLAS

LAPACK

ScaLAPACK

Sparse BLAS

Iterative sparse
solvers

PARDISO*

Cluster Sparse Solver

FFTs

Multidimensional

FFTW interfaces

Cluster FFT

Vector
RNGs

Congruential

Wichmann-Hill

Mersenne Twister

Sobol

Neirderreiter

Non-deterministic

Summa
ry

Statistic
s

Kurtosis

Variation coefficient

Order statistics

Min/max

Variance-covariance

Vector
Math

Trigonometric

Hyperbolic

Exponential

Log

Power

Root

And
More

Splines

Interpolation

Trust Region

Fast Poisson Solver

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel®

Xeon®

Processor
64-bit

Intel® Xeon®

Processor
5100 series

Intel® Xeon®

Processor
5500 series

Intel® Xeon®

Processor
5600 series

Intel® Xeon®

Processor
E5-2600 v2

series

Intel® Xeon®

Processor
E5-2600 v3

series
v4 series

Intel® Xeon®

Scalable
Processor1

Up to Core(s) 1 2 4 6 12 18-22 28

Up to Threads 2 2 8 12 24 36-44 56

SIMD Width 128 128 128 128 256 256 512

Vector ISA Intel®
SSE3 Intel® SSE3 Intel® SSE4-

4.1
Intel® SSE

4.2 Intel® AVX Intel® AVX2 Intel®
AVX-512

Intel® Xeon Phi™
x200 Processor

(KNL)

72

288

512

Intel®
AVX-512

More cores à More Threads à Wider vectors

1. Product specification for launched and shipped products available on ark.intel.com.

Automatic Dispatching to Tuned ISA-specific Code Paths

18

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice
19

What’s New for Intel® MKL 2019?
Just-In-Time Fast Small Matrix Multiplication

• Improved speed of S/DGEMM for Intel® AVX2 and Intel® AVX-512 with JIT capabilities

Sparse QR Solvers
• Solve sparse linear systems, sparse linear least squares problems, eigenvalue problems, rank and

null-space determination, and others

Generate Random Numbers for Multinomial Experiments
• Highly optimized multinomial random number generator for finance, geological and biological

applications

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Performance Benefits for the latest Intel Architectures

20

0

500

1000

1500

2000

2500

3000

3500

4000

256
512

800
1000

1024
1500

1536
2000

2048
2560

3000
3072

4000
5000

6000
7000

8000
9000

10000
15000

20000

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

Problem Size (M = N = K)

DGEMM on Xeon Platinum

 16 threads 28 threads 56 threads
The benchmark results reported above may need to be revised as additional testing is conducted. The results depend on the specific platform configurations and workloads utilized in the testing, and may not be applicable to any particular
user’s components, computer system or workloads. The results are not necessarily representative of other benchmarks and other benchmark results may show greater or lesser impact from mitigations.
Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components,
software, operations and functions. Any change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the
performance of that product when combined with other products. For more complete information visit www.intel.com/benchmarks.
Configuration: Intel® Xeon® Platinum 8180 H0 205W 2x28@2.5GHz 192GB DDR4-2666
Benchmark Source: Intel® Corporation.
Optimization Notice: Intel’s compilers may or may not optimize to the same degree for non-Intel microprocessors for optimizations that are not unique to Intel microprocessors. These optimizations include SSE2, SSE3, and SSSE3 instruction
sets and other optimizations. Intel does not guarantee the availability, functionality, or effectiveness of any optimization on microprocessors not manufactured by Intel. Microprocessor-dependent optimizations in this product are intended
for use with Intel microprocessors. Certain optimizations not specific to Intel microarchitecture are reserved for Intel microprocessors. Please refer to the applicable product User and Reference Guides for more information regarding the
specific instruction sets covered by this notice. Notice revision #20110804.

DGEMM, SGEMM Optimized by Intel® Math Kernel Library 2019
Gold for Intel® Xeon® Platinum Processor

0

1000

2000

3000

4000

5000

6000

7000

8000

256
512

800
1000

1024
1500

1536
2000

2048
2560

3000
3072

4000
5000

6000
7000

8000
9000

10000
15000

20000
30000

Pe
rfo

rm
an

ce
 (G

Fl
op

/s
)

Problem Size (M = N = K)

SGEMM on Xeon Platinum

 16 threads 28 threads 56 threads

http://www.intel.com/benchmarks
https://software.intel.com/en-us/articles/optimization-notice
https://software.intel.com/en-us/articles/optimization-notice

Copyright © 2018, Intel Corporation. All rights reserved.
*Other names and brands may be claimed as the property of others.

Optimization Notice

Intel® MKL 11.0 - 2018 Noteworthy Enhancements

21

Conditional Numerical Reproducibility (CNR)

Intel® Threading Building Blocks (TBB) Composability

Intel® Optimized High Performance Conjugate Gradient (HPCD) Benchmark

Small GEMM Enhancements (Direct Call) and Batch

Compact GEMM and LAPACK Support

Sparse BLAS Inspector-Executor API

Extended Cluster Support (MPI wrappers and macOS*)

Parallel Direct Sparse Solver for Clusters

Extended Eigensolvers

